JPS60165363A - Highly corrosion resistant and high yield strength two- phase stainless steel - Google Patents

Highly corrosion resistant and high yield strength two- phase stainless steel

Info

Publication number
JPS60165363A
JPS60165363A JP2138984A JP2138984A JPS60165363A JP S60165363 A JPS60165363 A JP S60165363A JP 2138984 A JP2138984 A JP 2138984A JP 2138984 A JP2138984 A JP 2138984A JP S60165363 A JPS60165363 A JP S60165363A
Authority
JP
Japan
Prior art keywords
perfume
stainless steel
corrosion
ferrite
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2138984A
Other languages
Japanese (ja)
Other versions
JPH0232343B2 (en
Inventor
Akira Yoshitake
吉竹 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2138984A priority Critical patent/JPS60165363A/en
Priority to CA000473261A priority patent/CA1242095A/en
Priority to DE8585101255T priority patent/DE3561162D1/en
Priority to EP85101255A priority patent/EP0151487B1/en
Publication of JPS60165363A publication Critical patent/JPS60165363A/en
Publication of JPH0232343B2 publication Critical patent/JPH0232343B2/ja
Priority to US07/622,401 priority patent/US5238508A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled two-phase stainless steel excellent in stress corrosion cracking resistance and pitting resistance in a corrosive environment, by respectively prescribing the contents of C, Si, Mn, Cr, Ni, Mo, Cu, Co and N and providing a delta-ferrite phase with a specific areal ratio. CONSTITUTION:The titled two-phase stainless steel consists of, on a wt. basis, 0.08% or less C, 0.2-2.0% Si, 0.2-2.0% Mn, 19.0% or more - less than 24% Cr, 3.0-8.0% Ni, 1.0-5.0% Mo, 0.5-3.0% Cu, 0.2-4.0% Co, 0.05-0.3% N and the remainder of substantially Fe. The areal ratio of the delta-ferrite phase in the metal structure of this stainless steel is set to be 30-70% as a prerequisite condition. This stainless steel has excellent pitting resistance, stress corrosion cracking resistance and hydrogen sulfide cracking resistance and high strength and high ductility in a corrosive environment, especially, in an environment containing chloride, CO2 or H2S, for example, under a high temp. and high pressure condition of 300 deg.C and 6,000psi.

Description

【発明の詳細な説明】 本発明は二相ステンレス鋼に関し、特に塩化物、炭酸ガ
ス等を含む腐食環境での応力腐食割れ、孔食などの腐食
に対する抵抗性を高め、かつ強度、延性などの機械的性
質を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to duplex stainless steel, which has improved resistance to corrosion such as stress corrosion cracking and pitting corrosion, particularly in corrosive environments containing chlorides, carbon dioxide, etc., and improved strength, ductility, etc. It has improved mechanical properties.

耐食材料として、SUS 304鋼などのオーステナイ
ト系ステンレス鋼、あるいは5US329J1.5C5
18A、5C3I4A、5FSA(Steel pou
nderS′5ociety of America)
 CD−4MCuなどのフェライトとオーステナイトの
2相組織を有するステンレス鋼等が使用されている。
As a corrosion-resistant material, austenitic stainless steel such as SUS 304 steel or 5US329J1.5C5
18A, 5C3I4A, 5FSA (Steel pou
derS'5ociety of America)
Stainless steel having a two-phase structure of ferrite and austenite, such as CD-4MCu, is used.

5US304鋼等のオーステナイト系ステンレス鋼は主
合金成分であるCrとNi によりすぐれた耐食性を示
すが、塩素イオン(Cl−)を含む環境では応力腐食割
れの生じ易いことが大きな欠点であり、孔食やすきま腐
食などの局部的腐食に対する抵抗性も非常に弱い。
Austenitic stainless steels such as 5US304 steel exhibit excellent corrosion resistance due to the main alloy components Cr and Ni, but a major drawback is that they are susceptible to stress corrosion cracking in environments containing chlorine ions (Cl-), and pitting corrosion is a major drawback. It also has very low resistance to localized corrosion such as crevice corrosion.

一方、フェライト相とオーステナイト相の2相組織を有
するものは、一般耐食性にすぐれるほか、2相の特性が
相まって適度の強度と靭性を兼備し、かつ比較的良好な
溶接性を有することから、近年各種化学工業プラント、
海水機器材料等として広く使用されている。しかしなが
ら、これらの材料も、苛酷な腐食環境下、就中塩素イオ
ンの増加、炭酸ガスや硫化水素ガスの存在下では、耐孔
食性、耐すきま腐食性などが不足し、しばしば腐食損傷
を引起すことが知られており、また応力腐食割れや硫化
物腐食割れに対する抵抗性も十分でなく、早期に破壊に
到る例も少くない。例えば、石油・天然ガス油井におい
ては、エネルギー確保のため、より劣悪な環境での採掘
を余儀なくされており、ことに井戸の深度が深くなるに
つれ、塩素イオン、炭酸ガス、硫化水素ガス等の腐食因
子の増大や、温度、圧力の上昇を伴い、また油井を回復
するために炭酸ガス、海水等を井戸に圧入することも行
なわれる等、使用環境の苛酷化が著しい。従来の材料で
は、このような使用環境に耐え得ず、構造材料としての
安定性や十分な耐用命数は保証し難い。
On the other hand, those with a two-phase structure of ferrite and austenite phases have excellent general corrosion resistance, and the characteristics of the two phases combine to provide appropriate strength and toughness, as well as relatively good weldability. In recent years, various chemical industry plants,
Widely used as a material for seawater equipment. However, these materials also lack pitting corrosion resistance, crevice corrosion resistance, etc. under severe corrosive environments, especially in the presence of increased chlorine ions, carbon dioxide gas, and hydrogen sulfide gas, and often cause corrosion damage. It is known that the resistance to stress corrosion cracking and sulfide corrosion cracking is insufficient, and there are many cases in which early failure occurs. For example, in order to secure energy, oil and natural gas wells are forced to mine in increasingly poor environments, and as the wells get deeper, they are exposed to more corrosive substances such as chlorine ions, carbon dioxide gas, and hydrogen sulfide gas. The environment in which oil is used has become significantly harsher, with factors increasing, temperature and pressure increasing, and carbon dioxide gas, seawater, etc. being injected into wells to restore oil wells. Conventional materials cannot withstand such usage environments, and it is difficult to guarantee stability and sufficient service life as structural materials.

本発明は上記に艦みてなされたものであり、高温・高圧
(例えば、aoo℃、6.000 psi )における
腐食環境、とくに塩化物、炭酸ガス、あるいは硫化水素
ガスを含む環境下で、耐孔食性、耐応力腐食割れ性、耐
硫化水素割れ性等にすぐれ、かつ高強度、高延性を有す
るフエライトーオーステナイト二相ステンレス鋼を提供
する。
The present invention has been made in view of the above, and is capable of resisting pores in corrosive environments at high temperatures and high pressures (e.g., AOO°C, 6,000 psi), especially in environments containing chloride, carbon dioxide, or hydrogen sulfide gas. Provided is a ferritic-austenitic duplex stainless steel having excellent corrosion resistance, stress corrosion cracking resistance, hydrogen sulfide cracking resistance, etc., as well as high strength and high ductility.

本発明の二相ステンレス鋼は、C:008%以下、Si
 : 0.2〜2.0%、Mn : 0.2〜2.0%
、Cr:19.0%以上、24.0%未満、Ni:3.
0〜8.0%、Mo : 1.0〜5.0%、Cu :
 0.5〜3.0%、CO:0,2〜4.0%、N:0
.05〜0.3%、残部実質的にFeからなり(成分含
有量は重量%)、かつ金属組織におけるδ−フェライト
相は面積率で30〜70%を占める。
The duplex stainless steel of the present invention has C: 008% or less, Si
: 0.2-2.0%, Mn: 0.2-2.0%
, Cr: 19.0% or more, less than 24.0%, Ni: 3.
0-8.0%, Mo: 1.0-5.0%, Cu:
0.5-3.0%, CO: 0.2-4.0%, N: 0
.. 05 to 0.3%, and the remainder substantially consists of Fe (component content is weight %), and the δ-ferrite phase in the metal structure occupies 30 to 70% in terms of area ratio.

本発明鋼の成分限定理由は次のとおりである。The reasons for limiting the composition of the steel of the present invention are as follows.

c:o、os%・以下 Cはオーステナイト生成元素であり、かつ強度の向上に
著効を有するが、含有量が多すぎると、クロム炭化物が
析出し易くなり、炭化物近傍にLけるCr濃度が減少す
る結果、孔食、すきま腐食、粒界腐食等の局部腐食に対
する抵抗性が低下し、かつ耐応力腐食割れ性の劣化をみ
る。このため、0.08%を上限とする。
c: o, os% C is an austenite-forming element and has a remarkable effect on improving strength, but if the content is too large, chromium carbide tends to precipitate, and the Cr concentration near the carbide increases. As a result, resistance to localized corrosion such as pitting corrosion, crevice corrosion, and intergranular corrosion decreases, and stress corrosion cracking resistance deteriorates. Therefore, the upper limit is set at 0.08%.

Si:0.2〜2.0% Si は溶鋼の脱酸および鋳造性確保のため、少くとも
0.2%を必要とする。しかし、多量の含有は靭性を悪
くし、かつ溶接性をも損うので、2.0%を上限とする
Si: 0.2-2.0% Si is required to be at least 0.2% in order to deoxidize molten steel and ensure castability. However, since a large amount of content impairs toughness and weldability, the upper limit is set at 2.0%.

Mn : 0.2〜2.0% Mnは通常の脱酸・脱硫過程で、0.2%程度含有され
るもので、また鋼素地のオーステナイト相の安定化に有
効な元素である。このための含有量は2%までで十分で
あり、それをこえる必要はない。よって、0.2〜2.
0%とする。
Mn: 0.2-2.0% Mn is contained in an amount of about 0.2% during normal deoxidation and desulfurization processes, and is an effective element for stabilizing the austenite phase of the steel base. A content of up to 2% is sufficient for this purpose and need not exceed it. Therefore, 0.2 to 2.
Set to 0%.

Cr:19.0%以上、24.0%未満Crは耐食性、
特に耐粒界腐食性の改善に著効を有するとともに、耐応
力腐食割れ性の向上に寄与する。また、Crはフェライ
ト生成元素であり、2相組織におけるフェライト相の形
成により強度を高める。本発明鋼では後記Nl 量との
相関々係で、19.0%以上のCrを含有しないと、所
要のフェライト量(面積率で30%以上)を確保しがた
い。よって、耐食性とフェライト量の点から、Cr量の
下限を19.0%とする。
Cr: 19.0% or more, less than 24.0% Cr has corrosion resistance,
It is particularly effective in improving intergranular corrosion resistance, and also contributes to improving stress corrosion cracking resistance. Further, Cr is a ferrite-forming element, and increases strength by forming a ferrite phase in a two-phase structure. In the steel of the present invention, it is difficult to secure the required amount of ferrite (area ratio of 30% or more) unless it contains 19.0% or more of Cr, which is correlated with the amount of Nl described later. Therefore, from the viewpoint of corrosion resistance and ferrite content, the lower limit of the Cr content is set to 19.0%.

一方、Cr量があまり多くなると、鋼の靭性の著しい低
下を生じ、かつ鋳造時に硬脆なσ相が生成する。更に、
Nl量との相関々係からフェライト量が70%を越え、
2相組織に3けるオーステナイト相とのバランスを失し
、耐食性、就中孔食、すきま腐食に対する抵抗性を損う
。このため、Cr量は24,0%未満とする。
On the other hand, if the amount of Cr is too large, the toughness of the steel will be significantly reduced and a hard and brittle σ phase will be formed during casting. Furthermore,
Due to the correlation with the amount of Nl, the amount of ferrite exceeds 70%,
The two-phase structure loses its balance with the austenite phase, impairing corrosion resistance, especially resistance to pitting corrosion and crevice corrosion. Therefore, the Cr content is set to less than 24.0%.

Ni:3.O〜8.0% Ni はオーステナイト相を安定化する元素であり、鋼
の靭性の向上をもたらす。また、耐食性の点からも必要
な元素である。含有量が3.0%に満たないと、これら
の効果が不足する。前記Cr量との関係から、フエライ
)4gを70%以下にするためにも3.0%以上の含有
を必要とする。
Ni: 3. O~8.0% Ni is an element that stabilizes the austenite phase and improves the toughness of steel. It is also a necessary element from the viewpoint of corrosion resistance. If the content is less than 3.0%, these effects will be insufficient. From the relationship with the above-mentioned Cr content, it is necessary to contain 3.0% or more in order to reduce 4g of Cr to 70% or less.

しかし、Ni を多量に加えても、含有量の割に耐食性
、機械的性質の向上効果は少く経済的に不利であるばか
りか、二相組織におけるオーステナイト相が過剰になっ
て二相の量的バランスを失う。
However, even if a large amount of Ni is added, the effect of improving corrosion resistance and mechanical properties is small compared to the Ni content, which is economically disadvantageous. lose balance.

従って、Nl量は8.0%を上限とする。なお、後記C
OもNi と同じくオーステナイト生成元素であるので
、COのオーステナイト生成の寄与を考慮してフェライ
ト量の下限(30%)を確保するためにも、Ni量は8
.0%をこえないことを要する。
Therefore, the upper limit of the Nl amount is 8.0%. In addition, C
O is also an austenite-forming element like Ni, so in order to take into consideration the contribution of CO to austenite formation and to ensure the lower limit (30%) of the ferrite amount, the Ni amount should be 8.
.. It is required that it does not exceed 0%.

Mo : 1.0〜5.0% MOはステンレス鋼の耐食性の改善に大きな効果を有す
る。ことに、孔食、すきま腐食抵抗性の改善に著効を奏
する。1.0%以上において、非酸化性酸に対する耐食
性、また塩化物を含む溶液中での孔食、粒界腐食および
応力腐食割れに対する抵抗性の顕著な向上をみる。しが
し、多量に加えると、耐食性の改善効果は飽和し、がっ
σ相の析出による鋳造時の脆化が著しくなるので、5.
0%を上限とする。
Mo: 1.0-5.0% MO has a great effect on improving the corrosion resistance of stainless steel. It is particularly effective in improving resistance to pitting corrosion and crevice corrosion. At 1.0% or more, significant improvements in corrosion resistance to non-oxidizing acids, as well as resistance to pitting corrosion, intergranular corrosion and stress corrosion cracking in chloride-containing solutions are observed. However, if a large amount is added, the corrosion resistance improvement effect will be saturated and embrittlement during casting due to the precipitation of the σ phase will become significant, so 5.
The upper limit is 0%.

Cu : 0.5〜8.0% Cuは低濃度の塩素イオンを含む環境中での耐食性、こ
とに耐応力腐食割れ性を高めるとともに、オーステナイ
ト相を固溶強化する。これらの効果を十分なものとする
ために、少くとも0.5%の含有を必要とするが、あま
り多くなると、金属間化合物の生成に伴い靭性の低下を
惹起するので、8.0%を上限とする。
Cu: 0.5 to 8.0% Cu improves corrosion resistance, particularly stress corrosion cracking resistance, in an environment containing low concentrations of chlorine ions, and strengthens the austenite phase by solid solution. In order to obtain these effects sufficiently, it is necessary to contain at least 0.5%, but if the content is too large, the toughness will decrease due to the formation of intermetallic compounds, so 8.0% is required. Upper limit.

Co : 0.2〜4.0% COは本発明鋼を最も強く特徴づける元素である。CO
はN1 と同じく置換型オーステナイト生成元素である
が、Niの場合は、その添加により0.2%耐力の低下
傾向がみられるのに対し、COの添加は、それとは逆に
0.2%耐力の向上をもたらすことが判明した。前記の
ように厳しい腐食環境下で、これに耐える腐食抵抗とと
もに、高い機械的強度を備えた2相ステンレス鋼が強く
要望されているが、COを従来のFe−Cr−Niベー
スのステンレス鋼に添加することによりこの要望を満た
す十分な機械的性質を保証することができる。
Co: 0.2-4.0% CO is the element that most strongly characterizes the steel of the present invention. C.O.
Like N1, is a substitutional austenite-forming element, but in the case of Ni, its addition tends to lower the 0.2% yield strength, whereas the addition of CO, on the contrary, lowers the 0.2% yield strength. It was found that this resulted in an improvement in As mentioned above, there is a strong demand for duplex stainless steel that has high mechanical strength and corrosion resistance that can withstand the harsh corrosive environment. The addition makes it possible to ensure sufficient mechanical properties to meet this requirement.

また、2相ステンレス鋼へのCoの添加により、塩素イ
オンを含む環境、例えば海水中での耐食性が著しく高め
られることが明らかになった。更に、Coは、基地に固
溶したま\、析出物の凝集を抑制する作用が認められ、
従って、従来の2相ステンレス鋼の大きな問題点であっ
たσ相脆性、475℃脆性、とくに溶接部熱影響部での
これら析出物による脆性の緩和に大きく寄与する。なお
、COはNi と同じくオーステナイト生成元素である
から、本発明に規定するフェライトR(30〜70%)
を確保するためには、COの添加によるオーステナイト
相の増量を考慮してNi量を低減することができる。
It has also been revealed that the addition of Co to duplex stainless steel significantly increases corrosion resistance in environments containing chlorine ions, such as seawater. Furthermore, Co has been found to have the effect of suppressing the agglomeration of precipitates while remaining in solid solution in the matrix.
Therefore, it greatly contributes to alleviating the major problems of conventional duplex stainless steels, such as σ-phase embrittlement and 475° C. embrittlement, especially the embrittlement caused by these precipitates in the heat-affected zone of the weld. Note that since CO is an austenite-forming element like Ni, ferrite R (30 to 70%) specified in the present invention is
In order to ensure this, the amount of Ni can be reduced in consideration of the increase in the amount of austenite phase due to the addition of CO.

上記諸効果を発揮させるためのCo含有量は少くとも0
.2%を必要とする。含有量の増加に従ってその効果は
増大するが、4.0%までの添加により機械的性質、耐
食性、ミクロ組織等の十分な改善効果が得られるので、
それをこえて添加する必要はない。COは高価な元素で
あり、それ以上の添加はコスト的に不利である。よって
、0.2〜4.0%とする。
The Co content in order to exhibit the above effects is at least 0.
.. 2% is required. The effect increases as the content increases, but sufficient improvement effects on mechanical properties, corrosion resistance, microstructure, etc. can be obtained by adding up to 4.0%.
There is no need to add more than that. CO is an expensive element, and adding more than that is disadvantageous in terms of cost. Therefore, it is set to 0.2 to 4.0%.

N:0.05〜0.3% Nは通常有害な不純物元素として扱われるが、本発明で
は強度向上および耐食性改善を目的として上記範囲内で
添加される。
N: 0.05-0.3% N is normally treated as a harmful impurity element, but in the present invention it is added within the above range for the purpose of improving strength and corrosion resistance.

NはCと同じく強力なオーステナイト生成元素であり、
かつ侵入型固溶元素であるため、鋼基地の結晶格子に強
い格子歪みをもたらし、強度向上に顕著に寄与する。
Like C, N is a strong austenite-forming element,
Since it is an interstitial solid solution element, it causes strong lattice distortion in the crystal lattice of the steel base, contributing significantly to improving the strength.

また、Nは2相組織において、Cr、 Ni、M。In addition, N is included in Cr, Ni, and M in a two-phase structure.

等の主要元素のフェライト相並びにオーステナイト相へ
の分配率に影響を与え、ことに耐食性に寄与する元素C
r、Mo などをオーステナイト相へ高濃度で分配する
ことにより2相ステンレス鋼の耐食性を高める。すなわ
ち、通常2相ステンレス鋼に右いて、Cr、MoS S
iなどのフェライト生成元素はフェライト相に、またC
5Mn、Niなどのオーステナイト生成元素はオーステ
ナイト相にそれぞれ高濃度で分配されるが、上記のよう
にNの存在によって耐食性に寄与するCr、 Mo等の
フェライト生成元素がオーステナイト相へ高濃度に分配
されることにより、2相ステンレス鋼の耐食性、就中す
きま腐食や孔食などの局部腐食に対する抵抗性が高めら
れるわけである。
Element C, which affects the distribution ratio of major elements such as to the ferrite phase and austenite phase, and particularly contributes to corrosion resistance.
Corrosion resistance of duplex stainless steel is improved by distributing r, Mo, etc. in high concentration into the austenite phase. That is, duplex stainless steel usually contains Cr, MoS
Ferrite-forming elements such as i form the ferrite phase, and C
5 Austenite-forming elements such as Mn and Ni are distributed in high concentrations in the austenite phase, but as mentioned above, ferrite-forming elements such as Cr and Mo, which contribute to corrosion resistance, are distributed in high concentrations in the austenite phase due to the presence of N. This improves the corrosion resistance of duplex stainless steel, especially its resistance to localized corrosion such as crevice corrosion and pitting corrosion.

特に、本発明鋼のように、CrおよびMo濃度が高く、
そのフェライト相/オーステナイト相への分配率の差が
顕著な、言いかえると偏析の度合いの大きい合金系にお
いては、Nの添加はこれらの耐食性元素をより高濃度で
オーステナイト相に分配しようとする作用を有し、従っ
てそれによる耐食性、とくに局部腐食抵抗性の向上も顕
著にあられれる。
In particular, like the steel of the present invention, the Cr and Mo concentrations are high,
In alloy systems where the difference in the distribution ratio between the ferrite phase and the austenite phase is significant, in other words, the degree of segregation is large, the addition of N has the effect of distributing these corrosion-resistant elements to the austenite phase at a higher concentration. Therefore, corrosion resistance, especially local corrosion resistance, is significantly improved.

上記の効果を十分に発揮させるためにN量は少くとも0
05%を必要とする。N量の増加に伴って効果も増すが
、0,3%をこえると窒化物として析出し、却って耐食
性を悪くする。Nは固溶状態にあってこそ前記の強度向
上および耐食性の改善に著効を奏するのである。従って
、N量は0.05〜0,3%とする。
In order to fully exhibit the above effects, the amount of N is at least 0.
05% is required. The effect increases as the amount of N increases, but if it exceeds 0.3%, it will precipitate as nitrides, which will actually worsen the corrosion resistance. N has a significant effect on improving the strength and corrosion resistance as described above only when it is in a solid solution state. Therefore, the amount of N is set to 0.05 to 0.3%.

本発明鋼は、上記各成分元素を含有し、残部は不可避的
に混入する不純物元素を除き実質的にFeからなる。
The steel of the present invention contains each of the above-mentioned component elements, and the remainder consists essentially of Fe, excluding impurity elements that are unavoidably mixed.

次に、本発明鋼の組織について説明すると、本発明鋼は
、δ−フェライト量が面積率で30〜70%を占めるフ
ェライト−オーステナイト2相組織を有することを特徴
とする。第3図にその組織を示す。この2相の量的バラ
ンスによって、強度と靭性との調和のとれた機械的性質
が確保されるのであり、フェライト量が30%に満たな
いと、強度が不足し、一方70%をこえると、延性、靭
性の低下が著しくなる。
Next, to explain the structure of the steel of the present invention, the steel of the present invention is characterized by having a ferrite-austenite two-phase structure in which the amount of δ-ferrite occupies 30 to 70% in terms of area ratio. Figure 3 shows the organization. The quantitative balance of these two phases ensures mechanical properties that are in harmony with strength and toughness.If the amount of ferrite is less than 30%, the strength will be insufficient, while if it exceeds 70%, Ductility and toughness decrease significantly.

また、2相組織におけるフェライト量は耐食性とも密接
に関連する。すなわち、腐食環境、特に塩素イオンを含
む環境下での応力腐食割れに対する抵抗性は、フェライ
ト量30%以上において顕著な向上をみる。逆に硫化水
素(H2S)を含む環境下では、フェライト量が70%
を越えると、フェライト相の硫化物応力腐食割れに対す
る感受性が増大するとともに、フェライト相の選択的な
孔食、すきま腐食等を引起し易くなる。従って、耐食性
の面からもフェライト量は30〜70%に規定される。
Further, the amount of ferrite in the two-phase structure is closely related to corrosion resistance. That is, the resistance to stress corrosion cracking in a corrosive environment, particularly in an environment containing chlorine ions, is significantly improved when the amount of ferrite is 30% or more. Conversely, in an environment containing hydrogen sulfide (H2S), the amount of ferrite decreases to 70%.
If the value exceeds 0.05, the susceptibility of the ferrite phase to sulfide stress corrosion cracking increases, and selective pitting corrosion, crevice corrosion, etc. of the ferrite phase are likely to occur. Therefore, also from the viewpoint of corrosion resistance, the amount of ferrite is specified to be 30 to 70%.

この2相組織における量的バランスは各合金成分につい
ての前記規定の範囲内で成分組成を調整することにより
達成される。
The quantitative balance in this two-phase structure is achieved by adjusting the composition of each alloy component within the specified range.

なお、本発明鋼は鋳造後、常法に従い溶体化処理が施こ
される。その熱処理は、例えば温度1000〜1200
°Cに加熱保持したのち、急冷(例えば水冷)すること
により達成される。
After casting, the steel of the present invention is subjected to solution treatment according to a conventional method. The heat treatment is performed at a temperature of 1000 to 1200, for example.
This is achieved by heating and maintaining the temperature at °C and then rapidly cooling it (for example, by water cooling).

実施例 第1表に示す成分組成およびフェライト量を有する供試
鋼について機械的性質測定、溶接試験および各種耐食試
験を行った。
Examples Mechanical property measurements, welding tests, and various corrosion resistance tests were conducted on test steels having the compositions and ferrite amounts shown in Table 1.

調香2〜4.6.7.14.15は本発明例、調香1.
5および8〜13は比較例である。比較例のうち、調香
10.11は各々JIS G3459SUS829J1
および5US316、調香12はJIS G5121 
5C814A、また調香13は5FSA CD−4MC
uである。
Perfume 2 to 4.6.7.14.15 are examples of the present invention, Perfume 1.
5 and 8 to 13 are comparative examples. Among the comparative examples, fragrance notes 10.11 are each JIS G3459SUS829J1.
and 5US316, fragrance 12 is JIS G5121
5C814A, and perfume 13 is 5FSA CD-4MC
It is u.

調香1〜9および12〜15は金型遠心鋳造管(外径1
35+++m、長さ600mm)を供試材とし、調香1
0.11は市販品を使用した。なお、各供試材はすべて
1100℃で肉厚25mm当り1時間保持したのち水冷
する熱処理を施した。
Perfumes 1 to 9 and 12 to 15 are molded centrifugally cast tubes (outer diameter 1
35+++m, length 600mm) was used as the sample material, and perfume 1
0.11 used a commercially available product. Each sample material was heat treated by holding it at 1100° C. for 1 hour per wall thickness of 25 mm and then cooling it with water.

〔ADI機械的性質 (1)第2表に常温引張性質、硬度およびシャルピー衝
撃試験による吸収エネルギーを示す。
[ADI Mechanical Properties (1) Table 2 shows the room temperature tensile properties, hardness, and absorbed energy by Charpy impact test.

本発明例の調香2〜4.6.7.14および15の機械
的性質ことに0.2%耐力は、比較例の調香1(N以外
の成分組成およびフェライト量は本発明規定の範囲内に
ある)のそれに比しすぐれている。その上昇の度合いは
、フェライト量をはN゛50%の一定とした場合、約8
.3 Ky 7mm2/ 0.1%Nに相当する比例的
関係にあることが認められる。この機械的性質の向上は
二相ステンレス鋼におけるN添加の顕著な効果を示すも
のである。
The mechanical properties and 0.2% yield strength of perfumes 2 to 4.6.7.14 and 15 of the invention examples are different from those of the comparative example perfume 1 (the composition of components other than N and the amount of ferrite are as specified in the invention). (within the range). The degree of increase is approximately 8 when the amount of ferrite is kept constant at N50%.
.. It is recognized that there is a proportional relationship corresponding to 3 Ky 7mm2/0.1%N. This improvement in mechanical properties shows the remarkable effect of N addition in duplex stainless steel.

調香8.9はフェライト量が本発明の規定範囲(30〜
70%)から逸脱する例であり、フェライト量の不足す
る調香8(フェライト量27%)は0.2%耐力が52
.8 Kg/mm2と低く、一方フエライト量が過剰(
73%)の調香9では衝撃吸収エネルギーが12.7 
Kg・?7Zと本発明例のそれに劣っている。このこと
から二相ステンレス鋼におけるフェライト量も機械的性
質に影響する大きな因子であり、強度面からは30%以
上であることを要し、靭性確保の点から70%が上限と
される。また後記のようにフェライト量が多すぎると、
時効後の靭性の低下が著しくなるので、この点からも本
発明鋼におけるフェライト量の上限は70%に定められ
る。
Perfume 8.9 has a ferrite amount within the specified range of the present invention (30~
This is an example of deviating from the 0.2% yield strength of perfume 8 (27% ferrite amount) with insufficient ferrite amount.
.. 8 Kg/mm2, which is low, while the amount of ferrite is excessive (
73%) fragrance 9 has a shock absorption energy of 12.7.
Kg・? It is inferior to that of 7Z and the example of the present invention. For this reason, the amount of ferrite in duplex stainless steel is also a major factor that affects mechanical properties, and from the viewpoint of strength, it is required to be 30% or more, and from the viewpoint of ensuring toughness, the upper limit is 70%. Also, as mentioned later, if the amount of ferrite is too large,
Since the toughness decreases significantly after aging, from this point of view as well, the upper limit of the amount of ferrite in the steel of the present invention is set at 70%.

又本発明例の調香3.14.15を比較する事により、
Niを0.18%前後で一定とし、フェライト量を50
%前後で一定とした場合、Coの添加により0.2%耐
力の顕著な上昇が認められ、その上昇の度合は2Kg/
ynmV1%Coに相当する比例的な関係がある事が見
い出された。又引張強さも上昇する。しかしながらこれ
ら強度の向上に比べて、延性・靭性の低下は少ない。延
性・靭性の低下をおさえて、強度の向上を計れる点が2
相ステンレス鋼に於けるCo添加の非常に優れた効果の
一つである。
Also, by comparing perfumes 3.14.15 of the present invention example,
Ni was kept constant at around 0.18%, and the amount of ferrite was 50%.
%, a remarkable increase in 0.2% yield strength was observed with the addition of Co, and the degree of increase was 2Kg/%.
It was found that there is a proportional relationship corresponding to ynmV1%Co. The tensile strength also increases. However, compared to these improvements in strength, the decrease in ductility and toughness is small. Two points are that you can improve strength while suppressing the decline in ductility and toughness.
This is one of the very excellent effects of Co addition in phase stainless steel.

また、本発明例と従来材の5US316 (調香11)
、SC5l 4A(調香12)、CD−4MCu(調香
13)と比較すると、機械的性質9に0.2%耐力並び
に引張強さに於いてはるかにすぐれた強度を示している
。これは主としてフェライト量の制御、合金元素として
のCo、 Nの添加による相乗効果である。
In addition, the present invention example and the conventional material 5US316 (Perfume 11)
, SC5l 4A (Perfume 12), and CD-4MCu (Perfume 13), it shows far superior strength in mechanical properties 9, 0.2% proof stress, and tensile strength. This is mainly due to the synergistic effect of controlling the amount of ferrite and adding Co and N as alloying elements.

(2)熱時効後の靭性 第3表に、475℃での熱時効を受けた場合のシャルピ
ー衝撃試験(2mmVノツチ、0°C)による吸収エネ
ルギー(1(1・77L)を示す。ます本発明例の調香
3は、従来の二相鋼である5US329J1(鋼種10
)に比し、475℃・1000時間時効後の靭性の低下
が極めて少ない。すなわち本発明鋼では、従来の二相ス
テンレス鋼の最大の弱点である475°C脆性が著しく
改善されている。
(2) Toughness after thermal aging Table 3 shows the absorbed energy (1 (1.77L)) in the Charpy impact test (2 mm V notch, 0°C) when thermally aged at 475°C. Perfume 3 of the invention example is made of 5US329J1 (steel type 10), which is a conventional duplex steel.
), the decrease in toughness after aging at 475°C for 1000 hours is extremely small. That is, in the steel of the present invention, 475°C embrittlement, which is the greatest weakness of conventional duplex stainless steels, is significantly improved.

又本発明例の調香3とN量が0.02%と非常に低い比
較例の調香1とを対比すると、調香3の熱時効に対する
靭性はすぐれた結果を示している。従がって二相ステン
レス鋼に於ける熱時効に対する靭性の劣化に対してNは
顕著な改善効果を有している。
Further, when comparing Perfume 3 of the present invention example with Perfume 1 of the comparative example, which has a very low N content of 0.02%, Perfume 3 shows excellent toughness against thermal aging. Therefore, N has a significant improvement effect on the deterioration of toughness due to thermal aging in duplex stainless steel.

調香1は上記の201°とく熱時効を受けた場合に靭性
の劣化を示すが、その劣化の程度は従来材である調香1
0に比較すると格段にすぐれており、本発明に於ける主
要な効果の1つであるCOの影響を如実に示している。
Perfume 1 exhibits deterioration in toughness when subjected to thermal aging at 201° as described above, but the degree of deterioration is greater than that of the conventional material Perfume 1.
This is much better than 0, clearly demonstrating the influence of CO, which is one of the main effects of the present invention.

従がって本発明鋼である調香15はこのCOとNの添加
の相乗効果を受けて時効後の衝撃吸収エネルギーの劣化
の傾向が非常に少なく、1000 hr時効後も表3に
認められるように12.7Kg・mと非常に高い吸収エ
ネルギーを保持している。このように、N、COの添加
は従来の2相ステンレス鋼の弱点である475℃脆性を
改良する極めて有効な元素である事が見い出された。
Therefore, due to the synergistic effect of the addition of CO and N, the inventive steel 15 has very little tendency for the impact absorption energy to deteriorate after aging, which can be seen in Table 3 even after aging for 1000 hr. It retains an extremely high absorbed energy of 12.7 kg・m. Thus, it has been found that the addition of N and CO is an extremely effective element for improving the 475°C brittleness, which is the weak point of conventional duplex stainless steel.

なお、フェライト量が過剰の調香9(73%)は靭性の
低下が著しい。フェライト相の存在は耐応力腐食割れ性
の点から有利であるが、靭性面からみると、構造材料等
としての安全性確保を考慮した上限値が定められるべき
であり、本発明鋼ではフェライト量は70%が上限とさ
れる。
Incidentally, perfume 9 (73%) with an excessive amount of ferrite showed a significant decrease in toughness. The presence of a ferrite phase is advantageous in terms of stress corrosion cracking resistance, but from the perspective of toughness, an upper limit should be set in consideration of ensuring safety as a structural material. The upper limit is 70%.

CB) 溶接性 本発明例の鋼部2.3.4.6.7.14.15につい
て、開先角度20°、ルート厚さ1.6 mmの開先形
状を準備し、初層および第2層目をTtG溶接、第3層
目から最終層までを被覆アーク溶接により突合せ溶接を
行い、溶接後非破壊検査および溶接部切断面の液体浸透
検査の結果、割れ等の欠陥は皆無で、溶接性が良好であ
り、配管材料として問題は全くないことが確認された。
CB) Weldability Regarding the steel part 2.3.4.6.7.14.15 of the present invention example, a groove shape with a groove angle of 20° and a root thickness of 1.6 mm was prepared, and the first layer and the second layer were prepared. The second layer was welded with TtG, and the third to final layers were butt welded using covered arc welding, and as a result of non-destructive inspection after welding and liquid penetration inspection of the cut surface of the weld, there were no defects such as cracks. It was confirmed that the weldability was good and there were no problems as a piping material.

〔CD 耐食性 fl) 試験1(孔食試験) ASTM G48 A法に規定されている塩化第2鉄(
FeC13)溶液による孔食試験(TotaiImme
rsion Ferric Chloride Te5
t)を行ない、第4表に示す結果を得た。本発明例(調
香2.3.4.6.7.14.15)は従来材である5
LjS829J1(調香10)、5US316(調香1
1)、5C3I4A(調香12)及びCD−4MCu(
調香13)に比し格段にすぐれた耐孔食性を示し、腐食
減量は全く認められない。
[CD Corrosion resistance fl) Test 1 (pitting corrosion test) Ferric chloride (as specified in ASTM G48 A method)
Pitting corrosion test using FeC13) solution (TotaiImme)
rsion Ferric Chloride Te5
t) was carried out, and the results shown in Table 4 were obtained. The example of the present invention (perfume 2.3.4.6.7.14.15) is a conventional material 5
LjS829J1 (perfume 10), 5US316 (perfume 1
1), 5C3I4A (Fragrance 12) and CD-4MCu (
It exhibits much better pitting corrosion resistance than Perfume No. 13), and no corrosion loss is observed at all.

又Nの量が非常に低い調香1との比較から明らかなよう
に、Nの耐孔食性改善に対する寄与は顕著であり、本発
明に於けるN添加の意義を如実に示すものである。
Furthermore, as is clear from the comparison with Perfume 1, which has a very low amount of N, the contribution of N to the improvement of pitting corrosion resistance is significant, clearly demonstrating the significance of N addition in the present invention.

更に、Nの量の少ない調香1、調香2と従来材である5
US829J1(調香10 )、5US816(調香1
1)、5C8I4A(調香12)及びCD −4M C
u (調香18)との比較から明らかなように、Co添
加の耐孔食性改善に対する寄与は顕著であることが見い
出された。
Furthermore, Perfume 1, Perfume 2, which has a small amount of N, and 5, which is a conventional material.
US829J1 (Fragrance 10), 5US816 (Fragrance 1)
1), 5C8I4A (Fragrance 12) and CD-4MC
As is clear from the comparison with u (Fragrance 18), it was found that the addition of Co made a significant contribution to improving the pitting corrosion resistance.

なお発明例4と比較例5の結果からN量は最大0.3%
で十分であり、これ以上加えても耐孔食性は向上しない
事が認められる。
Furthermore, from the results of Invention Example 4 and Comparative Example 5, the maximum amount of N is 0.3%.
is sufficient, and it is recognized that adding more than this does not improve the pitting corrosion resistance.

(2) 試験2(隙間腐食試験) ASTM G48 B法に規定されている塩化第2鉄溶
液による隙間腐食試験(Ferrlc Chlorid
eCrevice Te5t)を行ない、第4表に示す
結果を得た。本発明鋼(調香2.3.4.6.7.14
.15)は、従来材である5US329J1(調香10
)、SUS 316 (調香11)及び5O814A(
調香12)、CD−4MCu(調香13)に比し、格段
にすぐれた耐隙間腐食性を示している。これは主として
合金成分としてのCo、 Hに起因することは明らかで
ある。又、調香1との比較から明らかなように耐隙間腐
食特性の改善に対するNの添加効果は顕著であり、これ
により腐食減量(法的1/〜115 に低減することが
認められる。
(2) Test 2 (crevice corrosion test) Crevice corrosion test using ferric chloride solution specified in ASTM G48 B method
eCrevice Te5t) was carried out, and the results shown in Table 4 were obtained. Invention steel (perfume 2.3.4.6.7.14
.. 15) is a conventional material 5US329J1 (perfume 10
), SUS 316 (Fragrance 11) and 5O814A (
Perfume 12) and CD-4MCu (Perfume 13) show significantly superior crevice corrosion resistance. It is clear that this is mainly due to Co and H as alloy components. Furthermore, as is clear from the comparison with Perfume 1, the effect of the addition of N on improving the crevice corrosion resistance is remarkable, and it is recognized that this reduces the corrosion weight (legally 1/~115).

更に調香8.9の結果を見るとフェライト量も耐隙間腐
食特性に影響を与える因子であり、この点からも本発明
鋼のフェライト量の適当な範囲は30〜70%に規定さ
れることが認められる。
Furthermore, looking at the results of Fragrance 8.9, the amount of ferrite is also a factor that affects the crevice corrosion resistance, and from this point of view, the appropriate range for the amount of ferrite in the steel of the present invention is defined as 30 to 70%. is recognized.

N量の少ない調香1、調香2と従来材である5US32
9J1(調香10)、SUS 316 (調香11)、
5C5I4A、(調香12)及びCD−4MCu(調香
13)と比較するとC○添加の耐孔食性改善に対する寄
与の顕著なことが明確に認められる。
Perfume 1 and Perfume 2 with low N content and 5US32 which is a conventional material
9J1 (Fragrance 10), SUS 316 (Fragrance 11),
When compared with 5C5I4A, (Fragrance 12) and CD-4MCu (Fragrance 13), it is clearly recognized that the addition of C○ makes a significant contribution to the improvement of pitting corrosion resistance.

又発明例4と比較例5の結果から、N量は最大0.3%
で十分であり、これ以上加えても耐隙間腐食性は向上し
ないことが認められる。
Also, from the results of Invention Example 4 and Comparative Example 5, the amount of N is 0.3% at maximum.
is sufficient, and it is recognized that adding more than this does not improve the crevice corrosion resistance.

(3)耐応力腐食割れ性 沸騰42%塩化マグネシウム(MgC12)溶液中での
定負荷法による応力腐食割れ試験結果を第1図に示す。
(3) Resistance to Stress Corrosion Cracking The results of stress corrosion cracking tests using a constant load method in a boiling 42% magnesium chloride (MgC12) solution are shown in FIG.

本発明例(調香3)は従来材である5US329Jl(
調香10)、5US316(調香11)、CD−4MC
u(調香13)に比し格段にすぐれた耐応力腐食割れ特
性を有することがわかる。例えば、30KFI/渭m2
 の負荷応力に対して5US329J1の破断時間は約
2時間であるのに対し、本発明例である調香3のそれは
約50時間と大幅な向」二を示している。
The example of the present invention (perfume 3) is the conventional material 5US329Jl (
Perfume 10), 5US316 (Perfume 11), CD-4MC
It can be seen that it has much better stress corrosion cracking resistance than u (Fragrance 13). For example, 30KFI/Wei m2
The rupture time of 5US329J1 is about 2 hours for the applied stress of 2 hours, whereas that of Perfume 3, which is an example of the present invention, is about 50 hours, which is a significant improvement.

本発明鋼におけるNの添加効果は調香1と調香3とを比
較することにより明瞭となる。フェライト量かはゾ同一
のレベル(調香1.3のいづれも約50%)の場合にN
を添加することにより耐応力腐食割れ性が向」―するこ
とがわかる。従って、本発明鋼はCI−の存在する環境
下で耐応力腐食割れ性を要求される用途に好適である。
The effect of adding N in the steel of the present invention becomes clear by comparing Perfume 1 and Perfume 3. The amount of ferrite is N when the level is the same (approximately 50% for both fragrances 1.3)
It can be seen that stress corrosion cracking resistance is improved by adding . Therefore, the steel of the present invention is suitable for applications requiring stress corrosion cracking resistance in an environment where CI- is present.

フェライト量の影響をみると、フェライト量が27%と
低い調香8の耐応力腐食割れ性は、5US329J1(
調香10)のそれと同程度にすぎない。耐応力腐食割れ
性を確保するためのフェライト量は少くとも30%であ
ることが必要である。
Looking at the influence of the amount of ferrite, the stress corrosion cracking resistance of perfume 8, which has a low amount of ferrite of 27%, is 5US329J1 (
It is only on the same level as perfume 10). In order to ensure stress corrosion cracking resistance, the amount of ferrite must be at least 30%.

一方、フェライト量が73%と高い調香9は本発明例の
調香3に勝る耐応力腐食割れ性を示すが、その反面前記
のように靭性および時効後の延性に劣るので、フェライ
ト量の上限は70%に規定される。
On the other hand, perfume 9 with a high ferrite content of 73% exhibits stress corrosion cracking resistance superior to perfume 3 of the present invention example, but on the other hand, as mentioned above, it is inferior in toughness and ductility after aging, so the ferrite content is low. The upper limit is set at 70%.

次に調香1の結果を見るとCoの耐応力腐食割れに対す
る効果が明瞭に認められる。すなわち調香1はN量が0
.03%と非常に低いが調香10(SUS329J1)
、調香1 B (CD−4MCu )に比較するとより
応力腐食割れに対して抵抗力を示している。これは構成
元素から見ると明らかにCoの効果であり、本発明に於
けるC○添加の意義を如実に示すものである。
Next, looking at the results of Perfume 1, the effect of Co on stress corrosion cracking resistance is clearly recognized. In other words, in perfumery 1, the amount of N is 0.
.. Very low at 03%, but fragrance level 10 (SUS329J1)
, Perfume 1 B (CD-4MCu) shows more resistance to stress corrosion cracking. This is clearly an effect of Co when viewed from the constituent elements, and clearly shows the significance of the addition of C in the present invention.

従がって、調香3、調香15がすぐれた耐応力腐食割れ
特性を示すことは明らかに本発明の主要な特徴であるC
01Nの合金元素としての添加並びにフェライト量のレ
ベルを30%〜70%の範囲にコントロールすることの
相乗効果に依存するのである。
Therefore, it is clear that Perfume 3 and Perfume 15 exhibit excellent stress corrosion cracking resistance, which is a major feature of the present invention.
It depends on the synergistic effect of adding 01N as an alloying element and controlling the level of ferrite content in the range of 30% to 70%.

(4)腐食疲労強度 第2図に、人工海水中での小野式回転曲げ疲労試験結果
を示す(試験機回転数300 Orpm )。
(4) Corrosion fatigue strength Figure 2 shows the results of the Ono rotary bending fatigue test in artificial seawater (testing machine rotation speed: 300 orpm).

人工海水は米国海軍により規定される方法に従って調製
した。
Artificial seawater was prepared according to methods prescribed by the US Navy.

本発明例である調香3は従来の二相合金であるCD−4
MCu(調香13)およびオーステナイト系ステンレス
鋼である5US316.(調香11)に比し海水中での
疲労強度がすぐれている。特に4×107サイクルでの
調香13の腐食疲労強度が約22Kg/mu であるの
に対し、本発明例のそれは約80 Kg / mm2 
と、約8 Kg/ mm2高い値を示す。
Perfume 3, which is an example of the present invention, is CD-4, which is a conventional two-phase alloy.
MCu (Fragrance 13) and 5US316, which is an austenitic stainless steel. It has superior fatigue strength in seawater compared to (Fragrance 11). In particular, the corrosion fatigue strength of perfume 13 at 4 x 107 cycles is about 22 Kg/mu, whereas that of the example of the present invention is about 80 Kg/mm2.
This is approximately 8 Kg/mm2 higher.

また、調香1と調香13を比較することによりCoの効
果が明確になる。すなわち調香1のN量は003%と非
常に低いレベルにあり、調香13との成分組成の違いは
基本的にはCoのみであり、蛭 Coの2相ステンレスハの添加は海水中での腐食疲労強
度の向上に効果的である事が認められる。
Furthermore, by comparing Perfume 1 and Perfume 13, the effect of Co becomes clear. In other words, the amount of N in Perfume 1 is at a very low level of 0.03%, and the only difference in composition from Perfume 13 is basically Co. It is recognized that this is effective in improving the corrosion fatigue strength of

さらに調香1と調香3を比較することによりNの効果が
明確になる。このことはC1−を含む環境下での2相合
金の腐食疲労強度改善に対しNの添加が極めて有効なこ
とを示すもので、本発明鋼の最大の特徴の1つである。
Furthermore, by comparing Perfume 1 and Perfume 3, the effect of N becomes clear. This shows that the addition of N is extremely effective in improving the corrosion fatigue strength of a two-phase alloy in an environment containing C1-, and is one of the greatest features of the steel of the present invention.

以上の結果は調香3が海水中で高い腐食疲労強度を示す
ことに対する合金元素としてのN、Coの添加の相乗効
果を示すものである。
The above results demonstrate the synergistic effect of the addition of N and Co as alloying elements in Perfume 3 exhibiting high corrosion fatigue strength in seawater.

第3表 熱時効を受けた場合の衝撃吸収エネルギーa<g・77
L)第4表 以上のように、本発明の二相ステンレス鋼は、従来のF
e−Cr−Niベースの二相ステンレス鋼に比し、苛酷
な使用条件、とくに塩素イオン、硫化水素、炭酸ガスな
どの腐食因子を多量に含む環境での一般耐食性はもとよ
り、応力腐食割れ、孔食、すきま腐食などに対する抵抗
性が強く、かつ強度、延性などの機械的性質にすぐれる
。従って、例えば石油、天然ガス、海水のチューブイン
グ・ラインパイプなど、その他耐食性と機械的性質が要
求される用途において従来材にまさる耐久性、安定性を
もたらす。
Table 3 Shock absorption energy when subjected to thermal aging a<g・77
L) As shown in Table 4 and above, the duplex stainless steel of the present invention
Compared to e-Cr-Ni-based duplex stainless steel, it has better general corrosion resistance under harsh operating conditions, especially in environments containing large amounts of corrosive factors such as chlorine ions, hydrogen sulfide, and carbon dioxide, as well as stress corrosion cracking and porosity. It has strong resistance to corrosion and crevice corrosion, and has excellent mechanical properties such as strength and ductility. Therefore, it provides greater durability and stability than conventional materials in applications requiring corrosion resistance and mechanical properties, such as tubing and line pipes for oil, natural gas, and sea water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐応力腐食割れ特性を示すグラフ、第2図は回
転曲げ疲労試験における腐食疲労強度を示すグラフ、第
3図は本発明鋼の金属組織を示す、図面代用顕微鏡写真
である。 代理人 弁理士 宮 崎 新へ部 第1図 12 図 5【 、4゛ く 013【 巴 R“ 火2′ 1〔 くり退り卑( 第3図 手続補正書 1、事件の表示 昭和59年 特 許 願 第021389号2、発明の
名称 高耐食性高耐カ二相ステンレス鋼3、補正をする
者 事件との関係 特許出願人 4、代理人 8、補正の内容 (11第13真下6行の行頭にr(1) Jとあるを削
除。 (2)第15真下3行〜第17頁11行に「(2)熱時
効後の靭性・・上限とされる。」とあるを削除。 (3)第18頁6行に「第4表」とあるを「第3表」に
訂正。 (4)第19頁8行に「第4表」とあるを「第3表」に
訂正。 (5)第27頁1行の「第3表」、同頁2行の[熱時効
・・ (kg−m)Jおよび同頁の表を削除。 (6)第28頁1行に「第4表」とあるを「第3表」に
訂正。 (以 上)
FIG. 1 is a graph showing stress corrosion cracking resistance, FIG. 2 is a graph showing corrosion fatigue strength in a rotating bending fatigue test, and FIG. 3 is a photomicrograph in place of a drawing showing the metallographic structure of the steel of the present invention. Agent Patent Attorney Arata Miyazaki Department Figure 1 12 Figure 5 [ , 4゛ku013 Permission Application No. 021389 2, Title of the invention: Highly corrosion-resistant and highly resistant duplex stainless steel 3, Person making the amendment Relationship to the case: Patent applicant 4, Attorney 8, Contents of the amendment (11, 13th, 6th line directly below r(1) Deleted the text J. (2) Delete the text "(2) Toughness after thermal aging...is the upper limit" from line 3 directly below No. 15 to line 11 of page 17. (3 ) On page 18, line 6, “Table 4” was corrected to “Table 3.” (4) On page 19, line 8, “Table 4” was corrected to “Table 3.” (5 ) "Table 3" on the first line of page 27, [Thermal aging... (kg-m)J] on the second line of the same page and the table on the same page are deleted. " has been corrected to "Table 3."(That's all)

Claims (1)

【特許請求の範囲】[Claims] +11 C:0.08%以下、Si:0.2〜2.0%
、Mn : 0.2〜’2.0%、Cr : 19.0
%以上、24.0%未満、Ni : 3.0〜8.0%
、Mo : 1.0〜5.0%、Cu:0.5〜3.0
%、C○:0.2〜4.0%、N:0.05〜0.3%
、残部実質的にFeからなり、かつ金属組織におけるδ
−フェライト相の面積率が30〜70%である高耐食性
高耐カ二相ステンレス鋼。
+11 C: 0.08% or less, Si: 0.2-2.0%
, Mn: 0.2~'2.0%, Cr: 19.0
% or more, less than 24.0%, Ni: 3.0 to 8.0%
, Mo: 1.0-5.0%, Cu: 0.5-3.0
%, C○: 0.2-4.0%, N: 0.05-0.3%
, the remainder essentially consists of Fe, and δ in the metal structure
- Highly corrosion-resistant and highly carbon-resistant duplex stainless steel in which the area ratio of ferrite phase is 30 to 70%.
JP2138984A 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel Granted JPS60165363A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2138984A JPS60165363A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel
CA000473261A CA1242095A (en) 1984-02-07 1985-01-31 Ferritic-austenitic duplex stainless steel
DE8585101255T DE3561162D1 (en) 1984-02-07 1985-02-06 Ferritic-austenitic duplex stainless steel
EP85101255A EP0151487B1 (en) 1984-02-07 1985-02-06 Ferritic-austenitic duplex stainless steel
US07/622,401 US5238508A (en) 1984-02-07 1990-12-03 Ferritic-austenitic duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138984A JPS60165363A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel

Publications (2)

Publication Number Publication Date
JPS60165363A true JPS60165363A (en) 1985-08-28
JPH0232343B2 JPH0232343B2 (en) 1990-07-19

Family

ID=12053711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138984A Granted JPS60165363A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel

Country Status (1)

Country Link
JP (1) JPS60165363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142019A (en) * 1987-11-27 1989-06-02 Kubota Ltd Manufacture of two-phase stainless steel having high yield strength and high corrosion resistance
JPH04113088A (en) * 1990-09-04 1992-04-14 Nkk Corp Sheath tube for buried conduit
CN103205653A (en) * 2013-03-27 2013-07-17 宝钢不锈钢有限公司 Duplex stainless steel with excellent thermoplasticity and corrosion resistance and manufacturing method thereof
EP3508596A4 (en) * 2016-09-02 2019-07-10 JFE Steel Corporation Duplex stainless steel and method for manufacturing same
WO2020158111A1 (en) * 2019-01-30 2020-08-06 Jfeスチール株式会社 Duplex stainless steel, seamless steel pipe, and production method for duplex stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066719B2 (en) * 2016-06-01 2021-07-20 Nippon Steel Corporation Duplex stainless steel and method of manufacturing duplex stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153821A (en) * 1976-06-17 1977-12-21 Nippon Yakin Kogyo Co Ltd High strength austenitic ferritic stainles steel
JPS5852464A (en) * 1981-09-22 1983-03-28 Kubota Ltd Two-phase stainless steel with high corrosion fatigue strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153821A (en) * 1976-06-17 1977-12-21 Nippon Yakin Kogyo Co Ltd High strength austenitic ferritic stainles steel
JPS5852464A (en) * 1981-09-22 1983-03-28 Kubota Ltd Two-phase stainless steel with high corrosion fatigue strength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142019A (en) * 1987-11-27 1989-06-02 Kubota Ltd Manufacture of two-phase stainless steel having high yield strength and high corrosion resistance
JPH0456087B2 (en) * 1987-11-27 1992-09-07 Kubota Kk
JPH04113088A (en) * 1990-09-04 1992-04-14 Nkk Corp Sheath tube for buried conduit
CN103205653A (en) * 2013-03-27 2013-07-17 宝钢不锈钢有限公司 Duplex stainless steel with excellent thermoplasticity and corrosion resistance and manufacturing method thereof
EP3508596A4 (en) * 2016-09-02 2019-07-10 JFE Steel Corporation Duplex stainless steel and method for manufacturing same
US11566301B2 (en) 2016-09-02 2023-01-31 Jfe Steel Corporation Dual-phase stainless steel, and method of production thereof
WO2020158111A1 (en) * 2019-01-30 2020-08-06 Jfeスチール株式会社 Duplex stainless steel, seamless steel pipe, and production method for duplex stainless steel
JP6747628B1 (en) * 2019-01-30 2020-08-26 Jfeスチール株式会社 Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel

Also Published As

Publication number Publication date
JPH0232343B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
US5238508A (en) Ferritic-austenitic duplex stainless steel
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
RU2421539C2 (en) Martensite stainless steel for welded structures
JPH0244896B2 (en)
JPS6343462B2 (en)
US6159310A (en) Wire for welding high-chromium steel
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
US5275893A (en) Line pipe having good corrosion-resistance and weldability
JP2002529599A5 (en)
JPS60165363A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JPS6261107B2 (en)
EP0169373B1 (en) Machines or machine parts made of austenitic cast iron having resistance to stress corrosion cracking
US3837847A (en) Corrosion resistant ferritic stainless steel
KR850001766B1 (en) Phosphirous containing seawater-resistance steel of improved weldability
JPS60165362A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JPS60165361A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JPS60165364A (en) Highly corrosion resistant and high yield strength two-phase stainless steel
JPH0857683A (en) Method for welding high-cr steel
Sagara et al. Corrosion Performances of Modified Grade-Duplex Stainless Steel for Line Pipe Usage in Slightly Sour Environment
JPH0357181B2 (en)
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
RU2004611C1 (en) High-strength, corrosion-resistant two-ply steel
JPS61186451A (en) Alloy having superior sour resistance
JP3131587B2 (en) Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same
JP2558403B2 (en) Line pipe with excellent corrosion resistance and weldability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term