JPS629661B2 - - Google Patents
Info
- Publication number
- JPS629661B2 JPS629661B2 JP56020331A JP2033181A JPS629661B2 JP S629661 B2 JPS629661 B2 JP S629661B2 JP 56020331 A JP56020331 A JP 56020331A JP 2033181 A JP2033181 A JP 2033181A JP S629661 B2 JPS629661 B2 JP S629661B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stress corrosion
- corrosion cracking
- alloy
- country tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005260 corrosion Methods 0.000 claims description 44
- 230000007797 corrosion Effects 0.000 claims description 44
- 238000005336 cracking Methods 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000003129 oil well Substances 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001814 effect on stress Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002343 natural gas well Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
この発明は、耐食性、なかんずく耐応力腐食割
れ性に優れた油井管用合金に関する。
近年、油井・天然ガス井は深井戸化の傾向著し
く、産出ガス中に湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオン等腐食性物質が含まれることが
多くなつてきている。このような傾向とともに油
井管の使用条件が苛酷化すると、安定操業上その
腐食対策がより一層重要なこととなる。油井管の
腐食対策としては、インヒビターと呼ばれる腐食
抑制剤の投入が最も一般的な方法であるが、この
方法は海上油井のときなど、場合によつては、有
効に活用できないことも多い。このような事態に
対処するため最近では、より高級な耐食性材料が
用いられる傾向があり、ステンレス鋼をはじめ、
インコロイやハステロイ(いずれも商品名)とい
つた高合金鋼の採用も検討されはじめている。
しかしながらいまのところ、H2S−CO2−Cl-
の油井環境については、その腐食挙動など詳細な
ところは十分な解明に至つておらず、この環境下
での腐食と鋼成分の関連についても、僅かに既存
の高合金鋼の適性を実地テストなどによつて調査
確認するといつたレベルの研究がなされているに
過ぎない。
本発明は、このきわめて腐食性のつよい、H2S
−CO2−Cl-の油井環境下、特に200℃以下の悪環
境において優れた耐久性を発揮する油井管用鋼の
提供を目的とするものである。
すなわち本発明の要旨とするところは、C0.1
%以下、Si1.0%以下、Mn2.0%以下、P0.030%以
下、S0.005%以下、Al 0.5%以下、Cr22.5〜30
%、Ni28%をこえ60%以下に、MoとWの何れか
一方または双方を下式、と満足する範囲で含
有し、Cu1%とCo2%以下の1種又は2種を含み
または含まず、更に場合によつては希土類元素
(以下、REMという)0.10%以下、Y0.20%以
下、Mg0.10%以下、Ca0.10%以下、Ti0.5%以下
のうち1種または2種以上を含有し、残部は実質
的にFeよりなることを特徴とする耐応力腐食割
れ性に優れた油井管用合金、
Cr(%)+10Mo(%)+5W(%)≧70%………
4%≦Mo(%)+1/2W(%)<8%………
にある。
本発明者らの詳細な実験、研究によれば、H2S
−CO2−Cl-環境下における腐食の主たるものは
応力腐食割れであるが、この場合の応力腐食割れ
は、一般の場合のステンレス鋼のそれとは挙動を
全く異にするものであり、一般の応力腐食割れが
Cl-の存在と深く係わるものであるのに対し、上
記油井環境によるものではCl-もさることながら
それ以上にH2Sの影響が大きいという事実が明ら
かとなつた。一方、油井管として実用に供される
鋼管は一般に、強度上の必要から冷間加工が実施
されるが、冷間加工は上記応力腐食割れに対する
抵抗性を著しく阻害するということもまた、本発
明者らの研究から判明した。
かかる研究結果を基に本発明者らは、冷間加工
材としてH2S存在下での応力腐食割れに対する高
い抵抗性が得られる材料の開発を意図して実験、
研究を更に進め、その結果、高濃度H2Sを含み、
とくに使用温度200℃以下の腐食環境でも著しく
優れた耐久性を発揮する冷間加工材が得られる合
金材料の開発に至つたものである。
H2S−CO2−Cl-環境での合金の溶出(腐食)
は、Cr、Ni、MoおよびW量に依存する。すなわ
ち、耐食性はこれらの元素からなる表面皮膜によ
つて確保されるものであり、この表面皮膜中のこ
れら元素の含有バランスが耐食性を左右する最も
重要な因子となる。上記の油井環境下での応力腐
食割れに対しては、MoはCrの10倍の効果があ
り、またWはCrの5倍の効果をもつており、こ
のMoおよびWが前記、式を満たすととも
に、Crが22.5〜30%、Niが28%をこえ60%以下の
範囲にあれば、応力腐食割れに対し優れた抵抗性
を有する耐食性皮膜の得られることが、本発明者
らの実験により明らかとなつた。またNiについ
ては、組織的にも耐食性を高める効果があり、上
記Niの範囲は、この点をも考慮したものであ
る。
第1図は、上記油井環境下での耐応力腐食割れ
抵抗性とCr(%)+10Mo(%)+5W(%)、Ni量
との関係を示す。このデータは、成分元素の添加
量を種々変化させたCr−Ni−Mo系またはCr−Ni
−Mo−W系の合金を溶製し、鍛伸、そして7mm
厚まで熱延した後、1050℃で30分保持、水冷とい
う固溶化処理を行ない、その後強度向上の目的で
30%の冷間加工を加え、得られた板材から圧延方
向と直角に2mm厚、10mm巾、75mm長の試験片を採
取し、応力腐食割れ試験を実施した結果に基く。
応力腐食割れ試験としては、第2図に示す3点支
持ビーム治具を用いて上記試験片に0.2%耐力に
相当する引張応力をを付加し、10気圧H2S、10気
圧CO2でH2S、CO2を飽和させた20%NaCl溶液
(温度200℃)中に1000時間浸漬し、割れ発生の有
無を観察する方法によつた。図中、〇:割れ発生
なし、×:割れ発生、をそれぞれ示す。
同図に明らかな如く、Cr(%)+10Mo(%)+
5W(%)が70%未満、またはNiが28%以下では
応力腐食割れ抵抗性が不十分である。因みに、
Niを60%以下としたのは、この値を越えて含有
しても効果の向上は認められず、経済的不利を招
くばかりである。
この他、本発明合金の特徴的な成分の限定理由
としては、
Crは応力腐食割れ抵抗性を高める成分である
が、熱間加工性を劣化させるので30%以下とする
必要があるが、22.5%未満としても熱間加工性は
殆んど改善されず、式のCr(%)+10Mo
(%)+5W(%)≧7%の規定によりCr量の低下
とともにMoやWの添加量が増すこととなり経済
的に不利となるばかりである。MoおよびWは何
れも、耐応力腐食割れ性向上に必須の成分であつ
て、Mo(%)+1/2W(%)で規定するのは、Wが
Moに対し原子量が約2倍であつて、同じ重量%
では約1/2の効果をもつからであるが、この量が
4%未満では、Cr≦30%において式を満足さ
せられないためであり、また同じく8%を越える
含有はコストの上昇につながるばかりで、200℃
以下のH2S−CO2−Cl-環境では実質的に不必要
である。
次に、本発明合金のその他の基本成分について
簡単に述べておく。
C:0.10%以下では問題ないが、0.10%を越える
と、粒界応力腐食割れが生じ易くなる。
Si:脱酸剤として必要であるが、1.0%を越える
と熱間加工性の劣化を来たす。
Mn:脱酸成分であり、耐応力腐食割れに対する
悪影響は殆んどないので、2.0%まで許容し
た。
P:応力腐食割れ感受性を高めるので、0.030%
以下とした。
S:熱間加工性を著しく劣化させるので、0.005
%以下に限定した。
Al:脱酸成分として有効で、0.5%まで添加でき
る。
更に、必要に応じ使用される選択成分としての
Cuは、耐食性を高める元素であるが、1%を越
えると熱間加工性に弊害を及ぼす。同じくCoは
耐食性の向上及び固溶強化に有効な元素で、2%
以下でその効果は充分である。またREM、Y、
Mg、Ca、Tiは、適量添加が熱間加工性向上に有
効であるが、これが過剰になると熱間加工性は再
び低下する。各上限値の限定はこの理由による。
次に本発明の実施例を掲げて効果を詳説する。
第1表に示す(1)〜(24)の成分の合金からなる
サイズ60mm外径×4mm厚の管を製作し、20%の冷
間加工を加えて強度を高め油井管とした。この油
井管から、中心角で60゜に当たる部分を切欠した
長さ(20mm)の管を試験片として採取し、第3図
に示すようにセツトしてボルト・ナツトで管外表
面に0.2%耐力に相当する引張応力を付加し、こ
れを、H2S分圧を種々に変えたH2S−10気圧CO2
−20%NaCl溶液(温度:200℃)中に1000時間浸
漬し、応力腐食割れの有無を調査した。結果をま
とめて第2表に記す。
The present invention relates to an alloy for oil country tubular goods that has excellent corrosion resistance, particularly stress corrosion cracking resistance. In recent years, there has been a marked trend toward deeper oil and natural gas wells, and the produced gas is increasingly containing corrosive substances such as wet hydrogen sulfide, carbon dioxide gas, and chlorine ions. As the usage conditions for oil country tubular goods become more severe along with this trend, countermeasures against corrosion will become even more important for stable operation. The most common method to prevent corrosion of oil country tubular goods is to add a corrosion suppressant called an inhibitor, but in some cases, such as in offshore oil wells, this method is often not effective. To deal with this situation, there has been a recent trend toward using higher-grade corrosion-resistant materials, including stainless steel.
Consideration has also begun to be given to the use of high alloy steels such as Incoloy and Hastelloy (both trade names). However, for now, H 2 S−CO 2 −Cl −
The details of the oil well environment, such as its corrosion behavior, have not been sufficiently elucidated, and the relationship between corrosion and steel composition in this environment has only been investigated through field tests to determine the suitability of existing high-alloy steels. There has only been a level of research conducted to confirm this. The present invention uses this highly corrosive H 2 S
The object of the present invention is to provide a steel for oil country tubular goods that exhibits excellent durability under -CO 2 -Cl - oil well environments, particularly in adverse environments of 200°C or less. In other words, the gist of the present invention is that C0.1
% or less, Si1.0% or less, Mn2.0% or less, P0.030% or less, S0.005% or less, Al 0.5% or less, Cr22.5~30
%, Ni exceeding 28% and not more than 60%, containing one or both of Mo and W within a range that satisfies the following formula, and containing or not containing one or two of Cu1% and Co2% or less, Furthermore, in some cases, one or more of rare earth elements (hereinafter referred to as REM) 0.10% or less, Y 0.20% or less, Mg 0.10% or less, Ca 0.10% or less, and Ti 0.5% or less are added. Cr (%) + 10Mo (%) + 5W (%) ≧70%...4%≦Mo (%) + 1/2W (%) < 8%...... According to detailed experiments and research by the inventors, H 2 S
The main type of corrosion in the −CO 2 −Cl − environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of stainless steel in general, and is different from that of general stainless steel. stress corrosion cracking
While this is deeply related to the presence of Cl - , it has become clear that in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . On the other hand, steel pipes used for practical use as oil country tubular goods are generally cold-worked to improve their strength, but the present invention also shows that cold working significantly impairs the resistance to stress corrosion cracking. This was revealed from their research. Based on these research results, the present inventors conducted experiments with the intention of developing a cold-worked material that has high resistance to stress corrosion cracking in the presence of H 2 S.
As a result of further research, it was found that the
This led to the development of an alloy material that can be used as a cold-worked material that exhibits outstanding durability even in corrosive environments with operating temperatures below 200°C. Elution (corrosion) of alloys in H 2 S−CO 2 −Cl − environment
depends on the amounts of Cr, Ni, Mo and W. In other words, corrosion resistance is ensured by a surface film made of these elements, and the balance of content of these elements in this surface film is the most important factor that influences corrosion resistance. Regarding stress corrosion cracking in the above oil well environment, Mo is 10 times more effective than Cr, and W is 5 times more effective than Cr, and both Mo and W satisfy the above formula. In addition, experiments by the present inventors have shown that if Cr is in the range of 22.5 to 30% and Ni is in the range of more than 28% but less than 60%, a corrosion-resistant film with excellent resistance to stress corrosion cracking can be obtained. It became clear. Further, Ni has the effect of increasing corrosion resistance in terms of structure, and the above range of Ni takes this point into consideration. FIG. 1 shows the relationship between stress corrosion cracking resistance, Cr (%) + 10Mo (%) + 5W (%), and Ni content under the above-mentioned oil well environment. This data is based on Cr-Ni-Mo system or Cr-Ni system with various addition amounts of component elements.
- Molten Mo-W alloy, forge and stretch, and 7mm
After hot-rolling to a thickness, it is held at 1050℃ for 30 minutes and then water-cooled, which is a solid solution treatment.
Based on the results of a stress corrosion cracking test on specimens 2 mm thick, 10 mm wide, and 75 mm long taken perpendicular to the rolling direction from the plate material obtained after 30% cold working.
For the stress corrosion cracking test, a tensile stress equivalent to 0.2% proof stress was applied to the above specimen using the three-point support beam jig shown in Figure 2, and the specimen was heated with H2S at 10 atm H2S and CO2 at 10 atm. A method was used in which the specimens were immersed in a 20% NaCl solution (temperature 200°C) saturated with 2S and CO2 for 1000 hours, and the presence or absence of cracking was observed. In the figure, ○: No cracking, ×: Cracking. As is clear from the figure, Cr (%) + 10Mo (%) +
If 5W (%) is less than 70% or Ni is less than 28%, stress corrosion cracking resistance is insufficient. By the way,
The reason for setting Ni to 60% or less is that even if the Ni content exceeds this value, no improvement in effectiveness will be observed, and this will only lead to economic disadvantage. In addition, the reason for limiting the characteristic components of the alloy of the present invention is that Cr is a component that increases stress corrosion cracking resistance, but it deteriorates hot workability, so it must be kept at 30% or less, but 22.5 Even if it is less than %, hot workability is hardly improved, and the formula Cr (%) + 10Mo
(%)+5W(%)≧7%, the amount of Mo and W added increases as the amount of Cr decreases, which is only economically disadvantageous. Both Mo and W are essential components for improving stress corrosion cracking resistance, and the reason for specifying Mo (%) + 1/2 W (%) is that W has an atomic weight approximately twice that of Mo. , same weight%
However, if this amount is less than 4%, the formula cannot be satisfied when Cr≦30%, and similarly, if the content exceeds 8%, it will lead to an increase in cost. Just 200℃
It is virtually unnecessary in the following H 2 S−CO 2 −Cl − environment. Next, the other basic components of the alloy of the present invention will be briefly described. C: There is no problem if it is 0.10% or less, but if it exceeds 0.10%, intergranular stress corrosion cracking tends to occur. Si: Necessary as a deoxidizing agent, but if it exceeds 1.0%, hot workability deteriorates. Mn: This is a deoxidizing component and has almost no adverse effect on stress corrosion cracking resistance, so Mn was allowed up to 2.0%. P: 0.030% as it increases stress corrosion cracking susceptibility
The following was made. S: 0.005 as it significantly deteriorates hot workability.
% or less. Al: Effective as a deoxidizing component and can be added up to 0.5%. Furthermore, as a selective ingredient used as required.
Cu is an element that improves corrosion resistance, but if it exceeds 1%, it adversely affects hot workability. Similarly, Co is an effective element for improving corrosion resistance and solid solution strengthening, and at 2%
The following effects are sufficient. Also REM, Y,
Addition of Mg, Ca, and Ti in appropriate amounts is effective in improving hot workability, but if they are added in excess, hot workability decreases again. This is the reason for limiting each upper limit value. Next, the effects of the present invention will be explained in detail with reference to Examples. A pipe with a size of 60 mm outer diameter x 4 mm thickness was produced from an alloy having the components (1) to (24) shown in Table 1, and was subjected to 20% cold working to increase its strength and make it into an oil country tubular product. A length (20 mm) of the pipe with a notch at a central angle of 60° was taken from this oil country tubular goods as a test piece, set as shown in Figure 3, and bolted to the outer surface of the pipe with a 0.2% yield strength. A tensile stress equivalent to H 2 S−10 atm CO 2 was applied and the H 2 S partial pressure was varied.
-20% NaCl solution (temperature: 200°C) for 1000 hours, and the presence or absence of stress corrosion cracking was investigated. The results are summarized in Table 2.
【表】【table】
【表】
上表には、熱間加工段階での割れ発生の有
無も併記した。
第2表において、H2Sの分圧が比較的低いとこ
ろでは、従来既存の鋼からなる比較例(21)〜
(24)の中にも応力腐食割れの出ないものがみら
れるが、H2S分圧が1気圧以上になると皆無とな
る。しかるに本発明鋼からなるもの(1)〜(14)
は、20気圧のH2S分圧下でも割れの発生は一切認
められず、本発明鋼の応力腐食割れに対する有効
性が証明された。因みに、比較例(15)はNi
が、同じく(16)はCr(%)+10Mo(%)+5W
(%)の値が、本発明範囲を下廻るため、環境温
度:200℃では耐応力腐食割れ性が不足する。な
お、比較例(17)はCrが高すぎるために、(18)
はSが高すぎるから、更に(19)、(20)はCuお
よびREM、Y、Ca、Mg、Tiの選択成分のうち
何れかが高すぎるため、それぞれ熱間加工性が悪
く、ビレツト製造時に割れが入り、管の製造は事
実上不可能であつた。
以上の説明から明らかなように本発明合金は、
きわめて腐食性のつよいH2S−CO2−Cl-の油井
環境にあつて従来の高合金鋼を遥かに上廻る応力
腐食割れ抵抗性を示す冷間加工材が得られる材料
であるから、条件の苛酷な油井管に用いて優れた
耐久性を発揮するものである。[Table] The table above shows the occurrence of cracking during hot working.
None is also listed.
In Table 2, where the partial pressure of H 2 S is relatively low, comparative examples (21) to 1 made of conventional steel are used.
(24) also shows no stress corrosion cracking, but it disappears when the H 2 S partial pressure becomes 1 atm or more. However, those made of the steel of the present invention (1) to (14)
No cracking was observed even under an H 2 S partial pressure of 20 atmospheres, proving the effectiveness of the steel of the present invention against stress corrosion cracking. By the way, comparative example (15) is Ni
However, similarly (16) is Cr (%) + 10Mo (%) + 5W
Since the value of (%) is below the range of the present invention, stress corrosion cracking resistance is insufficient at an environmental temperature of 200°C. In addition, comparative example (17) has too high Cr, so (18)
In addition, (19) and (20) have too high a selected component of Cu, REM, Y, Ca, Mg, or Ti, resulting in poor hot workability and problems during billet production. Cracks appeared, making it virtually impossible to manufacture the tube. As is clear from the above description, the alloy of the present invention is
It is a material that can produce cold-worked materials that exhibit stress corrosion cracking resistance that far exceeds that of conventional high-alloy steel in the highly corrosive H 2 S−CO 2 −Cl - oil well environment, so the conditions It exhibits excellent durability when used in harsh conditions for oil country tubular goods.
第1図は鋼中NiおよびCr(%)+10M(%)+
5W(%)の耐応力腐食割れ性に及ぼす影響を示
す図表、第2図は板材を試験片とする応力腐食割
れ試験機、第3図は管状体の応力腐食割れ試験
片、をそれぞれ示す。
Figure 1 shows Ni and Cr (%) + 10M (%) +
A chart showing the influence of 5W (%) on stress corrosion cracking resistance. Figure 2 shows a stress corrosion cracking tester using a plate as a test piece, and Figure 3 shows a stress corrosion cracking test piece for a tubular body.
Claims (1)
P0.030%以下、S0.005%以下、Al 0.5%以下、
Cr22.5〜30%、Ni28%をこえ60%以下に、Moと
Wの何れか一方または双方を下式、を満足す
る範囲で含有し、残部は実質的にFeよりなるこ
とを特徴とする耐応力腐食割れ性に優れた油井管
用合金。 Cr(%)+10Mo(%)+5W(%)≧70%……… 4%≦Mo(%)+1/2W(%)<8%……… 2 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Cr22.5〜30%、Ni28%をこえ60%以下に、Moと
Wの何れか一方または双方を下式、を満足す
る範囲で含み、かつCu1%以下とCo2%以下の1
種又は2種を含有し、残部は実質的にFeよりな
ることを特徴とする耐応力腐食割れ性に優れた油
井管用合金。 Cr(%)+10Mo(%)+5W(%)≧70%……… 4%≦Mo(%)+1/2W(%)<8%……… 3 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Cr22.5〜30%、Ni28%をこえ60%以下に、Moと
Wの何れか一方または双方を下式、を満足す
る範囲で含み、更に希土類元素0.10%以下、
Y0.20%以下、Mg0.10%以下、Ca0.10%以下、
Ti0.5%以下のうち1種または2種以上を含有
し、残部は実質的にFeよりなることを特徴とす
る耐応力腐食割れ性に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧70%……… 4%≦Mo(%)+1/2W(%)<8%……… 4 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Cr22.5〜30%、Ni28%をこえ60%以下に、Moと
Wの何れか一方または双方を下式、を満足す
る範囲で含み、かつCu1%以下、Co2%以下の1
種又は2種を含有し、更に希土類元素0.10%以
下、Y0.20%以下、Mg0.10%以下、Ca0.10%以
下、Ti0.5%以下のうち1種または2種以上を含
み、残部は実質的にFeよりなることを特徴とす
る耐応力腐食割れ性に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧70%……… 4%≦Mo(%)+1/2W(%)<8%………[Claims] 1 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
It is characterized by containing 22.5 to 30% Cr, more than 28% Ni to 60% or less, and one or both of Mo and W within a range that satisfies the following formula, with the remainder essentially consisting of Fe. An oil country tubular alloy with excellent stress corrosion cracking resistance. Cr (%) + 10Mo (%) + 5W (%) ≧ 70%...... 4% ≦ Mo (%) + 1/2W (%) < 8%... 2 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 22.5 to 30% Cr, more than 28% Ni but less than 60%, one or both of Mo and W within a range that satisfies the following formula, and less than 1% Cu and less than 2% Co.
1. An alloy for oil country tubular goods having excellent stress corrosion cracking resistance, characterized in that it contains one or both of the following elements, and the remainder is substantially composed of Fe. Cr (%) + 10Mo (%) + 5W (%) ≧ 70%...... 4% ≦ Mo (%) + 1/2W (%) < 8%... 3 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 22.5 to 30% Cr, more than 28% Ni to 60% or less, contains either or both of Mo and W within a range that satisfies the following formula, and further contains 0.10% or less of rare earth elements,
Y0.20% or less, Mg0.10% or less, Ca0.10% or less,
An alloy for oil country tubular goods having excellent stress corrosion cracking resistance, characterized by containing one or more of Ti at 0.5% or less, and the remainder being substantially Fe. Cr (%) + 10Mo (%) + 5W (%) ≧70%...... 4%≦Mo (%) + 1/2W (%) <8%...... 4 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 22.5 to 30% Cr, more than 28% Ni but less than 60%, and one or both of Mo and W within a range that satisfies the following formula, and contains less than 1% Cu and less than 2% Co.
Contains one or more of rare earth elements 0.10% or less, Y0.20% or less, Mg 0.10% or less, Ca 0.10% or less, Ti 0.5% or less, and the remainder is an oil country tubular alloy with excellent stress corrosion cracking resistance, which is essentially composed of Fe. Cr (%) + 10Mo (%) + 5W (%) ≧ 70%...... 4% ≦ Mo (%) + 1/2W (%) < 8%...
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2033181A JPS57134544A (en) | 1981-02-13 | 1981-02-13 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2033181A JPS57134544A (en) | 1981-02-13 | 1981-02-13 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57134544A JPS57134544A (en) | 1982-08-19 |
JPS629661B2 true JPS629661B2 (en) | 1987-03-02 |
Family
ID=12024150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2033181A Granted JPS57134544A (en) | 1981-02-13 | 1981-02-13 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57134544A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997048830A1 (en) * | 1996-06-17 | 1997-12-24 | Sumitomo Metal Industries, Ltd. | High-chromium and high-nickel alloy with hydrogen sulfide corrosion resistance |
JP7307370B2 (en) * | 2019-10-10 | 2023-07-12 | 日本製鉄株式会社 | Alloy materials and seamless pipes for oil wells |
DE102022110384A1 (en) | 2022-04-28 | 2023-11-02 | Vdm Metals International Gmbh | Using a nickel-iron-chromium alloy with high resistance in highly corrosive environments while maintaining good workability and strength |
DE102022110383A1 (en) | 2022-04-28 | 2023-11-02 | Vdm Metals International Gmbh | Using a nickel-iron-chromium alloy with high resistance in carburizing and sulfiding and chlorinating environments while maintaining good workability and strength |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
-
1981
- 1981-02-13 JP JP2033181A patent/JPS57134544A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
Also Published As
Publication number | Publication date |
---|---|
JPS57134544A (en) | 1982-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5298093A (en) | Duplex stainless steel having improved strength and corrosion resistance | |
US5238508A (en) | Ferritic-austenitic duplex stainless steel | |
US5582656A (en) | Ferritic-austenitic stainless steel | |
CA1091477A (en) | Austenitic stainless steel | |
KR20010101291A (en) | Corrosion resistant austenitic stainless steel | |
US4876065A (en) | Corrosion-resisting Fe-Ni-Cr alloy | |
US4942922A (en) | Welded corrosion-resistant ferritic stainless steel tubing having high resistance to hydrogen embrittlement and a cathodically protected heat exchanger containing the same | |
US3510294A (en) | Corrosion resistant nickel-base alloy | |
JP2002529599A5 (en) | ||
JP2002529599A (en) | New uses for stainless steel with seawater applicability | |
US4201574A (en) | Low carbon Ni-Cr austenitic steel having an improved resistance to stress corrosion cracking | |
JPS629661B2 (en) | ||
JPS6358214B2 (en) | ||
JPH059503B2 (en) | ||
JPS5912737B2 (en) | Duplex stainless steel for oil country tubular goods with excellent corrosion resistance | |
JPS625975B2 (en) | ||
JPS629660B2 (en) | ||
JPS60165363A (en) | Highly corrosion resistant and high yield strength two- phase stainless steel | |
JPS6199656A (en) | High strength welded steel pipe for line pipe | |
US4547338A (en) | Fe-Ni-Cr corrosion resistant alloy | |
JP2691093B2 (en) | High temperature corrosion resistant alloy for soda recovery boiler | |
JPS61551A (en) | Heat resistant alloy having superior corrosion resistance in highly oxidizing and sulfurizing corrosive atmosphere | |
JPS6043467A (en) | Two-phase stainless steel | |
JPH0232342B2 (en) | ||
JPS619557A (en) | Austenitic stainless steel having superior resistance to stress corrosion cracking and pitting corrosion |