JP3275428B2 - Method and apparatus for manufacturing glass base material - Google Patents

Method and apparatus for manufacturing glass base material

Info

Publication number
JP3275428B2
JP3275428B2 JP5718893A JP5718893A JP3275428B2 JP 3275428 B2 JP3275428 B2 JP 3275428B2 JP 5718893 A JP5718893 A JP 5718893A JP 5718893 A JP5718893 A JP 5718893A JP 3275428 B2 JP3275428 B2 JP 3275428B2
Authority
JP
Japan
Prior art keywords
reaction tube
upstream
downstream
heater
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5718893A
Other languages
Japanese (ja)
Other versions
JPH06271329A (en
Inventor
徳行 遠藤
利巳 幅崎
宏記 長瀬
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5718893A priority Critical patent/JP3275428B2/en
Publication of JPH06271329A publication Critical patent/JPH06271329A/en
Application granted granted Critical
Publication of JP3275428B2 publication Critical patent/JP3275428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はMCVD法(Modified C
hemical Vapor Deposit Method:内付けCVD法)によ
るガラス母材の製造方法及び装置に関するものである。
The present invention relates to an MCVD method (Modified C
The present invention relates to a method and an apparatus for manufacturing a glass base material by a chemical vapor deposition method (internal CVD method).

【0002】[0002]

【従来の技術】ガラス原料ガス、屈折率制御用添加物ガ
スと酸素とを反応管内に流しながら該反応管を外部から
加熱して反応管内で上記ガスの酸化反応を生起させ、生
成した酸化物(SiO2 等)スートを堆積させ且つ加熱
溶融することによりガラス層を形成する方法はMCVD
法としてよく知られている。
2. Description of the Related Art While flowing a glass raw material gas, a refractive index control additive gas and oxygen into a reaction tube, the reaction tube is heated from the outside to cause an oxidation reaction of the above gas in the reaction tube to form an oxide. A method for forming a glass layer by depositing soot (such as SiO 2 ) and melting by heating is MCVD.
Well known as the law.

【0003】[0003]

【発明が解決しようとする課題】従来のMCVD法で
は、反応管堆積終了端部が図3のような形状になりガラ
ス堆積層10の終了端より反応管1が破損することがあ
る。これは例えばB2 3のような熱膨張率の大きな物
質をドーパントに含むほど多く現れる現象であることか
ら、応力に因むと考えられており、特に終了端近傍では
応力の集中が予想される。ガラスは元来非常に微細なひ
びが所々に潜在しており、集中した応力はそのひびを成
長させるものと考えられ、その結果ガラスの強度は低下
する。これにより反応管およびガラス堆積層の破壊が起
きるものと考えられる。また、堆積終了端付近に堆積す
るガラス化しない反応生成物質(以降ススと称する)1
1による管の閉塞等も問題となっている。本発明はこの
ような問題を解消した光ファイバ母材の製造方法及び装
置を提供しようとするものである。
In the conventional MCVD method, the end of the deposition of the reaction tube is shaped as shown in FIG. 3, and the reaction tube 1 may be damaged from the end of the glass deposition layer 10. This is a phenomenon that appears more as the dopant contains a substance having a higher coefficient of thermal expansion such as B 2 O 3 , and is considered to be caused by stress. In particular, concentration of stress is expected near the end end. . The glass inherently has very fine cracks lurking in some places, and the concentrated stress is thought to cause the crack to grow, resulting in a decrease in the strength of the glass. This is considered to cause the destruction of the reaction tube and the glass deposition layer. In addition, a non-vitrified reaction product (hereinafter referred to as soot) 1 deposited near the deposition end.
1 is also a problem. An object of the present invention is to provide a method and an apparatus for manufacturing an optical fiber preform in which such a problem is solved.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の手段として本発明は、 1)上流端より反応管内にガラス形成用原料ガスを導入
し、前記反応管の外にある加熱器を該反応管の管軸方向
に沿って上流より下流の所定位置まで複数回往復移動さ
せることにより該反応管内で気相化学反応により生成す
る反応物を堆積させ、反応物の非堆積部分を前記反応管
の下流端より排出するガラス母材の製造方法において、
前記加熱器を複数回往復移動させる際の下流側移動終了
端位置を段階的に上流側に移動せしめることを特徴とす
るガラス母材の製造方法、 2)上流端より反応管内にガラス形成用原料ガスを供給
する機構と、前記反応管を管径方向に回転する2つ以上
の支持部と該支持部の間を管軸方向に自在に移動する加
熱器を有し、下流端より反応管内に堆積しない原料等を
排気する機構を取り付けてなる装置において、該加熱器
の移動量と加熱器の位置を検出する機構及び加熱器の下
流側移動終了端を段階的に上流に移動せしめる制御機構
とをさらに有してなるガラス母材の製造装置、を提供す
る。
Means for Solving the Problems As means for solving the above-mentioned problems, the present invention provides: 1) a raw material gas for glass formation is introduced into a reaction tube from an upstream end, and a heater outside the reaction tube is provided; The reactant generated by the gas phase chemical reaction is deposited in the reaction tube by reciprocating a plurality of times along the pipe axis direction of the reaction tube from the upstream to a predetermined position downstream, and a non-deposited portion of the reaction product is removed from the reaction tube. In the method for producing a glass base material discharged from the downstream end of
A method of manufacturing a glass base material, wherein the end position of the downstream movement end when the heater is reciprocated a plurality of times is shifted stepwise to the upstream side; 2) a raw material for glass formation from the upstream end into the reaction tube. A mechanism for supplying a gas, two or more support portions for rotating the reaction tube in the tube radial direction, and a heater that freely moves in the tube axis direction between the support portions, and is provided in the reaction tube from the downstream end. A device equipped with a mechanism for exhausting raw materials and the like that do not accumulate, a mechanism for detecting the amount of movement of the heater and the position of the heater, and a control mechanism for gradually moving the downstream end of the downstream movement of the heater upstream. An apparatus for manufacturing a glass base material, further comprising:

【0005】[0005]

【作用】図1は本発明の方法及び装置の一具体例を概略
説明する図である。図示のように、石英ガラス等からな
る反応管1を回転する支持部2で把持することにより反
応管1を回転させる。図示を省略した原料供給部から例
えば四塩化ケイ素と三塩化ホウ素等のガラス原料ガス及
び酸素を、反応管1の一端より管内に供給しながら、反
応管1の軸方向に往復移動可能とするモーター4付きの
台座5に取り付けられた加熱バーナー等の加熱器3によ
り反応管1を外部から加熱することにより、反応管内に
おける原料ガスの酸化反応により生成した反応生成物で
あるススを管内壁に堆積及び加熱溶融させてガラス層
を形成する。また、反応後のガス等は反応管の下流に設
けられた図示していないスクラバー部で処理される。加
熱器3の移動可能な台座5には移動量検出器6も取り付
けてあり、検出された移動量の信号は制御装置9に送ら
れる。また台座5の一検出器7、8が上流側端部と下流
側端部に配置されている。まず、上流側一検出器7の検
出点から台座5を移動させ、反応管1内にガラス層を堆
積させ、下流側の位置検出器8での台座5を検出した点
から、台座5の移動量を設定し、この移動量が加熱器の
トラバース毎に段階的に減少するように、制御装置9に
て制御する。また、本発明方法は移動量検出器の移動量
そのものを位置として制御装置9に入力することにより
該位置検出器なしでも同様に制御することは可能であ
る。
FIG. 1 is a diagram schematically illustrating a specific example of the method and apparatus of the present invention. As shown in the figure, the reaction tube 1 made of quartz glass or the like is held by the rotating support 2 to rotate the reaction tube 1. A motor capable of reciprocating in the axial direction of the reaction tube 1 while supplying a glass material gas such as silicon tetrachloride and boron trichloride and oxygen from one end of the reaction tube 1 from a material supply unit (not shown). By heating the reaction tube 1 from the outside with a heater 3 such as a heating burner attached to a pedestal 5 with 4, soot, which is a reaction product generated by the oxidation reaction of the raw material gas in the reaction tube, is deposited on the inner wall of the tube. And heat and melt the glass layer
To form Further, the gas and the like after the reaction are processed in a scrubber (not shown) provided downstream of the reaction tube. A moving amount detector 6 is also attached to the movable base 5 of the heater 3, and a signal of the detected moving amount is sent to the control device 9. Further, one detector 7, 8 of the pedestal 5 is disposed at the upstream end and the downstream end. First, the pedestal 5 is moved from the detection point of the upstream one detector 7, a glass layer is deposited in the reaction tube 1, and the pedestal 5 is moved from the point where the pedestal 5 is detected by the downstream position detector 8. The amount is set, and the control device 9 controls the amount of movement so that the amount of movement decreases stepwise for each traverse of the heater. Further, in the method of the present invention, it is possible to perform the same control without the position detector by inputting the movement amount itself of the movement amount detector to the control device 9 as the position.

【0006】このように加熱器の移動量が段階的に減少
するようにすることにより、本発明で得られる反応管の
堆積終了端部分の状態は図2に示すようになる。このよ
うに堆積終了端部のガラス層はテーパ状に厚さが減少し
ているので、応力を分散させることができる。すなわ
ち、図3のように堆積終了端が鋭角または直角に近い場
合その角には応力の集中が起きるが、本発明の場合図2
のように堆積終了端をより鈍角にすることによりその角
の応力を分散させることができる。これにより本発明の
方法では反応管1の破損を防ぐことができる。また、堆
積終了端を上流方向に段階的に移動させることによりス
ス11の堆積場所も上流方向に段階的に移動してテーパ
状となるので、スス11の堆積による反応管下流端部の
閉塞を軽減でき、スス除外の回数を低減できる。
[0006] By reducing the amount of movement of the heater in a stepwise manner, the state of the end of the deposition of the reaction tube obtained in the present invention is as shown in FIG. Since the thickness of the glass layer at the end of the deposition is tapered, the stress can be dispersed. That is, as shown in FIG. 3, when the end of the deposition is near an acute angle or a right angle, stress concentration occurs at that angle.
By making the deposition end end more obtuse, the stress at that angle can be dispersed. Thus, the method of the present invention can prevent the reaction tube 1 from being damaged. Further, by moving the deposition end stepwise in the upstream direction, the deposition location of the soot 11 also moves stepwise in the upstream direction and becomes tapered, so that the soot 11 deposition blocks the downstream end of the reaction tube. The number of soot exclusions can be reduced.

【0007】[0007]

【実施例】本発明に従い図1の構成によりガラス母材を
製造した。反応管1として外径30mm、長さ1400
mmの石英管を使用し、加熱器3により加熱しつつ該反
応管1内に100層のガラス堆積層を形成せしめる際、
上流、下流の位置検出器7、8を850mm離した点に
固定する。次に下流位置検出器8が台座5を検出する点
より更に下流方向に50mm移動した点を最初の移動終
了端として制御装置9に入力する。次に1回当たりの下
流側移動減少量0.5mmを制御装置に入力し、上流端
より堆積を行った。その結果、反応管1の下流側終了端
部付近よりの破損は低減した。
EXAMPLE A glass preform was manufactured according to the present invention with the structure shown in FIG. Reaction tube 1 has an outer diameter of 30 mm and a length of 1400
When a 100 mm glass deposition layer is formed in the reaction tube 1 while heating with a heater 3 using a quartz tube of
The upstream and downstream position detectors 7 and 8 are fixed at points separated by 850 mm. Next, the point at which the downstream position detector 8 has moved 50 mm further downstream than the point at which the pedestal 5 is detected is input to the control device 9 as the first movement end end. Next, the downstream movement reduction amount of 0.5 mm per operation was input to the control device, and deposition was performed from the upstream end. As a result, damage near the downstream end of the reaction tube 1 was reduced.

【0008】[0008]

【発明の効果】以上実施例を挙げて具体的に説明したよ
うに、本発明によれば堆積終了端の堆積量を管軸方向に
段階的に減少させることにより、終了端よりの反応管の
破損を低減することができ、ガラス母材の生産性を向上
させることができる。また終了端付近に堆積するススの
堆積場所を分散させることにより反応管の終了端閉塞を
遅らせることができ、スス除外回数を低減させることが
できる。
As described above in detail with reference to the embodiments, according to the present invention, the amount of deposition at the end of the deposition is gradually reduced in the axial direction of the tube, so that the amount of the reaction tube from the end is reduced. Breakage can be reduced, and productivity of the glass base material can be improved. In addition, by dispersing soot deposition sites near the end end, it is possible to delay the end end of the reaction tube, thereby reducing the number of soot exclusions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の装置の概略説明図である。FIG. 1 is a schematic explanatory view of an apparatus of the present invention.

【図2】は本発明の方法の概略説明図であり、堆積終了
端部分の形状を示している。
FIG. 2 is a schematic explanatory view of the method of the present invention, showing a shape of a deposition end portion.

【図3】は従来法における堆積終了端部分の形状を示す
概略説明図である。
FIG. 3 is a schematic explanatory view showing the shape of a deposition end portion in a conventional method.

【符号の説明】[Explanation of symbols]

1 反応管、 2 支持部、 3 加熱器、 4 モー
ター、 5 台座、6 移動量検出器、 7 上流側位
置検出器、 8下流側位置検出器、 9 制御装置、
10 ガラス堆積層、 11 スス。
1 reaction tube, 2 support section, 3 heater, 4 motor, 5 pedestal, 6 displacement detector, 7 upstream position detector, 8 downstream position detector, 9 control device,
10 glass deposits, 11 soot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高城 政浩 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (56)参考文献 特開 昭53−102764(JP,A) 特開 昭53−108445(JP,A) 特開 昭51−89748(JP,A) 特開 平3−228845(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 37/018 C03B 8/04 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masahiro Takagi 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-53-102764 (JP, A) JP-A Sho 53-108445 (JP, A) JP-A-51-89748 (JP, A) JP-A-3-228845 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 37/018 C03B 8/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上流端より反応管内にガラス形成用原料
ガスを導入し、前記反応管の外にある加熱器を該反応管
の管軸方向に沿って上流より下流の所定位置まで複数回
往復移動させることにより該反応管内で気相化学反応に
より生成する反応物を堆積させ、反応物の非堆積部分を
前記反応管の下流端より排出するガラス母材の製造方法
において、前記加熱器を複数回往復移動させる際の下流
側移動終了端位置を段階的に上流側に移動せしめること
を特徴とするガラス母材の製造方法。
1. A raw material gas for glass formation is introduced into a reaction tube from an upstream end, and a heater outside the reaction tube is reciprocated a plurality of times along an axial direction of the reaction tube to a predetermined position from upstream to downstream. In the method of manufacturing a glass base material in which a reactant generated by a gas-phase chemical reaction is deposited in the reaction tube by moving and a non-deposited portion of the reactant is discharged from a downstream end of the reaction tube, a plurality of the heaters are provided. A method of manufacturing a glass base material, wherein a downstream movement end position at the time of reciprocating movement is gradually moved upstream.
【請求項2】 上流端より反応管内にガラス形成用原料
ガスを供給する機構と、前記反応管を管径方向に回転す
る2つ以上の支持部と該支持部の間を管軸方向に自在に
移動する加熱器を有し、下流端より反応管内に堆積しな
い原料等を排気する機構を取り付けてなる装置におい
て、該加熱器の移動量と加熱器の位置を検出する機構及
び加熱器の下流側移動終了端を段階的に上流に移動せし
める制御機構とをさらに有してなるガラス母材の製造装
置。
2. A mechanism for supplying a raw material gas for glass formation into a reaction tube from an upstream end, and two or more support portions for rotating the reaction tube in a tube radial direction, and a space between the support portions in a tube axis direction. A device for detecting the amount of movement of the heater and the position of the heater, and a device downstream of the heater. An apparatus for manufacturing a glass base material, further comprising: a control mechanism for moving a side movement end end stepwise upstream.
JP5718893A 1993-03-17 1993-03-17 Method and apparatus for manufacturing glass base material Expired - Fee Related JP3275428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5718893A JP3275428B2 (en) 1993-03-17 1993-03-17 Method and apparatus for manufacturing glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5718893A JP3275428B2 (en) 1993-03-17 1993-03-17 Method and apparatus for manufacturing glass base material

Publications (2)

Publication Number Publication Date
JPH06271329A JPH06271329A (en) 1994-09-27
JP3275428B2 true JP3275428B2 (en) 2002-04-15

Family

ID=13048521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5718893A Expired - Fee Related JP3275428B2 (en) 1993-03-17 1993-03-17 Method and apparatus for manufacturing glass base material

Country Status (1)

Country Link
JP (1) JP3275428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1032867C2 (en) * 2006-11-14 2008-05-15 Draka Comteq Bv Device and method for performing a deposition process of the PCVD type.

Also Published As

Publication number Publication date
JPH06271329A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JP3131162B2 (en) Manufacturing method of optical fiber preform
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
US5769921A (en) Method of producing quartz glass body
JPH039047B2 (en)
EP0824090B1 (en) Process for producing optical fiber preform
US4528009A (en) Method of forming optical fiber having laminated core
US4259101A (en) Method for producing optical fiber preform
EP0082642B1 (en) Method and apparatus for producing tubular glass article
JP2622182B2 (en) Manufacturing method of optical fiber preform base material
KR950006197B1 (en) Method for flame abrasion of glass preform
EP1295854A2 (en) Method for producing a glass soot preform for optical fibres by vapour phase deposition
JP5572022B2 (en) Manufacturing method of primary preform for optical fiber
CA2064110C (en) Methods of and apparatus for heating elongated glass substrate
JP3275428B2 (en) Method and apparatus for manufacturing glass base material
JP5519145B2 (en) Optical fiber manufacturing method using isothermal, low pressure plasma deposition technology
KR20000013544A (en) Apparatus and method for fabricating freeform for high quality optical fiber
EP1440949B1 (en) Method for producing optical fiber base material
JP3678294B2 (en) Flame polishing method for glass base material
WO2001017918A1 (en) Apparatus for making a glass preform by flame hydrolysis
US20040099013A1 (en) Optical fibers and methods of fabrication
JPS6012981B2 (en) Manufacturing method of optical fiber base material
JPH0425215B2 (en)
JP3077970B2 (en) Manufacturing method of optical fiber preform
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JP2003040623A (en) Method for producing fine glass particle heap

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees