JPS629660B2 - - Google Patents
Info
- Publication number
- JPS629660B2 JPS629660B2 JP56018372A JP1837281A JPS629660B2 JP S629660 B2 JPS629660 B2 JP S629660B2 JP 56018372 A JP56018372 A JP 56018372A JP 1837281 A JP1837281 A JP 1837281A JP S629660 B2 JPS629660 B2 JP S629660B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stress corrosion
- corrosion cracking
- alloy
- country tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005260 corrosion Methods 0.000 claims description 41
- 230000007797 corrosion Effects 0.000 claims description 40
- 238000005336 cracking Methods 0.000 claims description 32
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 239000003129 oil well Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001814 effect on stress Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002343 natural gas well Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
この発明は、耐食性、なかんずく耐応力腐食割
れ性に優れた油井管用合金に関する。
近年、油井・天然ガス井は深井戸化の傾向著し
く、産出ガス中に湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオン等、腐食性物質が含まれること
が多くなつてきている。このような傾向とともに
油井管の使用条件が苛酷化すると、安定操業上そ
の腐食対策がより一層重要なこととなる。油井管
の腐食対策としては、インヒビターと呼ばれる腐
食抑制剤の投入が最も一般的な方法であるがこの
方法は海上油井のときなど、場合によつては、有
効に活用できないことも多い。このような事態に
対処するため最近では、より高級な耐食性材料が
用いられる傾向があり、ステンレス鋼をはじめ、
インコロイやハステロイ(いずれも商品名)とい
つた高合金鋼の採用も検討されはじめている。
しかしながらいまのところ、H2S−CO2−Cl-
の油井環境での腐食挙動についての詳細なところ
は十分に解明されるに至つておらず、この環境下
での腐食と鋼成分の関連についても、僅かに既存
の高合金鋼の適性がテストされている程度に過ぎ
ない。
本発明は、このきわめて腐食性のつよい、H2S
−CO2−Cl-の油井環境下でも優れた耐久性を発
揮する油井管用合金の提供を目的とするものであ
る。
すなわち本発明の要旨とするところは、C0.1
%以下、Si1.0%以下、Mn2.0%以下、P0.030%以
下、S0.005%以下、Al 0.5%以下、Ni35〜60%、
Cr22.5〜35%にMoとWの何れか一方または双方
を下式を満足する範囲内で含有し、更にCu1
%を含みまたは含まず、更に場合によつては希土
類元素(以下REMという)0.10%以下、Y0.20%
以下、Mg0.10%以下、Ca0.10%以下、Ti0.5%以
下のうち1種または2種以上を含有し、残部は実
質的にFeよりなることを特徴とする耐応力腐食
割れ性に優れた油井管用合金、
Cr(%)+10Mo(%)+5W(%)≧50%………
1.5%≦Mo(%)+1/2W(%)<4% ………
である。
本発明者らの詳細な実験、研究によれば、H2S
−CO2−Cl-環境下における腐食の主たるものは
応力腐食割れであるが、この場合の応力腐食割れ
は、オーステナイトステンレス鋼における一般的
なそれとは挙動を全く異にするものである。一般
の応力腐食割れがCl-の存在と深く係わるもので
あるのに対し、上記油井環境によるものではCl-
もさることながら、それ以上にH2Sの影響が大き
いという事実が明らかとなつた。一方、油井管と
して実用に供される鋼管は一般に、強度上の必要
から冷間加工が施こされるが、冷間加工は上記応
力腐食割れに対する抵抗性を著しく減少させると
いうこともまた、本発明者らの研究から判明し
た。
かかる研究結果を基に本発明者らは、冷間加工
材としてH2S存在下での応力腐食割れに対する高
い抵抗性が得られる材料の開発を意図して実験、
研究を更に推し進め、その結果、環境温度が150
℃以下では高濃度H2S下でも冷間加工材としてき
わめて良好な耐久性を発揮する比較的安価な合金
の開発に至つたものである。
H2S−CO2−Cl-環境での合金の溶出速度(腐
食速度)は、Cr、Ni、MoおよびW量に依存し、
これらの元素からなる表面皮膜によつて耐食性が
保持されている。そしてこれらの元素は、応力腐
食割れに対してもその抵抗性を高め、特にMo
は、式に示すようにCrに対し10倍の効果を、
またWはMoの2倍の効果をそれぞれもつてお
り、このMo及びWが前記、式を満たすとと
もに、Niが35〜60%及びCrが22.5%〜35%の範囲
内にあれば応力腐食割れに対し優れた抵抗性を有
する表面皮膜が得られることが、本発明者らの実
験により明らかとなつた。
なお、Niについては表面皮膜に対する効果だ
けでなく、組織的にも応力腐食割れ抵抗性を高め
る効果があり、この点を考慮してNi量の範囲を
定めたものでもある。
第1図は、上記油井環境下での耐応力腐食割れ
抵抗性とCr(%)+10Mo(%)+5W(%)、およ
びNi量との関係を示す。このデータは、成分元
素の添加量を種々変化させたCr−Ni−Mo系また
はCr−Ni−Mo−W系の合金を溶製し、鍛伸、お
よび熱間圧延によつて7mm厚とした後、1050℃で
30分保持、水冷という固溶化処理を行ない、その
後強度向上の目的で30%の冷間加工を加え、得ら
れた鋼板から圧延方向と直角に2mm厚、10mm巾、
75mm長の試験片を採取し、応力腐食割れ試験を実
施した結果に基く。応力腐食割れ試験としては、
第2図に示す3点支持ビーム冶具を用いて上記試
験片に0.2%耐力に相当する引張応力を付加し、
10気圧H2S、10気圧CO2でH2S、CO2を飽和させ
た20%NaCl溶液(温度150℃)中に1000時間浸漬
し、割れ発生の有無を観察する方法によつた。図
中、O:割れ発生なし、×:割れ発生、をそれぞ
れ示す。
同図に明らかな如く、Cr(%)+10Mo(%)+
5W(%)が50%未満、またはNiが35%未満では
応力腐食割れ抵抗性が不十分である。因みに、
Niを60%以下としたのは、この値を越えて含有
しても効果の向上は認められず、経済的不利を招
くばかりである。
この他、本発明合金の特徴的な成分の限定理由
としては、Crは応力腐食割れ抵抗性を高める成
分であるが、熱間加工性を劣化させるので35%以
下とする必要があるが、22.5%未満としても熱間
加工性は殆んど改善されず、式のCr(%)+
10Mo(%)+5W(%)≧50%の規定によりCr量の
低下とともにMoやWの添加量が増すこととなり
経済的に不利となるばかりである。MoおよびW
は何れも、耐応力腐食割れ性向上に必須の成分で
あつて、Mo(%)+1/2W(%)で規定するのはW
がMoに対し原子量が約2倍で効果の点では略1/2
になると云えるからであるが、この量が1.5%未
満では、Cr≦35%において式を満足させられ
ないためであり、また同じく4%を越える含有は
コストの上昇につながるにも拘わらず、150℃以
下のH2S−CO2−Cl-環境では実質的に不必要で
ある。
次に、本発明鋼のその他の基本成分の限定理由
は次の通りである。
C:0.10%以下では応力腐食割れに影響しない
が、0.10%を越えると粒界応力腐食割れが生じ
やすくなる。
Si:脱酸剤として必要であるが、1.0%を越える
と熱間加工性が劣化する。
Mn:脱酸成分であり、応力腐食割れにはほとん
ど影響しないので2.0%まで許容した。
P:Pは応力腐食割れ感受性を高めるので0.030
%以下に限定する。
S:Sは熱間加工性を著しく劣化させる元素であ
るので0.005%以下に限定する。
Al:Alは脱酸成分として有効で0.5%まで含有さ
せることができる。
更に、必要に応じ使用される選択成分としての
Cuは、耐食性を高める元素であるが、1%を越
えると熱間加工性を劣化させるので1%以下に限
定する。またREM、Y、Mg、Ca、Tiは、適量
添加すると熱間加工性が著しく向上する。しかし
過剰に添加すると、再び熱間加工性は劣化する。
次に本発明の実施例を掲げて効果を詳説する。
第1表に示す(1)〜(21)の成分の合金からなる外
径60mm、肉厚4mmの管を製作し、20%の冷間加工
を加えて強度を高め油井管とした。この油井管か
ら、中心角で60゜に当たる部分を切欠した長さ20
mmの管を試験片として採取し、第3図に示すよう
にボルト・ナツトで管外表面に0.2%耐力に相当
する引張応力を付加し、これをH2S分圧を種々に
変えたH2S−10気圧CO2−20%NaCl溶液(温度:
150℃)中に1000時間浸漬し、応力腐食割れの有
無を調査した。結果をまとめて表2表に記す。
The present invention relates to an alloy for oil country tubular goods that has excellent corrosion resistance, particularly stress corrosion cracking resistance. In recent years, there has been a marked trend toward deeper oil and natural gas wells, and the produced gas is increasingly containing corrosive substances such as wet hydrogen sulfide, carbon dioxide gas, and chlorine ions. As the usage conditions for oil country tubular goods become more severe along with this trend, countermeasures against corrosion will become even more important for stable operation. The most common method to prevent corrosion of oil country tubular goods is to introduce a corrosion suppressant called an inhibitor, but in some cases, such as in offshore oil wells, this method is often not effective. To deal with this situation, there has been a recent trend toward using higher-grade corrosion-resistant materials, including stainless steel.
Consideration has also begun to be given to the use of high alloy steels such as Incoloy and Hastelloy (both trade names). However, for now, H 2 S−CO 2 −Cl −
The details of the corrosion behavior in the oil well environment have not yet been fully elucidated, and the suitability of existing high-alloy steels has only recently been tested regarding the relationship between corrosion and steel composition in this environment. It's just a matter of time. The present invention uses this highly corrosive H 2 S
The purpose of the present invention is to provide an alloy for oil country tubular goods that exhibits excellent durability even in the -CO 2 -Cl - oil well environment. In other words, the gist of the present invention is that C0.1
% or less, Si1.0% or less, Mn2.0% or less, P0.030% or less, S0.005% or less, Al 0.5% or less, Ni35~60%,
Cr22.5 to 35% contains one or both of Mo and W within a range that satisfies the following formula, and Cu1
%, and in some cases rare earth elements (hereinafter referred to as REM) 0.10% or less, Y0.20%
Below, stress corrosion cracking resistance characterized by containing one or more of the following: Mg 0.10% or less, Ca 0.10% or less, Ti 0.5% or less, and the remainder being substantially Fe. Excellent alloy for oil country tubular goods, Cr (%) + 10Mo (%) + 5W (%) ≧50%... 1.5%≦Mo (%) + 1/2W (%) < 4%...... According to detailed experiments and research by the inventors, H 2 S
The main type of corrosion in a -CO 2 -Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. While general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, Cl -
However, it has become clear that the influence of H 2 S is even greater than that. On the other hand, steel pipes used for practical use as oil country tubular goods are generally subjected to cold working to improve their strength, but it is also true that cold working significantly reduces the resistance to stress corrosion cracking mentioned above. This was discovered through research by the inventors. Based on these research results, the present inventors conducted experiments with the intention of developing a cold-worked material that has high resistance to stress corrosion cracking in the presence of H 2 S.
Further research has resulted in an environmental temperature of 150
This led to the development of a relatively inexpensive alloy that exhibits extremely good durability as a cold-worked material even under high concentration H 2 S at temperatures below ℃. The elution rate (corrosion rate) of the alloy in the H 2 S−CO 2 −Cl − environment depends on the amounts of Cr, Ni, Mo, and W.
Corrosion resistance is maintained by the surface film made of these elements. These elements also increase its resistance to stress corrosion cracking, especially Mo.
has a 10 times effect on Cr as shown in the formula,
In addition, W has twice the effect of Mo, and if Mo and W satisfy the above formula and the Ni content is in the range of 35 to 60% and the Cr content is in the range of 22.5% to 35%, stress corrosion will occur. Experiments conducted by the present inventors have revealed that a surface film having excellent resistance to oxidation can be obtained. Note that Ni not only has an effect on the surface film, but also has the effect of increasing stress corrosion cracking resistance structurally, and the range of the Ni amount was determined with this point in mind. FIG. 1 shows the relationship between stress corrosion cracking resistance, Cr (%) + 10Mo (%) + 5W (%), and the amount of Ni under the above-mentioned oil well environment. This data was obtained by melting Cr-Ni-Mo or Cr-Ni-Mo-W alloys with various addition amounts of component elements, and making them 7 mm thick by forging and hot rolling. After that, at 1050℃
A solution treatment of holding for 30 minutes and cooling with water is carried out, followed by 30% cold working for the purpose of improving strength, and from the obtained steel plate, 2 mm thick, 10 mm wide,
Based on the results of stress corrosion cracking tests taken on 75mm long test pieces. As a stress corrosion cracking test,
Using the three-point support beam jig shown in Figure 2, a tensile stress equivalent to 0.2% proof stress was applied to the above test piece.
The sample was immersed for 1000 hours in a 20% NaCl solution (temperature 150°C) saturated with H 2 S and CO 2 at 10 atm H 2 S and 10 atm CO 2 and observed for cracking. In the figure, O: No cracking, ×: Cracking. As is clear from the figure, Cr (%) + 10Mo (%) +
If 5W (%) is less than 50% or Ni is less than 35%, stress corrosion cracking resistance is insufficient. By the way,
The reason for setting Ni to 60% or less is that even if the Ni content exceeds this value, no improvement in effectiveness will be observed, and this will only lead to economic disadvantage. In addition, the reason for limiting the characteristic components of the present alloy is that Cr is a component that increases stress corrosion cracking resistance, but it deteriorates hot workability, so it must be kept at 35% or less, but 22.5 Even if it is less than %, hot workability is hardly improved, and the formula Cr (%) +
Due to the regulation of 10Mo (%) + 5W (%) ≧50%, as the amount of Cr decreases, the amounts of Mo and W added increase, which is only economically disadvantageous. Mo and W
Both are essential components for improving stress corrosion cracking resistance, and the formula for Mo (%) + 1/2 W (%) is that W has approximately twice the atomic weight of Mo, and is approximately 1 times more effective in terms of effectiveness. /2
This is because if this amount is less than 1.5%, the formula cannot be satisfied when Cr≦35%, and similarly, although a content exceeding 4% leads to an increase in cost, It is virtually unnecessary in a H 2 S−CO 2 −Cl − environment below 150°C. Next, the reasons for limiting the other basic components of the steel of the present invention are as follows. C: If it is 0.10% or less, it does not affect stress corrosion cracking, but if it exceeds 0.10%, intergranular stress corrosion cracking tends to occur. Si: Necessary as a deoxidizing agent, but if it exceeds 1.0%, hot workability deteriorates. Mn: This is a deoxidizing component and has little effect on stress corrosion cracking, so Mn was allowed up to 2.0%. P: 0.030 as P increases susceptibility to stress corrosion cracking.
% or less. S: S is an element that significantly deteriorates hot workability, so it is limited to 0.005% or less. Al: Al is effective as a deoxidizing component and can be contained up to 0.5%. Furthermore, as a selective ingredient used as required.
Cu is an element that increases corrosion resistance, but if it exceeds 1%, hot workability deteriorates, so it is limited to 1% or less. Furthermore, when REM, Y, Mg, Ca, and Ti are added in appropriate amounts, hot workability is significantly improved. However, when added in excess, hot workability deteriorates again. Next, the effects of the present invention will be explained in detail with reference to Examples.
A pipe with an outer diameter of 60 mm and a wall thickness of 4 mm was manufactured from an alloy having the components (1) to (21) shown in Table 1, and was subjected to 20% cold working to increase its strength and make it into an oil country tubular product. A length of 20 mm is obtained by cutting out the 60° central angle from this OCTG.
mm tube was taken as a test piece, a tensile stress equivalent to 0.2% proof stress was applied to the outer surface of the tube using bolts and nuts as shown in Figure 3, and this was applied to H2S with various H2S partial pressures. 2 S − 10 atm CO 2 − 20% NaCl solution (temperature:
(150℃) for 1000 hours, and the presence or absence of stress corrosion cracking was investigated. The results are summarized in Table 2.
【表】【table】
【表】
H2Sの分圧が比較的低いところでは、従来既存
の鋼からなる比較例(12)〜(21)の中にも応力腐食
割れの出ないものがみられるが、これも、H2Sの
分圧が高くなるにつれ少なくなり、H2S分圧が20
気圧に至ると皆無となる。しかるに本発明鋼から
なるもの(1)〜(11)は、20気圧のH2S分圧下でも割れ
の発生は一切認められず、本発明鋼の応力腐食割
れに対する有効性が証明された。因みに、比較例
(12)はNiが、また比較例(13)はCr+10Mo+5Wが
本発明範囲を下廻るため、耐応力腐食割れ性が不
足する。なお比較鋼(14)はCrが高すぎるため
に、(15)はSが高すぎるために、更に(16)、
(17)はCuおよびREM、Y、Ca、Mg、Tiの選択
成分のうち何かが高すぎるために、それぞれ熱間
加工性が悪く、ビレツト製造時に割れが生じ、管
の製造が事実上不可能であつた。
以上の説明から明らかなように本発明合金は、
きわめて腐食性のつよいH2S−CO2−Cl-の油井
環境にあつて従来の高合金鋼を遥かに上廻る応力
腐食割れ抵抗性を示す冷間加工材が得られる材料
であるから、条件の苛酷な油井管に用いて優れた
耐久性を発揮するものである。[Table] In areas where the partial pressure of H 2 S is relatively low, some comparative examples (12) to (21) made of conventional steels do not exhibit stress corrosion cracking. As the partial pressure of H 2 S increases, it decreases, and when the partial pressure of H 2 S becomes 20
When it reaches atmospheric pressure, it disappears. However, in steels (1) to (11) made of the steels of the present invention, no cracking was observed even under an H 2 S partial pressure of 20 atmospheres, proving the effectiveness of the steels of the present invention against stress corrosion cracking. By the way, comparative example
Since Ni in (12) and Cr+10Mo+5W in Comparative Example (13) are below the range of the present invention, stress corrosion cracking resistance is insufficient. Comparative steel (14) has too high Cr content, (15) has too high S content, and (16)
(17) has poor hot workability due to excessively high levels of selected components among Cu, REM, Y, Ca, Mg, and Ti, resulting in cracks occurring during billet production, making pipe production virtually impossible. It was possible. As is clear from the above description, the alloy of the present invention is
It is a material that can produce cold-worked materials that exhibit stress corrosion cracking resistance that far exceeds that of conventional high-alloy steel in the highly corrosive H 2 S−CO 2 −Cl - oil well environment, so the conditions It exhibits excellent durability when used in harsh conditions for oil country tubular goods.
第1図は鋼中NiおよびCr(%)+10M(%)+
5W(%)の耐応力腐食割れ性に及ぼす影響を示
す図、第2図は板状試験片用応力腐食割れ試験機
を示す図、第3図は管状試験片を示す図である。
Figure 1 shows Ni and Cr (%) + 10M (%) +
Figure 2 is a diagram showing the influence of 5W (%) on stress corrosion cracking resistance, Figure 2 is a diagram showing a stress corrosion cracking tester for plate specimens, and Figure 3 is a diagram showing a tubular specimen.
Claims (1)
P0.030%以下、S0.005%以下、Al 0.5%以下、
Ni35〜60%、Cr22.5〜35%に、MoとWの何れか
一方または双方を下方、を満足する範囲内で
含有し、残部は実質的にFeよりなることを特徴
とする耐応力腐食割れ性に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧50%……… 1.5%≦Mo(%)+1/2W(%)<4% ……… 2 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Ni35〜60%、Cr22.5〜35%に、MoとWの何れか
一方又は双方を下式、を満足する範囲内で含
有し、更にCu1%以下を含有し、残部は実質的に
Feよりなることを特徴とする耐応力腐食割れ性
に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧50%……… 1.5%≦Mo(%)+1/2W(%)<4% ……… 3 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Ni35〜60%、Cr22.5〜35%に、MoとWの何れか
一方又は双方を下式、を満足する範囲内で含
有し、更に希土類元素0.10%以下、Y0.20%以
下、Mg0.10%以下、Ca0.10%以下、Ti0.5%以下
のうち1種または2種以上を含有し、残部は実質
的にFeよりなることを特徴とする耐応力腐食割
れ性に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧50%……… 1.5%≦Mo(%)+1/2W(%)<4% ……… 4 C0.1%以下、Si1.0%以下、Mn2.0%以下、
P0.030%以下、S0.005%以下、Al 0.5%以下、
Ni35〜60%、Cr22.5〜35%に、MoとWの何れか
一方又は双方を下式、を満足する範囲内で含
有し、更にCu1%以下と、希土類元素0.10%以
下、Y0.20%以下、Mg0.10%以下、Ca0.10%以
下、Ti0.5%以下のうち1種または2種以上を含
み、残部は実質的にFeよりなることを特徴とす
る耐応力腐食割れ性に優れた油井管用合金。 Cr(%)+10Mo(%)+5W(%)≧50%……… 1.5%≦Mo(%)+1/2W(%)<4% ………[Claims] 1 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Stress-corrosion resistant, characterized by containing 35 to 60% Ni, 22.5 to 35% Cr, and one or both of Mo and W within a satisfying range, with the remainder essentially consisting of Fe. Alloy for oil country tubular goods with excellent crackability. Cr (%) + 10Mo (%) + 5W (%) ≧ 50% ...... 1.5% ≦ Mo (%) + 1/2W (%) < 4% ...... 2 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 35 to 60% Ni, 22.5 to 35% Cr, one or both of Mo and W within a range that satisfies the following formula, further contains 1% or less of Cu, and the remainder is substantially
An alloy for oil country tubular goods with excellent stress corrosion cracking resistance, characterized by being made of Fe. Cr (%) + 10Mo (%) + 5W (%) ≧ 50% ...... 1.5% ≦ Mo (%) + 1/2W (%) < 4% ...... 3 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 35 to 60% Ni, 22.5 to 35% Cr, and one or both of Mo and W within a range that satisfies the following formula, and further contains rare earth elements of 0.10% or less, Y0.20% or less, and Mg0. 10% or less, Ca 0.10% or less, Ti 0.5% or less, and the remainder is substantially Fe for oil country tubular goods with excellent stress corrosion cracking resistance. alloy. Cr (%) + 10Mo (%) + 5W (%) ≧ 50% ...... 1.5% ≦ Mo (%) + 1/2W (%) < 4% ...... 4 C0.1% or less, Si1.0% or less, Mn2.0% or less,
P0.030% or less, S0.005% or less, Al 0.5% or less,
Contains 35 to 60% Ni, 22.5 to 35% Cr, and one or both of Mo and W within a range that satisfies the following formula, and further contains 1% or less of Cu, 0.10% or less of rare earth elements, and Y0.20. % or less, Mg 0.10% or less, Ca 0.10% or less, and Ti 0.5% or less. Excellent alloy for oil country tubular goods. Cr (%) + 10Mo (%) + 5W (%) ≧ 50%…… 1.5% ≦ Mo (%) + 1/2W (%) < 4% ………
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1837281A JPS57131340A (en) | 1981-02-09 | 1981-02-09 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1837281A JPS57131340A (en) | 1981-02-09 | 1981-02-09 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57131340A JPS57131340A (en) | 1982-08-14 |
JPS629660B2 true JPS629660B2 (en) | 1987-03-02 |
Family
ID=11969871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1837281A Granted JPS57131340A (en) | 1981-02-09 | 1981-02-09 | Alloy for oil well pipe with superior stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57131340A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5879619A (en) * | 1996-06-17 | 1999-03-09 | Sumitomo Metal Industries, Ltd. | Hydrogen sulfide corrosion resistant high-Cr and high-Ni alloys |
US20220411906A1 (en) * | 2019-10-10 | 2022-12-29 | Nippon Steel Corporation | Alloy material and oil-well seamless pipe |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
-
1981
- 1981-02-09 JP JP1837281A patent/JPS57131340A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
Also Published As
Publication number | Publication date |
---|---|
JPS57131340A (en) | 1982-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0151487B1 (en) | Ferritic-austenitic duplex stainless steel | |
JPWO2004057050A1 (en) | High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance | |
US3510294A (en) | Corrosion resistant nickel-base alloy | |
JP2002529599A5 (en) | ||
JP2002529599A (en) | New uses for stainless steel with seawater applicability | |
JP2791804B2 (en) | Martensitic stainless steel with high strength and excellent corrosion resistance | |
JPS625976B2 (en) | ||
JPS6144133B2 (en) | ||
EP0169373B1 (en) | Machines or machine parts made of austenitic cast iron having resistance to stress corrosion cracking | |
JPS629660B2 (en) | ||
JPH059503B2 (en) | ||
JPS629661B2 (en) | ||
JPS6144135B2 (en) | ||
JP2602319B2 (en) | High-strength, high-temperature, high-chloride-ion-concentration, wet carbon dioxide gas-corrosion-resistant, martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same | |
JPH0232343B2 (en) | ||
JPS6144126B2 (en) | ||
JPS6363610B2 (en) | ||
JP2992226B2 (en) | Nickel alloys having corrosion resistance and construction members made from these alloys | |
JPS625975B2 (en) | ||
JPS5912737B2 (en) | Duplex stainless steel for oil country tubular goods with excellent corrosion resistance | |
JPS6144125B2 (en) | ||
US4547338A (en) | Fe-Ni-Cr corrosion resistant alloy | |
JPS6363609B2 (en) | ||
JPS6144128B2 (en) | ||
JPS6213558A (en) | Alloy having superior h2s resistance |