JPS629666A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS629666A
JPS629666A JP60148631A JP14863185A JPS629666A JP S629666 A JPS629666 A JP S629666A JP 60148631 A JP60148631 A JP 60148631A JP 14863185 A JP14863185 A JP 14863185A JP S629666 A JPS629666 A JP S629666A
Authority
JP
Japan
Prior art keywords
layer
film
metal
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60148631A
Other languages
Japanese (ja)
Inventor
Takuya Kato
卓哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60148631A priority Critical patent/JPS629666A/en
Publication of JPS629666A publication Critical patent/JPS629666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make higher density, by employing as a capacitor a three-layer structure consisting of a silicon oxide layer, a metal oxide layer, and a metal nitride layer containing a constituting element of metal or a metal nitride layer containing oxygen atoms and a constituting element of metal. CONSTITUTION:A three-layer capacitor film consisting of a silicon oxide film 5, a niobium oxide film 6a, and a niobium nitride film 7a is formed on a P-type silicon substrate 1. Even if polycrystalline silicon is employed for an opposing electrode 8, it is the niobium nitride film 7a that the polycrystalline silicon contacts, so the silicide reaction of the polycrystalline silicon can be suppressed. In this way, since the leak current can be reduced and the silicon oxide film 5 and the niobium nitride film 7a can be formed thin, the dielectric constant of the niobium oxide film 6a and thus the capacitance per unit area can be made large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明社半導体装置に関し、特に半導体装置を構成する
容量の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device, and particularly relates to the structure of a capacitor constituting the semiconductor device.

〔従来の技術〕[Conventional technology]

ダイナミックRAM (Ramdom Access 
Memory)のごとく構成要素として容量を有する半
導体装置においては、容量の面積を極力小さくすること
が上記半導体装置の高密度化を行なう上で重要である。
Dynamic RAM (Ramdom Access
In a semiconductor device having a capacitor as a component such as a memory, it is important to reduce the area of the capacitor as much as possible in order to increase the density of the semiconductor device.

容量の占める面積を小さくし、かつ大きな容量値を得る
ために、従来、誘電材料として誘電率の大きな金F4版
化物を用いた構造が試みられている。
In order to reduce the area occupied by the capacitor and obtain a large capacitance value, attempts have been made to construct a structure using a gold F4 plate having a high dielectric constant as a dielectric material.

特に、比較的リーク電流の少逐い構造として、シリコン
酸化膜と金属酸化膜の二層構造が考えられている。
In particular, a two-layer structure of a silicon oxide film and a metal oxide film is considered as a structure with relatively low leakage current.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の容量構造を実際のメモリセルに組み込む
場合、対向電極として多結晶シリコン。
When incorporating the conventional capacitive structure described above into an actual memory cell, polycrystalline silicon is used as the counter electrode.

モリブデンシリサイド、チタンシリサイド等を用いる必
要があるが、これらの電極を形成した後熱処理が行なわ
れると上述の二層構造膜の上層膜である金ah化膜が前
記対向電極とシリサイド反応を起こし前記容量構造のリ
ーク電流が増大するという欠点があつ大。
It is necessary to use molybdenum silicide, titanium silicide, etc., but when heat treatment is performed after forming these electrodes, the gold ah-oxide film, which is the upper layer of the above-mentioned two-layer structure film, causes a silicide reaction with the counter electrode. A major drawback is that the leakage current of the capacitive structure increases.

本発明は上記欠点を排除するためになされたものであり
、鋳型体材料として金ll4m化膜を用い、対向電極と
して多結晶シリコン、モリブデンシリサイド、チタンク
リサイド等を使用した場合にも、クリサイド反応が抑制
されリーク電流の増大が抑えられる容量およびこの容量
を有する半導体装置を提供することを目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks, and even when a gold 114m film is used as the mold material and polycrystalline silicon, molybdenum silicide, titanium silicide, etc. An object of the present invention is to provide a capacitor in which leakage current is suppressed and an increase in leakage current is suppressed, and a semiconductor device having this capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板もしくは多結晶シリ
コン層の表面に容量が形成されてカる半導体装置におい
て、前記容量の誘電体層が半導体基板もしくは多結晶シ
リコン層に接するシリコン酸化物層と、該シリコン酸化
物層に接する金属の酸化物層と、該金属の酸化物層に接
し前記金属を構成要素とする金属窒化物ルとの三層から
構成されることを%黴とする半導体装置であるO前記容
量撫造としては、従来報告されているシリコン酸化物層
と金属の酸化物層の三層構造の上層に、さらに、前記金
属を構成要素とする金属窒化物層を形成した構造であり
、該金Ii!&窒化物層を形成することにより全1At
IjL化物層とポリシリコン。
The semiconductor device of the present invention is a semiconductor device in which a capacitor is formed on the surface of a semiconductor substrate or a polycrystalline silicon layer, and the dielectric layer of the capacitor is a silicon oxide layer in contact with the semiconductor substrate or the polycrystalline silicon layer; A semiconductor device comprising three layers: a metal oxide layer in contact with the silicon oxide layer, and a metal nitride layer in contact with the metal oxide layer and having the metal as a constituent element. The capacitance structure has a structure in which a metal nitride layer containing the metal as a constituent is formed on top of the conventionally reported three-layer structure of a silicon oxide layer and a metal oxide layer. Yes, that gold II! & Total 1At by forming a nitride layer
IjL compound layer and polysilicon.

そりブテンシリサイド、タンタルシリサイド等の対向電
極とのシリサイド反応を抑制することができる。
Silicide reactions with counter electrodes such as warped butene silicide and tantalum silicide can be suppressed.

なお、激化物並びに窒化物を構成する金属としてはチタ
ン、ニオブ、ジルコニウム及ヒハフニウムから3sはれ
たものが適しておシ、又、金属窒化物層としては酸素原
子を含んでいても同様効果が得られる。
In addition, as the metal constituting the agglomerate and nitride, titanium, niobium, zirconium, and hihafnium separated by 3s are suitable, and the metal nitride layer may contain oxygen atoms with the same effect. can get.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図線本発明の第一の実施例を示す要部断面図である
。第1図において、1はP型シリコン基板、5はシリコ
ン酸化膜* 6 a nニオブ酸化膜。
FIG. 1 is a sectional view of a main part showing a first embodiment of the present invention. In FIG. 1, 1 is a P-type silicon substrate, 5 is a silicon oxide film * 6 a n niobium oxide film.

7atiニオブ窒化膜であシこれらシリコン険化膜。7Ati niobium nitride film and these silicon ruggedized films.

ニオブ酸化膜およびニオブ窒化膜の三層によシ容食膜が
形成されている。8は容量の対向電極としての多結晶シ
リコンである。
A three-layered niobium oxide film and a niobium nitride film form a sacrificial film. 8 is polycrystalline silicon as a counter electrode of the capacitor.

上記シリコン酸化膜、ニオブ酸化膜およびニオブで窒化
膜の三層構造を形成する方法は、特に限定する必要はな
いが、たとえに次の方法がある。
The method for forming the three-layer structure of the silicon oxide film, the niobium oxide film, and the nitride film is not particularly limited, but the following method may be used.

まず、熱酸化法によシリコン酸化 薄いシリコン酸化膜を形成する。その上にニオブをスパ
ッタ法によシ堆積させ、これを熱酸化するととによシリ
コン酸化膜とニオブ酸化膜の二層構造が形成される。さ
らに前記二層構造膜を窒素処理するか、もしくはアンモ
ニア処理する。あるいL1プラズマ中で窒素処理するか
、もしくはプラズマ中でアンモニア処理するなどの方法
によ)前記二層構造膜の上層にニオブ窒化膜を形成する
ことができる。
First, a thin silicon oxide film is formed using a thermal oxidation method. Niobium is deposited thereon by sputtering and thermally oxidized to form a two-layer structure of a silicon oxide film and a niobium oxide film. Further, the two-layer structure film is subjected to nitrogen treatment or ammonia treatment. Alternatively, a niobium nitride film can be formed on the upper layer of the two-layer structure film (by a method such as nitrogen treatment in L1 plasma or ammonia treatment in plasma).

このように構成された三層膜扛、対向電極として多結晶
シリコンを用いた場合でも、多結晶シリコンと接してい
るのがニオブ窒化膜であるために多結晶シリコンのクリ
サイド反応が抑えられる。
Even when polycrystalline silicon is used as the three-layer film and counter electrode constructed in this way, the niobium nitride film is in contact with the polycrystalline silicon, so that the crystalcide reaction of the polycrystalline silicon can be suppressed.

したがって、本実施例で示した容量構造tlX IJ−
り電流が小さく、シかも、シリコン酸化sI5およびニ
オブ窒化1[7aを薄く形成できるのでニオブ酸化$6
aO@電率が大きいという特徴を生かして単位面積ab
の容量値が大きい構造である。
Therefore, the capacitive structure tlX IJ-
The current is small, and silicon oxide sI5 and niobium nitride 1[7a] can be formed thinly, so niobium oxide $6
aO@Using the feature of large electrical conductivity, unit area ab
The structure has a large capacitance value.

第21社本発明の第二の実施例を示す要部断面図である
。第2図において、laP型シリコン基板、5キシリコ
ン酸化膜、6bはジルコニウム酸化膜、7bFiジルコ
ニウム窒化膜、8は多結晶シリ→ンである・本実施例紘
、リアクティブイオンエツチング法等によnpMI!シ
リコン基板に溝を堀シ、この溝部にシリコン酸化膜5と
ジルコニウム酸化膜6bおよびジルコニウム窒化膜7b
の三層構造膜を形成している。
FIG. 21 is a sectional view of a main part showing a second embodiment of the present invention. In Fig. 2, a laP type silicon substrate, a 5x silicon oxide film, 6b a zirconium oxide film, 7b a Fi zirconium nitride film, and 8 a polycrystalline silicon film. ! A trench is dug in the silicon substrate, and a silicon oxide film 5, a zirconium oxide film 6b, and a zirconium nitride film 7b are formed in the trench.
It forms a three-layer structure film.

前記三層構造aを形成する方法は特に限定する必要線な
いがたとえは次の方法がある。まず、熱酸化法によシ溝
部を有するシリコン上に膜厚数十Aの薄いシリコン酸化
膜を形成する。その上にジハフニウムをスパッタ法によ
り堆積させ、これを熱散化することによシリコン酸化物
層ジルコニウム酸化族の二層構造が形成される。さらに
前記三層構造膜を窒素処理するか、もしくhアンモニア
処理する。あるいはプラズマ中で窒素処理するか、もし
くはプラズマ中でアンモニア処理するなどの方法によシ
前記二層構造膜の上場にジルコニウム窒化膜を形成する
ことができる0 このように構成された三層膜は、対向−極として多結晶
シリコンを用いた場合でも、シ特品シリコンと接してい
るのがジルコニウム窒化膜であるためにジルコニウムの
シリサイド反応が抑えられる。
The method for forming the three-layer structure a is not particularly limited, but the following method may be used as an example. First, a thin silicon oxide film with a thickness of several tens of angstroms is formed on silicon having grooves by thermal oxidation. Dihafnium is deposited thereon by sputtering, and by thermally dissipating this, a two-layer structure of a silicon oxide layer and a zirconium oxide group is formed. Further, the three-layer structure film is subjected to nitrogen treatment or ammonia treatment. Alternatively, a zirconium nitride film can be formed on the two-layer structure film by a method such as nitrogen treatment in plasma or ammonia treatment in plasma. Even when polycrystalline silicon is used as the counter electrode, the zirconium nitride film is in contact with the special silicon, so the silicide reaction of zirconium can be suppressed.

したがって、本実施例で示した容量構造はリーク電流が
小さく、シかも、シリコン緻化lK5およびジルコニウ
ム窒化膜7bを薄く形成できるのでジルコニウム酸化膜
6b12)@111率が大きいという特徴を生がして単
位面積当シの容量値が大きい構造である。さらに、本実
施例では鍵部に容量部を形成することによシシリコン表
面の単位面積当シの容量値をさらに大きくしている。
Therefore, the capacitor structure shown in this embodiment has the characteristics that the leakage current is small and the zirconium oxide film 6b12)@111 ratio is high because the silicon densified lK5 and zirconium nitride film 7b can be formed thinly. This structure has a large capacitance value per unit area. Furthermore, in this embodiment, by forming a capacitance part in the key part, the capacitance value per unit area of the silicon surface is further increased.

第3rI4Fi本発明のあ三の実施例を示す要部断面図
であり、nチャンネルMO8構造のダイナミックRAM
のメモリーセルの断面を示している。第3図において%
lはP型シリコン基板”、2は素子領域を分離するフィ
ールド酸化膜、3および4は高濃度不純物領域、5はシ
リコン酸化膜、6aはニオブ販化膜*7aFiニオブ窒
化膜であシこれらシリコン酸化膜、ニオブ酸化膜および
ニオブ窒化膜の三層によシメモリーセルの容量膜が形成
されている。8鉱容量の対向電極としての多結晶シリコ
ン、9はゲート酸化膜、10はトランスファーゲート(
ワード線)の役割をする多結晶シリコン。
3rd rI4Fi is a sectional view of a main part showing a third embodiment of the present invention, and is a dynamic RAM with an n-channel MO8 structure.
shows a cross section of a memory cell. In Figure 3, %
1 is a P-type silicon substrate, 2 is a field oxide film separating the device regions, 3 and 4 are high concentration impurity regions, 5 is a silicon oxide film, 6a is a niobium nitride film*7a is a Fi niobium nitride film, and these silicon The capacitive film of the memory cell is formed of three layers: an oxide film, a niobium oxide film, and a niobium nitride film. 8 polycrystalline silicon serves as a counter electrode of the oxide capacitance, 9 is a gate oxide film, and 10 is a transfer gate (
polycrystalline silicon that plays the role of a word line (word line).

11は絶縁層としてのシリコン酸化膜である。上述した
三層構造の容量ah対向電極に多結晶シリコンを用いた
場合でもリーク電流がd\さく、シかも、クリコン酸化
膜5およびニオブ窒化膜7aを薄く形成することができ
るのでニオブ酸化膜6aの誘電率が大きいという特徴を
生かし1単位面積当〕の容量値が大きい膜である。した
がって、このような三層膜を容量部に持つ本実施例のダ
イナミックRAMは容量の対向電極に多結晶シリコンを
用いることができ、しかも高密度化が可能である。
11 is a silicon oxide film as an insulating layer. Even if polycrystalline silicon is used for the capacitance ah counter electrode of the three-layer structure described above, the leakage current may be small. This film has a large capacitance value per unit area, taking advantage of its high dielectric constant. Therefore, the dynamic RAM of this embodiment having such a three-layer film in the capacitor part can use polycrystalline silicon for the capacitor's counter electrode, and can also achieve high density.

第4図は本発明の第四の実施例を示す要部断面図であり
snチャンネルMO8構造のダイナミックRAMのメモ
リーセルの断面を示している。第4図において、1はP
型シリコン基板、2は素子領域を分離するフィールド酸
化膜3および4は高濃度不純物領域、5はシリコン阪化
膜、6bHジルコニウム緻化膜、7bはジルコニウム窒
化膜。
FIG. 4 is a sectional view of a main part showing a fourth embodiment of the present invention, and shows a cross section of a memory cell of a dynamic RAM having an sn channel MO8 structure. In Figure 4, 1 is P
2 is a field oxide film separating device regions, 3 and 4 are high concentration impurity regions, 5 is a silicon oxide film, 6b is a zirconium densified film, and 7b is a zirconium nitride film.

8は多結晶シリコン、9はゲート酸化膜、10祉ワード
線の役割をする鰻重シリコン、111Ii絶縁層として
のクリコン酸化膜である。本実施例は、リアクティブイ
オンエツチング法等によ、9P型シリコン基板に溝を堀
シ、この溝部に7リコン酸化膜5とジルコニウム酸化膜
6bおよびジルコニウム窒化膜7bの三層構造膜を形成
し容量部を構成している。したがって、本実施例で11
ダイナミックRAMのメモリーセルの容量部の容量値を
低下させることなく、7リコン表面に占める容量部の面
積をさらに小さくすることができ、タイナミツ/RAM
の集積度をさらに高くすることができる。
Reference numeral 8 denotes polycrystalline silicon, 9 a gate oxide film, 10 heavy silicon serving as a word line, and a silicon oxide film serving as a 111Ii insulating layer. In this example, a groove is dug in a 9P type silicon substrate by a reactive ion etching method or the like, and a three-layer structure film consisting of a 7 silicon oxide film 5, a zirconium oxide film 6b, and a zirconium nitride film 7b is formed in this groove. It constitutes the capacitor section. Therefore, in this example, 11
The area occupied by the capacitive part on the surface of the 7-recon can be further reduced without reducing the capacitance value of the capacitive part of the dynamic RAM memory cell.
The degree of integration can be further increased.

第−乃至第四の実施例においては、容量構造がシリコン
酸化膜、ニオブ酸化膜およびニオブ窒化膜から々る三層
構造あるいはシリコン酸化膜、ジルコニウム酸化膜およ
びジルコニウム窒化膜からなる三層構造である場合を説
明したが、シリコン緻化膜、チタン酸化換およびチタン
窒化膜からなる三層構造あるいaシリコン酸化膜、ハフ
ニウム& 化膜オよひハフニウム窒化膜からなる三層構
造を容量構造に適用しても同様の効果が生じる。
In the fourth to fourth embodiments, the capacitor structure has a three-layer structure consisting of a silicon oxide film, a niobium oxide film and a niobium nitride film, or a three-layer structure consisting of a silicon oxide film, a zirconium oxide film and a zirconium nitride film. As explained above, a three-layer structure consisting of a silicon oxide film, a titanium oxide film, and a titanium nitride film, or a three-layer structure consisting of a silicon oxide film, a hafnium & oxide film, and a hafnium nitride film is applied to the capacitor structure. A similar effect occurs.

また、上記実施例では金属の酸化物及び窒化物は同一の
金属を用いたが上記金属から選はれたものであれば異な
る金属を使用してもよい。
Furthermore, although the same metal was used as the metal oxide and nitride in the above embodiments, different metals may be used as long as they are selected from the above metals.

〔発明の鎗果〕[The fruits of invention]

以上説明したように本発明による半導体装置は。 As explained above, the semiconductor device according to the present invention is provided.

容量としてシリコン酸化物層と金属の酸化物層と、前記
金属を構成要素とする金属窒化物層もしくは酸素原子を
含みかつ前記金属1r:*成要素とする金属窒化物層と
から成る三層構造を用いることにより、半導体装置の製
造工程で紘一般的となっている多結晶シリコンやモリブ
デンシリサイドあるいはチタンシリサイド等を容量の対
向電極として使用することができ、かつ、容量部の単位
面積当シの容量値が大きいので半導体装置を高密度化で
きる効果がある@
A three-layer structure consisting of a silicon oxide layer as a capacitor, a metal oxide layer, and a metal nitride layer containing the metal as a constituent or a metal nitride layer containing oxygen atoms and containing the metal 1r:* as a constituent. By using this, polycrystalline silicon, molybdenum silicide, titanium silicide, etc., which are commonly used in the manufacturing process of semiconductor devices, can be used as the counter electrode of the capacitor, and the Since the capacitance value is large, it has the effect of increasing the density of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図れ本発明の蕗−の実施例を示す要部断面図、82
図は本発明の第二の実施例を示す要部断面図、第3図は
本発明の脂三の実施例を示すダイナミックRAMのメモ
リーセルの要部断面図、第4図は本発明の第四の実施例
を示すダイナミックRAMのメモリーセルの要部断面図
である。 l・・・°°°P型シリコン基板、2・・・・・・厚い
シリコン鈑化膜、3・・・・・・nu不純物領域、4・
・・・・・D型不純物領域、5・・・・・・シリコン酸
化膜、6a・・・・・・ニオブ窒化膜 ニオブ窒化膜、7b・・・・・・ジルコニウム窒化膜、
8・・・・・・多結晶シリコン、9・・・・・・ゲート
酸化膜、10° ・・・・・・多結晶シリコン(ワード
線)、11・・・・・・シリコン酸化膜。 峯1(支) 察2切 峯3V
Fig. 1 is a cross-sectional view of essential parts showing an embodiment of the butterbur of the present invention, 82
The figure is a cross-sectional view of a main part showing a second embodiment of the present invention, FIG. 3 is a cross-sectional view of a main part of a dynamic RAM memory cell showing a third embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view of a main part of a memory cell of a dynamic RAM showing a fourth embodiment. l...°°°P-type silicon substrate, 2... thick silicon plated film, 3... nu impurity region, 4...
...D-type impurity region, 5 ... silicon oxide film, 6a ... niobium nitride film niobium nitride film, 7b ... zirconium nitride film,
8...Polycrystalline silicon, 9...Gate oxide film, 10°...Polycrystalline silicon (word line), 11...Silicon oxide film. Mine 1 (branch) Saki 2 Kiri Mine 3V

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板もしくは多結晶シリコン層の表面に容
量が形成されてなる半導体装置において、前記容量の誘
電体層が半導体基板もしくは多結晶シリコン層に接する
シリコン酸化物層と、該シリコン酸化物層に接する金属
の酸化物層と、該金属の酸化物層に接し前記金属を構成
要素とする金属窒化物層との三層から構成されることを
特徴とする半導体装置。
(1) In a semiconductor device in which a capacitor is formed on the surface of a semiconductor substrate or a polycrystalline silicon layer, the dielectric layer of the capacitor is a silicon oxide layer in contact with the semiconductor substrate or polycrystalline silicon layer, and the silicon oxide layer 1. A semiconductor device comprising three layers: a metal oxide layer that is in contact with the metal oxide layer, and a metal nitride layer that is in contact with the metal oxide layer and has the metal as a constituent element.
(2)金属窒化物層が酸素原子を含んだ金属窒化物層で
ある特許請求の範囲第(1)項記載の半導体装置。
(2) The semiconductor device according to claim (1), wherein the metal nitride layer is a metal nitride layer containing oxygen atoms.
(3)金属酸化物、金属窒化物を構成する金属がチタン
、ニオブ、ジルコニウム及びハフニウムよりなる群の中
から選ばれた金属である特許請求の範囲第(1)項又は
第(2)項記載の半導体装置。
(3) Claim (1) or (2), wherein the metal constituting the metal oxide or metal nitride is a metal selected from the group consisting of titanium, niobium, zirconium, and hafnium. semiconductor devices.
JP60148631A 1985-07-05 1985-07-05 Semiconductor device Pending JPS629666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60148631A JPS629666A (en) 1985-07-05 1985-07-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148631A JPS629666A (en) 1985-07-05 1985-07-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS629666A true JPS629666A (en) 1987-01-17

Family

ID=15457107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148631A Pending JPS629666A (en) 1985-07-05 1985-07-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS629666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194645A (en) * 1987-10-06 1989-04-13 Toshiba Corp Manufacture of semiconductor device
JP2006054395A (en) * 2004-08-16 2006-02-23 Sony Corp Capacitor and method for manufacturing the same, and semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750466A (en) * 1980-09-12 1982-03-24 Fujitsu Ltd Semiconductor memory device
JPS594152A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Manufacture of semiconductor device
JPS5911663A (en) * 1982-07-12 1984-01-21 Nec Corp Manufacture of capacitor for semiconductor device
JPS6074556A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750466A (en) * 1980-09-12 1982-03-24 Fujitsu Ltd Semiconductor memory device
JPS594152A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Manufacture of semiconductor device
JPS5911663A (en) * 1982-07-12 1984-01-21 Nec Corp Manufacture of capacitor for semiconductor device
JPS6074556A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194645A (en) * 1987-10-06 1989-04-13 Toshiba Corp Manufacture of semiconductor device
JP2006054395A (en) * 2004-08-16 2006-02-23 Sony Corp Capacitor and method for manufacturing the same, and semiconductor memory device
JP4534133B2 (en) * 2004-08-16 2010-09-01 ソニー株式会社 Capacitor, method for manufacturing the same, and semiconductor memory device

Similar Documents

Publication Publication Date Title
US5189503A (en) High dielectric capacitor having low current leakage
US6927435B2 (en) Semiconductor device and its production process
US6737309B2 (en) Complementary MISFET
JPS60153158A (en) Manufacture of semiconductor device
KR920005320B1 (en) Capacitor and method for manufacturing thereof
JP2829023B2 (en) Capacitors for semiconductor integrated circuits
JPS6349906B2 (en)
JPH01222469A (en) Semiconductor memory device and manufacture thereof
JPH04206569A (en) Manufacture of semiconductor device
JPH09321239A (en) Manufacturing semiconductor integrated circuit device
JPH0194664A (en) Field-effect transistor
KR900001395B1 (en) Manufacture of semiconductor device
JP2633584B2 (en) Semiconductor device and manufacturing method thereof
JPS629666A (en) Semiconductor device
US6403415B1 (en) Semiconductor device having a metal barrier layer for a dielectric material having a high dielectric constant and a method of manufacture thereof
JPS61156865A (en) Semiconductor device
JPH0513706A (en) Semiconductor device
JP2918914B2 (en) Semiconductor device and manufacturing method thereof
JP3106620B2 (en) Method of manufacturing dielectric thin film and method of manufacturing capacitive element
JPS62128546A (en) Semiconductor integrated circuit device and manufacture thereof
JPS61198665A (en) Semiconductor device
KR920010201B1 (en) Semidonductor device and method for manufacturing of the same
JPH07263573A (en) Semiconductor device and manufacture thereof
JPS62219659A (en) Mos type semiconductor memory
JPH0260157A (en) Semiconductor device