JPS6043467A - Two-phase stainless steel - Google Patents
Two-phase stainless steelInfo
- Publication number
- JPS6043467A JPS6043467A JP14890083A JP14890083A JPS6043467A JP S6043467 A JPS6043467 A JP S6043467A JP 14890083 A JP14890083 A JP 14890083A JP 14890083 A JP14890083 A JP 14890083A JP S6043467 A JPS6043467 A JP S6043467A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- duplex stainless
- corrosion resistance
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は油井管等に使用される2相ステンレス鋼、す
なわちオーステナイト相とフェライト相からなるステン
レス鋼に関し、特にHS 、 Co2゜cz”’ (塩
素イオン)を含む高温腐食環境下における耐応力腐食性
の改善に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-phase stainless steel used for oil country tubular goods, etc., that is, a stainless steel consisting of an austenite phase and a ferrite phase. This relates to improving stress corrosion resistance under environmental conditions.
近年に至り、石油資源の枯渇化の進行や原油価格の高騰
などから、従来は無視されていたような悪条件下での油
井やガス井の採掘も盛んに行なわれるようになっている
。一般にこのような悪条件下の油井、ガス井とは、深度
が深く、環境が高温で、しかも腐食性の強いに2S 、
Co2.塩素イオンを多く含む厳しい環境のものが多
い。したがってこのような油井、ガス井に使用される油
井管、ガス管としては、高強度や通常の耐食性を有する
のみならず、耐塩化物応力腐食割れ性(以下耐SCC性
と記す)および耐硫化水素割れ性(以丁耐SSC性と記
す)が優れていることが必要である。In recent years, due to the ongoing depletion of petroleum resources and the soaring price of crude oil, drilling of oil and gas wells under adverse conditions, which had previously been ignored, has become increasingly common. In general, oil and gas wells under such adverse conditions are deep, have a high temperature environment, and are highly corrosive.
Co2. Many come from harsh environments that contain a lot of chlorine ions. Therefore, oil country tubular goods and gas pipes used in such oil and gas wells must not only have high strength and normal corrosion resistance, but also chloride stress corrosion cracking resistance (hereinafter referred to as SCC resistance) and hydrogen sulfide resistance. It is necessary that the cracking property (hereinafter referred to as SSC resistance) is excellent.
ところで従来から通常の油井管に使用されていた低合金
鋼は、CO2を含む環境下での耐食性が著しく劣るため
、上述のような環境下では使用することができず、その
ため高合金鋼、例えば13Cr鋼や2相ステンレス鋼、
あるいはN1基合金などが上述のような油井管、ガス井
管用の素材として候補にあがっている。これらのうち、
13Cr鋼は熱処理によシ強度水準を大幅に変えること
ができ、しかも安価であることから、CO2を含む油井
では可成の使用実績がある。しかしながら13 Cr
tlilも微量のH2Sを含む環境や200°C以上の
高温環境では耐食性、耐SSC性が劣るため、その使用
可能な環境が狭い範囲に限定されてしまう欠点がある。By the way, the low-alloy steel that has traditionally been used for ordinary oil country tubular goods has significantly poor corrosion resistance in environments containing CO2, so it cannot be used in the above-mentioned environment. 13Cr steel, duplex stainless steel,
Alternatively, N1-based alloys have been proposed as materials for oil country tubular goods and gas country tubular goods as mentioned above. Of these,
The strength level of 13Cr steel can be significantly changed by heat treatment, and it is inexpensive, so it has a good track record of use in oil wells containing CO2. However, 13 Cr
tlil also has poor corrosion resistance and SSC resistance in an environment containing a trace amount of H2S or a high temperature environment of 200° C. or higher, so it has the disadvantage that the environments in which it can be used are limited to a narrow range.
一方N1基合金は高強度で耐食性が優れ、しかも耐SC
C性、耐SSC性も優れているため、苛酷な環境の油井
管、ガス井管に好適な材料と考えられる。しかしながら
Ni基合金は、その製造が困難であるに加え、極めて高
価であるため、実際に油井管、ガス井管に使用すること
は困難である。On the other hand, N1-based alloys have high strength and excellent corrosion resistance, and are also resistant to SC.
Since it has excellent C properties and SSC resistance, it is considered to be a suitable material for oil country tubular goods and gas country tubular goods in harsh environments. However, in addition to being difficult to manufacture, Ni-based alloys are also extremely expensive, making it difficult to actually use them for oil country tubular goods and gas country tubular goods.
これに対し2相ステンレス鋼は、オーステナイト系ステ
ンレス鋼の弱点である耐SCC性が良好であり、しかも
フェライト系ステンレス鋼の弱点である水素脆性にも抵
抗性があって、オーステナイト系ステンレス鋼およびフ
ェライト系ステンレス鋼の長所を兼ね備え、さらにはN
i基合金と比較して安価であるため前述のような油井管
、ガス井管材料として有望視されている。しかしながら
2相ステンレス鋼といえども、従来のものは前述のよう
な高温ノH2S−CO2−C1−hp境にオイテはH2
S 9度が高くなれば腐力腐食割れが起るだめ、油井管
、ガス井管材料としての使用がためられれていたのが実
情である。On the other hand, duplex stainless steel has good SCC resistance, which is the weak point of austenitic stainless steel, and is also resistant to hydrogen embrittlement, which is the weak point of ferritic stainless steel. Combines the advantages of N-based stainless steel, and also
Since it is cheaper than i-based alloys, it is seen as a promising material for oil country tubular goods and gas country tubular goods as mentioned above. However, even though it is a duplex stainless steel, conventional stainless steel has high temperature H2S-CO2-C1-hp boundary as mentioned above.
The reality is that if the S9 temperature is too high, corrosion cracking will occur, so its use as a material for oil country tubular goods and gas country tubular goods has been discouraged.
この発明は以上のような事情に鑑みてなされたもので、
2相ステンレス鋼の高温H2S−CO2−Cl−環境下
での耐応力腐食割れ性を改善し、これによって前述のよ
うな苛酷な環境の油井、ガス井に好適な2相ステンレス
鋼を提供することを目的とするものである。This invention was made in view of the above circumstances.
To improve the stress corrosion cracking resistance of duplex stainless steel in a high-temperature H2S-CO2-Cl- environment, thereby providing duplex stainless steel suitable for oil and gas wells in harsh environments as described above. The purpose is to
本発明者等は上述のような目的を達成するべく、種々実
験・検討を重ねた結果、次のような新規な知見を得た。The present inventors have conducted various experiments and studies in order to achieve the above-mentioned objectives, and as a result, have obtained the following new knowledge.
すなわち、2相ステンレス鋼の高温H2S−CO2−C
6−JJ境における応力腐食割れについて調べた結果、
2相ステンレス鋼に通常必須成分として含有されている
Mo 、 Cr 、および脱酸用の元素として含有され
ているSiが前記環境における応力腐食割れに対して悪
影響を及ぼしており、特にMoは通常の2相ステンレス
鋼に含有されている1〜2%の含有量では応力腐食割れ
に極めて悪い影響を及ぼしていることが判明した。この
ことがら、Mo含有量を従来よシも低減させ、同時にC
r、Siもある程度以Fに制限することが前記環境にお
ける応力腐旋割れ性の改善に有効であることを見出した
。一方、MOは2相ステンレス鋼において耐孔食性に良
いことが知られておシ、シたがってM。That is, high temperature H2S-CO2-C of duplex stainless steel
As a result of investigating stress corrosion cracking at the 6-JJ boundary,
Mo and Cr, which are normally contained as essential components in duplex stainless steel, and Si, which is contained as a deoxidizing element, have an adverse effect on stress corrosion cracking in the above environment. It has been found that the 1-2% content contained in duplex stainless steel has a very negative effect on stress corrosion cracking. This means that the Mo content can be lowered than before, and at the same time, C
It has been found that limiting r and Si to a certain level of F is effective in improving stress corrosion cracking properties in the above environment. On the other hand, MO is known to have good pitting corrosion resistance in duplex stainless steel, and therefore M.
含有量の低減によって耐孔食性も低下してし−ようおそ
れがあるが、実験の結果Mo含有量の低減にょる耐孔食
性の低下は鋼中のN含有量、あるいはNとWもしくはC
uの含有量を増量させることによって補えることを見出
した。さらにこのような鋼における耐応力腐食割れ性は
溶体化処理温度に大きく影響を受け、優れた耐応力腐食
割れ性を発揮させるためにはある限られた温度範囲内で
溶体化処理を行なわなければならないことが判明した。There is a risk that the pitting corrosion resistance will decrease due to the decrease in Mo content, but as a result of experiments, the decrease in pitting corrosion resistance due to the decrease in Mo content is due to the N content in the steel, or due to N and W or C.
It has been found that this can be compensated for by increasing the content of u. Furthermore, the stress corrosion cracking resistance of such steels is greatly affected by the solution treatment temperature, and in order to exhibit excellent stress corrosion cracking resistance, solution treatment must be performed within a certain limited temperature range. It turned out that it wasn't.
この発明は以上のような知見に基いて完成されたもので
あり、その要旨は、第1発明の2相ステンレス鋼は、C
0,1%以下、Si0.6%以下、Mn2.0チ以丁、
P O,025チ以丁、S O,005チ以下、Cr
20.0〜27.0 %、Ni3.0〜6.0%、M。This invention was completed based on the above knowledge, and the gist is that the duplex stainless steel of the first invention is
0.1% or less, Si 0.6% or less, Mn 2.0% or less,
PO,025 cm or less, SO,005 cm or less, Cr
20.0-27.0%, Ni 3.0-6.0%, M.
0、1〜0.5%、N O,1〜0.4%、残部Feお
よび不可避的不純物よりなシ、かつ溶体化処理を100
0〜1100℃の温度範囲内で行ったことを特徴とする
ものである。また第2発明の2相ステンレス鋼は、前記
第1発明の成分のほか、さらにW 0.5チ以丁、Cu
2. O%以下の1種以上を含有し、かつ前記同様の
溶体化処理を施したものである。さらに第3発明の2相
ステンレス鋼は、前記第1発明の成分のほか、さらにC
a O,008%以下、希土類元素(REM ) 0.
05 %以下の1種以上を含有し、かつ前記同様の溶体
化処理を施したものである。0.1-0.5%, NO, 1-0.4%, balance free from Fe and unavoidable impurities, and solution treatment: 100%
It is characterized in that it was carried out within a temperature range of 0 to 1100°C. In addition to the components of the first invention, the duplex stainless steel of the second invention further contains W 0.5 inch, Cu
2. It contains 0% or less of one or more kinds, and has been subjected to the same solution treatment as described above. Further, the duplex stainless steel of the third invention further contains C in addition to the components of the first invention.
a O,008% or less, rare earth elements (REM) 0.
0.05% or less, and has been subjected to the same solution treatment as described above.
そしてまた第4発明の2相ステンレス鋼は、前記第1発
明の成分のほか、さらにW 0.5 ’1以下もしくは
Cu2.0%以下の1種以上と、Ca 0.008 %
以下もしくはREV O,05eI)以下の1種以上と
を含有し、かつ前記同様の溶体化処理を施しだものであ
る。Further, the duplex stainless steel of the fourth invention contains, in addition to the components of the first invention, one or more of W 0.5'1 or less or Cu 2.0% or less, and Ca 0.008%.
or REV O, 05eI) and one or more of the following, and has been subjected to the same solution treatment as described above.
以下この発明についてさらに詳細に説明する。This invention will be explained in more detail below.
先ずこの発明の2相ステンレス鋼における成分限定理由
について説明する。First, the reason for limiting the components in the duplex stainless steel of the present invention will be explained.
C:Cは溶接や不適当な熱処理によって結晶粒界にCr
炭化物を析出させ、粒界腐食の原因となるから低い程望
ましいが、油井管の場合シームレスパイプとして用いる
場合が殆どで溶接施工が行なわれないことから、通常の
2相ステンレス鋼と同様に01−以下とした。C: C has Cr in the grain boundaries due to welding or inappropriate heat treatment.
The lower the value, the better since it causes carbide precipitation and intergranular corrosion, but in the case of oil country tubular goods, most of the time they are used as seamless pipes and no welding is performed, so the 01- The following was made.
Si : Siは通常の製鋼で脱酸剤として添加される
ものであるが、高温H2S−CO2−C11−g壇上で
著しく耐応力腐食割れ性を劣化させるから、低い程好ま
しく、0.6%を上限とした。Si: Si is added as a deoxidizing agent in ordinary steelmaking, but it significantly deteriorates stress corrosion cracking resistance on a high-temperature H2S-CO2-C11-g plate, so the lower the Si content, the better. The upper limit was set.
Mn : Mnは通常の製鋼時の脱酸、脱硫剤として使
用されるものであり、耐応力腐食割れ性には殆ど影響し
ないから、通常使用される上限値である2、0チ以Fと
した。なお下限は特に規定しないが、脱酸、脱硫剤とし
ては通常は0.4 %程度以上であれば良い。Mn: Mn is used as a deoxidizing and desulfurizing agent during normal steel manufacturing, and has little effect on stress corrosion cracking resistance, so it is set at the upper limit of 2.0 F, which is the normally used upper limit. . Note that the lower limit is not particularly specified, but as a deoxidizing and desulfurizing agent, it is usually sufficient as long as it is about 0.4% or more.
P:Pは耐応力腐食割れ性に殆ど影響しない−が、熱間
加工性を劣化させるから、上限を0.025%とした。P: P has almost no effect on stress corrosion cracking resistance, but degrades hot workability, so the upper limit was set at 0.025%.
S:Sは2相ステンレス鋼のパイプ製造工程においてそ
の熱間加工性を著しく劣化させるから、その含有量を0
.005%以下とした。S: S significantly deteriorates the hot workability of duplex stainless steel in the pipe manufacturing process, so its content should be reduced to 0.
.. 0.005% or less.
Cr : Cr ハ2相ステンレス鋼における相比、す
なわちオーステナイト相とフェライト相との比を決定す
るとともにその耐食性を支配する重要な元素である。オ
ーステナイトフェライトの2相組織とするためには少く
とも20チ以上のCrが必要であるが、逆に27qbを
越えれば耐応力腐食割れ性を著しく劣化させるから20
.0〜27. O%の範囲とした。Cr: Cr is an important element that determines the phase ratio in duplex stainless steel, that is, the ratio of austenite phase to ferrite phase, and also controls its corrosion resistance. At least 20 qb of Cr is required to form a two-phase structure of austenite ferrite, but conversely, if it exceeds 27 qb, the stress corrosion cracking resistance will be significantly degraded.
.. 0-27. The range was 0%.
Ni : Niも2相ステンレス鋼の相比を決定するに
重要な元素であシ、2相組織とするには少くとも3チ以
上が必要であるが、6チを越えればσ相の析出を促進し
、耐応力腐食割れ性を劣化させるから30〜60%の範
囲とした。Ni: Ni is also an important element in determining the phase ratio of duplex stainless steel, and at least 3 or more is required to form a duplex structure, but if it exceeds 6, the precipitation of the σ phase may occur. The content is determined to be in the range of 30 to 60% because it accelerates stress corrosion cracking and deteriorates stress corrosion cracking resistance.
Mo : Moは0.5%を越えれば高温H2S−C0
2−(J−環境下における2相ステンレス鋼の耐応力腐
食割れ性を著しく劣化させるから上限を従来の2相ステ
ンレス鋼よりも少ない0.5 %以下とした。一方Mo
は耐孔食性を向上させる効果があり、その効果は0.1
チ程度から認められ、またMoがO,1%未(Ii(#
では後述するNやW、Cuによし耐孔食性の不足を補う
ことが困難となるから下限を0.1%とした。Mo: If Mo exceeds 0.5%, high temperature H2S-C0
2-(J-) Because it significantly deteriorates the stress corrosion cracking resistance of duplex stainless steel in an environment, the upper limit was set at 0.5% or less, which is lower than that of conventional duplex stainless steel.On the other hand, Mo
has the effect of improving pitting corrosion resistance, and the effect is 0.1
It is recognized that Mo is O, less than 1% (Ii (#
Since it would be difficult to compensate for the lack of pitting corrosion resistance due to N, W, and Cu, which will be described later, the lower limit was set at 0.1%.
N:Nは耐孔食性の向上に有効であり、MOの低減によ
る耐孔食性の低下を補うには少くとも0.1チ以上必要
である。しかしながらNが04%を越えれば熱間加工性
を著しく損なうから、上限を04係とした。N: N is effective in improving pitting corrosion resistance, and at least 0.1 inch or more is required to compensate for the decrease in pitting corrosion resistance due to the reduction of MO. However, if N exceeds 04%, hot workability will be significantly impaired, so the upper limit was set as 04%.
W:WもNと同様に耐孔食性を向上させるに有効である
が、05チを越えて添加してもそれ以上効果は大きくな
らず、経済的コストが嵩むだけであるから上限を05係
とした。なおWの耐孔食性改善効果は0.1%以上で認
められるから、Wを添加する場合の添加量は01チ以上
とすることが好ましい。W: Like N, W is also effective in improving pitting corrosion resistance, but adding more than 05% will not increase the effect any further and will only increase the economic cost, so the upper limit has been set to 05%. And so. Note that since the effect of W on improving the pitting corrosion resistance is recognized at 0.1% or more, the amount of W added is preferably 0.1% or more.
Cu : Cuは2相ステンレス鋼の耐食性、耐隙間腐
食性の改善に有効であるが、2.0%を越えて添加すれ
ば逆に耐孔食性を劣化させるから、上限を2.0係とし
た。なおCuの添加効果は0.5%以上で認められるか
ら、Cuを添加する場合には0.5%以上添加すること
が好ましい。Cu: Cu is effective in improving the corrosion resistance and crevice corrosion resistance of duplex stainless steel, but if it is added in excess of 2.0%, it will deteriorate the pitting corrosion resistance, so the upper limit should be set at 2.0%. did. Note that the effect of adding Cu is observed at 0.5% or more, so when adding Cu, it is preferable to add 0.5% or more.
Ca * RED/i :これらは鋼中のSと化合物を
生成することにより、熱間加工性に悪影響を与えるMn
Sの形成を阻止して、熱間加工性を向上させるに有効で
あるが、過剰に添加されれば酸化物を生成して機械的特
性に悪影響を与えるから、これらを添加する場合の上限
をCaはo、oos%、REMは0.05%とした。な
おCa 、 REMによる熱間加工性向上効果はCa
O,O’−02%以上、REM 0.01%以上で認め
られ、したがって添加する場合の添加量はこれ以上とす
ることが好ましい。Ca*RED/i: These contain Mn, which adversely affects hot workability by forming a compound with S in the steel.
It is effective in preventing the formation of S and improving hot workability, but if added in excess, it will generate oxides and adversely affect mechanical properties, so the upper limit for adding these should be set. Ca was set to o, oos%, and REM was set to 0.05%. Note that the hot workability improvement effect of Ca and REM is
It is recognized at O,O'-02% or more and REM 0.01% or more, and therefore, when added, it is preferable that the amount added is greater than this.
この発明の2イlステンレス鋼は、以上のように規定さ
れる成分を含有するのみならず、その溶体化処理(固溶
化熱処理)を特に10006C〜1100℃の範囲内で
行う必要がある。すなわち本発明者等が前記成分範囲を
満足する2 5.51Cr −5,8% Ni −0,
3496Mo −0,32% Nの組成の鋼について、
溶体化処理温度を種々変化させ、10%FeCl5 ・
6 H20溶液(308C)中で耐食性試験を行ったと
ころ、第1図に示すように溶体化処理温度が1000℃
未満あるいは1100℃を越える場合には、耐食性が著
しく劣化し、したがって優れた耐食性を得るためには、
溶体化処理を1000〜1100℃の範囲内で行なう必
要があることが判明した。1000°C未満における耐
食性の劣化は、σ相の析…によるその周囲のCr欠乏相
に起因し、また1100℃を越える場合の耐食性の劣化
は、減少したオーステナイト相がフィルム状にフェライ
ト粒界に残りかつそのオーステナイト相のCr量が少な
いことに起因するものと思われる。The 2L stainless steel of the present invention not only contains the components defined above, but also needs to be subjected to solution treatment (solution heat treatment) particularly within the range of 10006C to 1100C. That is, the present inventors satisfy the above component ranges of 25.51Cr -5.8% Ni -0,
For steel with a composition of 3496Mo-0.32%N,
By varying the solution treatment temperature, 10% FeCl5.
6 When a corrosion resistance test was conducted in H20 solution (308C), as shown in Figure 1, the solution treatment temperature was 1000℃.
If the temperature is below or above 1100°C, the corrosion resistance will be significantly deteriorated. Therefore, in order to obtain excellent corrosion resistance,
It has been found that the solution treatment must be carried out within the range of 1000 to 1100°C. The deterioration in corrosion resistance at temperatures below 1000°C is due to the surrounding Cr-deficient phase due to the precipitation of the σ phase, and the deterioration in corrosion resistance at temperatures above 1100°C is due to the decreased austenite phase forming a film at the ferrite grain boundaries. This is thought to be due to the small amount of Cr in the remaining austenite phase.
以下にこの発明の実施例および比較例を記す。Examples and comparative examples of this invention are described below.
第1表に示すような成分の異なる15種の2相ステンレ
ス鋼(試料番号1〜15)の鋼塊を溶製し、これをそれ
ぞれ4■厚に熱間圧延した。各熱延板に900℃から1
100℃までの種々の温度で溶体化処理を施した後、機
械加工にてU曲げ試験片(厚さ211I+111幅15
I12111長さ80闘、表面W仕上げ)を作製し、ア
ムスラーにて曲げ半径7闘でU曲げ後、応力を付加して
腐食試験に供した。試験はオートクレーブにて行ない、
条件は温度250℃、201 NaC1溶液にて、H2
S分圧が20気圧、CO2分圧が60気圧とした。1週
間経過後にオートクレーブから取出して錆を落とし、割
れ(応力腐食割れ)の有無を調べ、続いて重量を測定し
て、腐食減量(試験前重量−試験後型量)から腐食速度
(蜂′year)をめた。それらの結果を第1表に示す
。Steel ingots of 15 kinds of duplex stainless steels (sample numbers 1 to 15) having different compositions as shown in Table 1 were melted, and each ingot was hot rolled to a thickness of 4 mm. 1 from 900℃ to each hot-rolled plate
After solution treatment at various temperatures up to 100°C, the U-bending test piece (thickness 211I + 111 width 15
I12111 (length: 80mm, surface W finish) was manufactured, and after U-bending with a bending radius of 7mm at Amsler, stress was applied and the corrosion test was conducted. The test was carried out in an autoclave.
The conditions were a temperature of 250°C, a 201 NaCl solution, and a H2
The S partial pressure was 20 atm, and the CO2 partial pressure was 60 atm. After one week, the autoclave was removed, the rust was removed, and the presence or absence of cracks (stress corrosion cracking) was examined.Then, the weight was measured, and the corrosion rate (bee'year) was determined from the corrosion loss (weight before test - mold weight after test). ). The results are shown in Table 1.
第1表において、試料番号1〜3の鋼はいずれもその成
分組成が本発明範囲外のもの、すなわち試料番号1はS
iが過剰、試料番号2はCrが過剰、試料番号3はMo
が過剰であシ、これらはいずれも応力腐食割れが発生し
た。また試料番号4の鋼はN含有情が0.1 %よシも
少ない比較鋼であり、この場合応力腐食割れは発生しな
かったが腐食速度が大きかった。一方試料番号5〜7は
その成分組成が同一で本発明の組成範囲内のものでちる
が、そのうち試料番号5,6は溶体化処理温度が100
0〜1100℃の範囲を外れており、その場合には応力
腐食割れが発生し、かつ腐食速度も大きかったのに対し
、試料番号7は溶体化処理温度も本発明範囲内の105
0℃であシ、その場合には応力腐食割れを起さず、かつ
腐食速度も通常耐食性が極めて良好と判断される0、
13 m/year以下であった。また試料番号8〜1
0も本発明成分範囲内でしかも溶体化処理温度の条件も
本発明を満たしているものであり、これらも応力腐食割
れを起さずかつ腐食速度も0.13 mm/yearよ
シ格段に小さく、シたがって本発明鋼が高温H2S−C
02−Cl′″壌境下で壇上た特性を有することが明ら
かである。さらに試料番号11〜15は本発明範囲内・
でCaもしくはREMを添加したものであるが、これら
の添加によって耐食性、耐応力腐食割れ性の劣化はみら
れず、一方熱延段階で耳割れも発生せず、Ca 、 R
EMによる熱間加工性改善効果があられれていることが
確認された。In Table 1, the steels of sample numbers 1 to 3 all have compositions outside the scope of the present invention, that is, sample number 1 is S
i is in excess, sample number 2 is in excess of Cr, sample number 3 is in Mo
were excessive, and stress corrosion cracking occurred in all of these. Steel sample number 4 is a comparative steel with a N content of less than 0.1%, and although no stress corrosion cracking occurred in this case, the corrosion rate was high. On the other hand, sample numbers 5 to 7 have the same composition and are within the composition range of the present invention, but sample numbers 5 and 6 have a solution treatment temperature of 100%.
In contrast, in sample number 7, the solution treatment temperature was outside the range of 105°C, which was outside the range of 0 to 1100°C, and stress corrosion cracking occurred and the corrosion rate was high.
0°C, in which case no stress corrosion cracking occurs and the corrosion rate is usually 0, which is considered to have extremely good corrosion resistance.
It was less than 13 m/year. Also sample number 8-1
0 is also within the composition range of the present invention, and the solution treatment temperature conditions also satisfy the present invention, and these also do not cause stress corrosion cracking and the corrosion rate is significantly lower than 0.13 mm/year. , Therefore, the steel of the present invention is high temperature H2S-C
It is clear that the sample numbers 11 to 15 are within the scope of the present invention.
However, no deterioration in corrosion resistance or stress corrosion cracking resistance was observed due to these additions, and no edge cracking occurred during the hot rolling stage.
It was confirmed that the hot workability improvement effect of EM was achieved.
以上のようにこの発明の2相ステンレス鋼は、co2−
H2s−cl−i壇上における応力腐食割れ性に悪影響
を及ぼすMo量を従来よりも格段に小量に規制し、また
同じく応力腐食割れ性に悪影響を及ぼすCr 、 Si
も規制し、一方MOの低減による耐孔食性の低下をN量
の増大、あるいはNとWもしくはCuの増量によって補
ない、さらに溶体化処理温度を最も優れた耐食性が発揮
される1000〜1100℃の範囲内に規制したもので
あり、したがってこの発明の2相ステンレス鋼は、H2
S−Co2−Cl−環境下における耐応力腐食割れ性が
著しく優れるとともに、耐孔食性などの耐食性も優れ、
したがって112S−CO2−(J−環境にさらされる
ような苛酷な条件下での油井管、ガス井管等にも不安な
く使用することができる。As described above, the duplex stainless steel of the present invention is co2-
The amount of Mo, which has an adverse effect on stress corrosion cracking properties on the H2s-cl-i stage, is regulated to a much smaller amount than before, and Cr and Si, which also have an adverse effect on stress corrosion cracking properties, are
On the other hand, the decrease in pitting corrosion resistance due to the reduction of MO is not compensated for by increasing the amount of N, or by increasing the amount of N and W or Cu, and the solution treatment temperature is adjusted to 1000 to 1100°C, where the best corrosion resistance is exhibited. Therefore, the duplex stainless steel of this invention is regulated within the range of H2
It has extremely good stress corrosion cracking resistance in S-Co2-Cl- environment, and also has excellent corrosion resistance such as pitting corrosion resistance.
Therefore, it can be safely used for oil country tubular goods, gas country tubular goods, etc. under harsh conditions such as those exposed to 112S-CO2- (J- environments).
第1図はこの発明の組成範囲内の成分を有する鋼に種々
の温度で溶体化処理を施した場合の溶体化処理温度と腐
食速度との関係を示す相関図である°。
出願人 川崎製鉄株式会社
代理人 弁理士豊田武人
(ほか1名)
第1図
追弔
食試鋏糸作
つ105011001150
酪化笈裡温虜じご)FIG. 1 is a correlation diagram showing the relationship between solution treatment temperature and corrosion rate when steel having components within the composition range of the present invention is subjected to solution treatment at various temperatures. Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehito Toyota (and 1 other person) Figure 1 Condolence meal test scissors thread making
Claims (4)
6チ以丁、Mn 2.0%以下、P 0.025 %以
下、S 0.005%以下、Cr 20.0〜27.0
%、Ni30〜6.0チ、M001〜0.5%、N
O,1〜0.4で行りたことを特徴とする2相ステンレ
ス鋼。(1) C0.1% (weight%, same below) or less, 5iO9
6 pieces, Mn 2.0% or less, P 0.025% or less, S 0.005% or less, Cr 20.0-27.0
%, Ni30~6.0chi, M001~0.5%, N
A duplex stainless steel characterized by having a temperature of O.1 to 0.4.
0 %以下、P 0.025%以下、S 0.005
%以下、Cr200〜270チ、Ni3.O〜6,0チ
、MO01〜0.5チ、N001〜0.4チを含有し、
さらにW O,5裂以下およびCu2.0%以下のうち
の1種以上を含有し、残部がFeおよび不可避的不純物
よりなり、かつ溶体化処理を1000〜1100℃の温
度範囲内で行ったことを特徴とする2相ステンレス鋼。(2) C0, 1% or less, SiO, 6% or less, Mn 2.
0% or less, P 0.025% or less, S 0.005
% or less, Cr200-270chi, Ni3. Contains O~6.0chi, MO01~0.5chi, N001~0.4chi,
Furthermore, it must contain at least one of W O, 5% or less, and Cu2.0% or less, with the balance consisting of Fe and unavoidable impurities, and the solution treatment must have been performed within a temperature range of 1000 to 1100°C. A duplex stainless steel characterized by:
0 %以下、Po、025%以丁、So、005%以下
、Cr20、0〜27、Oチ、Ni3.0〜6.0 %
、Mo 0.1〜0.5%、N O,1〜0.4%を含
有し、さらにCaO,008%以下および希土類元素0
.05 %以下のうちの1種以上を含有し、残部がFe
および不可避的不純物よりなり、かつ溶体化処理を10
00〜1100℃の温度範囲内で行ったことを特徴とす
る2相ステンレス鋼。(3) C0.1% or less, Si 0.6% or less, Mn 2.
0% or less, Po, 025% or less, So, 005% or less, Cr20, 0-27, Ochi, Ni3.0-6.0%
, Mo 0.1-0.5%, NO, 1-0.4%, and further contains CaO, 0.08% or less and rare earth elements 0.
.. 05% or less, with the remainder being Fe.
and unavoidable impurities, and after solution treatment for 10
A duplex stainless steel characterized by being produced within a temperature range of 00 to 1100°C.
0 qb以下、Po、025%以下、So、005%以
下、Cr20、0〜27.0%、N13゜0〜60%、
Mo0.1〜0.5チ、NO,1〜0.4チを含有し、
さらにW 0.5チ以丁およびCu 2.0 %以下の
うちの1種以上と、Ca 0.008 %以下および希
土類元素0.05%以下のうちの1種以上を含有し、残
部がFeおよび不可避的不純物よりなシ、かつ溶体化処
理を1000〜1100℃の範囲内の温度で行ったこと
を特徴とする2相ステンレス鋼。(4) C0.1% or less, Si 0.6% or less, Mn 2.
0 qb or less, Po, 025% or less, So, 005% or less, Cr20, 0-27.0%, N13゜0-60%,
Contains Mo0.1 to 0.5 thi, NO, 1 to 0.4 thi,
Furthermore, it contains one or more of W 0.5% or less and Cu 2.0% or less, one or more of Ca 0.008% or less and rare earth element 0.05% or less, and the balance is Fe. and a duplex stainless steel which is free from unavoidable impurities and which has been subjected to solution treatment at a temperature within the range of 1000 to 1100°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14890083A JPS6043467A (en) | 1983-08-15 | 1983-08-15 | Two-phase stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14890083A JPS6043467A (en) | 1983-08-15 | 1983-08-15 | Two-phase stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6043467A true JPS6043467A (en) | 1985-03-08 |
Family
ID=15463183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14890083A Pending JPS6043467A (en) | 1983-08-15 | 1983-08-15 | Two-phase stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6043467A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01201446A (en) * | 1988-02-05 | 1989-08-14 | Sumitomo Metal Ind Ltd | High corrosion-resistant two-phase stainless steel |
EP1995341A1 (en) * | 2007-03-26 | 2008-11-26 | Sumitomo Metal Industries Limited | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
JP2017002352A (en) * | 2015-06-09 | 2017-01-05 | 株式会社神戸製鋼所 | Duplex stainless steel material and duplex stainless steel pipe |
-
1983
- 1983-08-15 JP JP14890083A patent/JPS6043467A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01201446A (en) * | 1988-02-05 | 1989-08-14 | Sumitomo Metal Ind Ltd | High corrosion-resistant two-phase stainless steel |
EP1995341A1 (en) * | 2007-03-26 | 2008-11-26 | Sumitomo Metal Industries Limited | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
EP1995341A4 (en) * | 2007-03-26 | 2010-03-10 | Sumitomo Metal Ind | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
JPWO2008117680A1 (en) * | 2007-03-26 | 2010-07-15 | 住友金属工業株式会社 | Duplex stainless steel used for expanding oil well pipes and expanding oil well pipes expanded in wells |
JP2017002352A (en) * | 2015-06-09 | 2017-01-05 | 株式会社神戸製鋼所 | Duplex stainless steel material and duplex stainless steel pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5298093A (en) | Duplex stainless steel having improved strength and corrosion resistance | |
KR100314232B1 (en) | Ferritic-austenitic stainless steel | |
US8163233B2 (en) | Martensitic stainless steel for welded structures | |
US5167731A (en) | Martensitic stainless steel for an oil well | |
JP3608743B2 (en) | Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking | |
JP6809414B2 (en) | Duplex stainless steel sheet with excellent corrosion resistance and hydrogen brittleness | |
KR102520119B1 (en) | Welded structure and its manufacturing method | |
JP3106674B2 (en) | Martensitic stainless steel for oil wells | |
JP3533055B2 (en) | Martensitic steel for line pipes with excellent corrosion resistance and weldability | |
JPH08170153A (en) | Highly corrosion resistant two phase stainless steel | |
JP6720942B2 (en) | Duplex stainless steel with excellent corrosion resistance and hydrogen embrittlement resistance | |
JP2004099921A (en) | Seawater resistant steel and manufacturing method | |
JPS6043467A (en) | Two-phase stainless steel | |
JPS6254063A (en) | Martensitic stainless steel for oil well tube | |
JPS63274743A (en) | Austenitic alloy having high cracking resistance under hydrogen sulfide-containing environment | |
JP3791664B2 (en) | Austenitic Ca-added free-cutting stainless steel | |
JP3666388B2 (en) | Martensitic stainless steel seamless pipe | |
JP2021091923A (en) | Ce-CONTAINING CORROSION-RESISTANT STEEL | |
JP2018135601A (en) | Two-phase stainless steel and two-phase stainless steel pipe prepared therewith | |
JPH0741909A (en) | Stainless steel for oil well and manufacture therefor | |
JP3422877B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JPS63270444A (en) | Steel for line pipe having excellent sour resistance | |
JPS61207552A (en) | Nonmagnetic austenitic stainless steel having superior working stability | |
JPS629661B2 (en) | ||
JPH06299301A (en) | 110ksi grade high strength corrosion resistant martensitic stainless steel pipe |