JPS60165362A - Highly corrosion resistant and high yield strength two- phase stainless steel - Google Patents

Highly corrosion resistant and high yield strength two- phase stainless steel

Info

Publication number
JPS60165362A
JPS60165362A JP2138884A JP2138884A JPS60165362A JP S60165362 A JPS60165362 A JP S60165362A JP 2138884 A JP2138884 A JP 2138884A JP 2138884 A JP2138884 A JP 2138884A JP S60165362 A JPS60165362 A JP S60165362A
Authority
JP
Japan
Prior art keywords
stainless steel
resistance
ferrite
corrosion
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2138884A
Other languages
Japanese (ja)
Other versions
JPH0232342B2 (en
Inventor
Akira Yoshitake
吉竹 晃
Akio Kuhara
久原 昭夫
Toshiaki Ishii
利明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2138884A priority Critical patent/JPS60165362A/en
Priority to CA000473261A priority patent/CA1242095A/en
Priority to EP85101255A priority patent/EP0151487B1/en
Priority to DE8585101255T priority patent/DE3561162D1/en
Publication of JPS60165362A publication Critical patent/JPS60165362A/en
Publication of JPH0232342B2 publication Critical patent/JPH0232342B2/ja
Priority to US07/622,401 priority patent/US5238508A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled two-phase stainless steel excellent in stress corrosion stress resistance and pitting resistance in a corrosive environment, by respectively prescribing the contents of C, Si, Mn, Cr, Ni, Mo, Cu, Co and N and providing a delta-ferrite phase with a specific areal ratio. CONSTITUTION:Highly corrosion resistant and high yield strength two-phase stainless steel consists of, on a wt. basis, 0.08% or less C, 0.2-2.0% Si, 0.2- 2.0%Mn, 24.0-30.0% Cr, 4.0-9.0% Ni, 1.0-5.0% Mo, 0.5-3.0% Cu, 0.2-4.0% Co, 0.05-0.3% N and the remainder of Fe. In this case, the areal ratio of the delta-ferrite phase in the metal structure of this stainless steel is set to 30-70% as an essential condition. This stainless steel has excellent pitting resistance, stress corrosion cracking resistance and hydrogen sulfide cracking resistance and high strength and high ductility in a corrosive environment, especially, in an environment containing chloride, CO2 or H2S, for example, under a high temp. and high pressure condition of 300 deg.C and 6,000psi.

Description

【発明の詳細な説明】 本発明は二相ステンレス鋼に関し、特に塩化物、炭酸ガ
ス等を含む腐食環境での応力腐食割れ、孔食などの腐食
に対する抵抗性を高め、かつ強度、延性などの機械的性
質を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to duplex stainless steel, which has improved resistance to corrosion such as stress corrosion cracking and pitting corrosion, particularly in corrosive environments containing chlorides, carbon dioxide, etc., and improved strength, ductility, etc. It has improved mechanical properties.

耐食材料として、5US304鋼などのオーステナイト
系ステンレス鋼、あるいは5US829J1.5C51
3AS 5C314A15FSA(Steel Fou
nders’ 5oci’ety of Amer’i
ca)CD−4MCuなどのフェライトとオーステナイ
トの2相組織を有するステンレス鋼等が使用されている
As a corrosion-resistant material, austenitic stainless steel such as 5US304 steel or 5US829J1.5C51
3AS 5C314A15FSA (Steel Fou
nders'5oci'ety of Amer'i
ca) Stainless steel having a two-phase structure of ferrite and austenite, such as CD-4MCu, is used.

SUS 804鋼等のオーステナイト系ステンレス鋼は
主合金成分であるCrとNi によりすぐれた耐食性を
示すが、塩素イオンCC1)を含む環境では応力腐食割
れの生じ易いことが大きな欠点であり、孔食やすきま腐
食などの局部的腐食に対する抵抗性も非常に弱い。
Austenitic stainless steels such as SUS 804 steel exhibit excellent corrosion resistance due to the main alloy components Cr and Ni, but a major drawback is that they are susceptible to stress corrosion cracking in environments containing chlorine ions (CC1), and are susceptible to pitting corrosion and It also has very low resistance to localized corrosion such as crevice corrosion.

一方、フェライト相とオーステナイト相の2相組織を有
するものは、一般耐食性にすぐれるほか、2相の特性が
相まって適度の強度と靭性を兼備し、かつ比較的良好な
溶接性を有することから、近年各種化学工業プラント、
海水機器材料等として広く使用されている。しかしなが
ら、これらの材料も、苛酷な腐食環境下、就中塩素イオ
ンの増加、炭酸ガスや硫化水素ガスの存在下゛では、耐
孔食性、耐すきま腐食性などが不足し、しばしば腐食損
傷を引起すことが知られており、また応力腐食割れや硫
化物腐食割れに対する抵抗性も十分でなく、早期に破壊
に到る例も少くない。例えば、石油・天然ガス油井にお
いては、エネルギー確保のため、より劣悪な環境での採
掘を余儀なくされており、ことに井戸の深度が深くなる
につれ、塩素イオン、炭酸ガス、硫化水素ガス等の腐食
因子の増大や、温度、圧力の上昇を伴い、また油井を回
復するために炭酸ガス、海水等を井戸に圧入することも
行なわれる等、使用環境の苛酷化が著しい。従来の材料
では、このような使用環境に耐え得ず、構造材料として
の安定性や十分な耐用命数は保証し難い。
On the other hand, those with a two-phase structure of ferrite and austenite phases have excellent general corrosion resistance, and the characteristics of the two phases combine to provide appropriate strength and toughness, as well as relatively good weldability. In recent years, various chemical industry plants,
Widely used as a material for seawater equipment. However, these materials lack pitting corrosion resistance and crevice corrosion resistance under severe corrosive environments, particularly in the presence of increased chlorine ions and carbon dioxide gas and hydrogen sulfide gas, often causing corrosion damage. Furthermore, the resistance to stress corrosion cracking and sulfide corrosion cracking is insufficient, and there are many cases in which early failure occurs. For example, in order to secure energy, oil and natural gas wells are forced to mine in increasingly poor environments, and as the wells get deeper, they are exposed to more corrosive substances such as chlorine ions, carbon dioxide gas, and hydrogen sulfide gas. The environment in which oil is used has become significantly harsher, with factors increasing, temperature and pressure increasing, and carbon dioxide gas, seawater, etc. being injected into wells to restore oil wells. Conventional materials cannot withstand such usage environments, and it is difficult to guarantee stability and sufficient service life as structural materials.

本発明は上記に鑑みてなされたものであり、高温・高圧
(例えば、300°C,6000psi)における腐食
環境、とくに塩化物、炭酸ガス、あるいは硫化水素ガス
を含む環境下で、耐孔食性、耐応力腐食割れ性、耐硫化
水素割れ性等にすぐれ、かつ高強度、高延性を有するフ
壬うイトーオーステナイト二相ステンレス鋼を提供する
The present invention has been made in view of the above, and provides pitting corrosion resistance in a corrosive environment at high temperature and high pressure (e.g., 300°C, 6000 psi), especially in an environment containing chloride, carbon dioxide gas, or hydrogen sulfide gas. Provided is a fully austenitic duplex stainless steel having excellent stress corrosion cracking resistance, hydrogen sulfide cracking resistance, etc., and high strength and high ductility.

本発明の二相ステンレス鋼は、co、os%以下、Si
 02〜2.0%、Mn 0.2〜2.0%、Cr24
.0〜80.0%、Ni 4.0〜9.0%、Mo 1
.0〜5.0%、Cu O,5〜8.0%、Co 0.
2〜4.0%、N0105〜0.3%、残部実質的にF
eからなり(成分含有量は重量%)、かつ金属組織にお
けるδ−フェライト相は面積率で30〜70%を占める
The duplex stainless steel of the present invention has co, os% or less, Si
02-2.0%, Mn 0.2-2.0%, Cr24
.. 0-80.0%, Ni 4.0-9.0%, Mo1
.. 0-5.0%, Cu O, 5-8.0%, Co 0.
2-4.0%, N0105-0.3%, remainder substantially F
(component content is weight %), and the δ-ferrite phase in the metal structure occupies 30 to 70% in terms of area ratio.

本発明鋼の成分限定理由は次のとおりである。The reasons for limiting the composition of the steel of the present invention are as follows.

c:o、os%以下 Cはオーステナイト生成元素であり、かつ強度の向上に
著効を有するが、含有量が多すぎると、クロム炭化物が
析出し易くなり、炭化物近傍におけるCr濃度が減少す
る結果、孔食、すきま腐食、粒界腐食等の局部腐食に対
する抵抗性が低下し、かつ耐応力腐食割れ性の劣化をみ
る。このため、0.08%を上限とする。
c: o, os% or less C is an austenite-forming element and has a remarkable effect on improving strength, but if the content is too large, chromium carbides tend to precipitate, resulting in a decrease in the Cr concentration near the carbides. , resistance to localized corrosion such as pitting corrosion, crevice corrosion, and intergranular corrosion decreases, and stress corrosion cracking resistance deteriorates. Therefore, the upper limit is set at 0.08%.

Si:0.2〜2.0% Siは溶鋼の脱酸および鋳造性確保のため、少くとも0
.2%を必要とする。しかし、多量の含有は靭性を悪<
シ、かつ溶接性をも損うので、2.0%を上限とする。
Si: 0.2-2.0% Si is at least 0 to deoxidize molten steel and ensure castability.
.. 2% is required. However, the inclusion of a large amount deteriorates the toughness.
Since it also impairs weldability, the upper limit is set at 2.0%.

Mn : 0.2〜2.0% Mnは通常の脱酸・脱硫過程で、0.2%程度含有され
るもので、また鋼素地のオーステナイト相の安定化に有
効な元素である。このための含有量は2%までで十分で
あり、それをこえる必要はない。よって、0.2〜2.
0%とする。
Mn: 0.2-2.0% Mn is contained in an amount of about 0.2% during normal deoxidation and desulfurization processes, and is an effective element for stabilizing the austenite phase of the steel base. A content of up to 2% is sufficient for this purpose and need not exceed it. Therefore, 0.2 to 2.
Set to 0%.

Cr : 24.0〜80.0% Crは耐食性、特に耐粒界腐食性の改善に著効を有する
とともに、耐応力腐食割れ性の向上に寄与する。また、
Crはフェライト生成元素であり、2相組織におけるフ
ェライト相の形成により強度を高める。本発明鋼では後
記Ni量との相関々係で、24.0%以上のCrを含有
しないと、所要のフェライト量(面積率で30%以上)
を確保しがたい。よって、耐食性とフェライト量の点か
ら、Cr量の下限を24.0%とする。
Cr: 24.0 to 80.0% Cr has a remarkable effect on improving corrosion resistance, especially intergranular corrosion resistance, and also contributes to improving stress corrosion cracking resistance. Also,
Cr is a ferrite-forming element and increases strength by forming a ferrite phase in a two-phase structure. In the steel of the present invention, the required amount of ferrite (area ratio of 30% or more) is required if the steel does not contain 24.0% or more of Cr, depending on the Ni content described below.
difficult to secure. Therefore, from the viewpoint of corrosion resistance and ferrite content, the lower limit of the Cr content is set to 24.0%.

一方、Cr量があまり多くなると、鋼の靭性の著しい低
下を生じ、かつ鋳造時に硬脆なσ相が生成する。更に、
Ni量との相関々係からフェライト量が70%を越え、
2相組織におけるオーステナイト相とのバランスを失し
、耐食性、就中孔食、すきま腐食に対する抵抗性を損う
。このため、Cr量の上限は30.0%とする。
On the other hand, if the amount of Cr is too large, the toughness of the steel will be significantly reduced and a hard and brittle σ phase will be formed during casting. Furthermore,
The amount of ferrite exceeds 70% due to the correlation with the amount of Ni,
It loses the balance with the austenite phase in the two-phase structure, impairing corrosion resistance, especially resistance to pitting corrosion and crevice corrosion. Therefore, the upper limit of the Cr content is set to 30.0%.

Ni:4.0〜9.0% Niはオーステナイト相を安定化する元素であり、鋼の
靭性の向上をもたらす。また、耐食性の点からも必要な
元素である。占有量が4.0%に満たないと、これらの
効果が不足する。前記Cr 量との関係から、フェライ
ト量を70%以下にするためにも4.0%以上の含有を
必要とする。
Ni: 4.0 to 9.0% Ni is an element that stabilizes the austenite phase and improves the toughness of steel. It is also a necessary element from the viewpoint of corrosion resistance. If the occupied amount is less than 4.0%, these effects will be insufficient. From the relationship with the amount of Cr, it is necessary to contain 4.0% or more in order to keep the ferrite amount to 70% or less.

しかし、Ni を多量に加えても、含有量の割に耐食性
、機械的性質の向上効果は少(経済的に不利であるばか
りか、二相組織におけるオーステナイト相が過剰になっ
て二相の量的バランスを失う。
However, even if a large amount of Ni is added, the effect of improving corrosion resistance and mechanical properties is small compared to the Ni content (not only is it economically disadvantageous, but the austenite phase in the two-phase structure becomes excessive and the amount of the two-phase structure increases. loss of balance.

従って、Ni量は9.0%を上限とする。なお、後記C
oもNi と同じくオーステナイト生成元素であるので
、coのオーステナイト生成の寄与を考慮してフェライ
ト量の下@(80%)を確保するためにも、Ni量は9
.0%をこえないことを要する。
Therefore, the upper limit of the Ni content is 9.0%. In addition, C
Since o is also an austenite-forming element like Ni, in order to take into consideration the contribution of co to austenite formation and to ensure the lower ferrite content (80%), the Ni content should be set at 9.
.. It is required that it does not exceed 0%.

Mo : 1.0〜5.0% Moはステンレス鋼の耐食性の改善に大きな効果を有す
る。ことに、孔食、すきま腐食抵抗性の改善に著効を奏
する。1.0%以上において、非酸化性酸に対する耐食
性、また塩化物を含む溶液中での孔食、粒界腐食および
応力腐食割れに対する抵抗性の顕著な向上をみる。しか
し、多量に加えると、耐食性の改善効果は飽和し、かつ
σ相の析出による鋳造時の脆化が著しくなるので、5.
0%を上限とする。
Mo: 1.0 to 5.0% Mo has a great effect on improving the corrosion resistance of stainless steel. It is particularly effective in improving resistance to pitting corrosion and crevice corrosion. At 1.0% or more, significant improvements in corrosion resistance to non-oxidizing acids, as well as resistance to pitting corrosion, intergranular corrosion and stress corrosion cracking in chloride-containing solutions are observed. However, if a large amount is added, the effect of improving corrosion resistance will be saturated and embrittlement during casting due to precipitation of σ phase will become significant.
The upper limit is 0%.

Cu:0.5〜3.0% Cuは低濃度の塩素イオンを含む環境中での耐食性、こ
とに耐応力腐食割れ性を高めるとともに、オーステナイ
ト相を固溶強化する。これらの効果を十分なものとする
ために、少くとも0.5%の含有を必要とするが、あま
り多くなると、金属間化合物の生成に伴い靭性の低下を
惹起するので、3.0%を上限とする。
Cu: 0.5 to 3.0% Cu improves corrosion resistance, particularly stress corrosion cracking resistance, in an environment containing low concentrations of chlorine ions, and strengthens the austenite phase as a solid solution. In order to obtain these effects sufficiently, it is necessary to contain at least 0.5%, but if the content is too large, the toughness will decrease due to the formation of intermetallic compounds, so 3.0% is required. Upper limit.

Co : 0.2〜4.0% Coは本発明鋼を最も強く特徴づける元素である。Co
はNi と同じく置換型オーステナイト生成元素である
が、Ni の場合は、その添加により0.2%耐力の低
下傾向がみられるのに対し、C。
Co: 0.2-4.0% Co is the element that most strongly characterizes the steel of the present invention. Co
Like Ni, C is a substitutional austenite forming element, but in the case of Ni, there is a tendency for the yield strength to decrease by 0.2% with the addition of C.

の添加は、それとは逆に0.2%耐力の向上をもたらす
ことが判明した。前記のように厳しい腐食環境下で、こ
れに耐える腐食抵抗とともに、高い機械的強度を備えた
2相ステンレス鋼が強く要望されているが、COを従来
のFe−Cr−Niベースのステンレス鋼に添加するこ
とによりこの要望を満たす十分な機械的性質を保証する
ことができる。
It was found that the addition of , on the contrary, resulted in an improvement in yield strength by 0.2%. As mentioned above, there is a strong demand for duplex stainless steel that has high mechanical strength and corrosion resistance that can withstand the harsh corrosive environment. The addition makes it possible to ensure sufficient mechanical properties to meet this requirement.

また、2相ステンレス鋼へのCoの添加によ頃塩素イオ
ンを含む環境、例えば海水中での耐食性が著しく高めら
れることが明らかになった。更に、Coは、基地に固溶
したまま、析出物の凝集を抑制する作用が認められ、従
って、従来の2相ステンレス鋼の大きな問題点であった
σ相脆性、475°C脆性、とくに溶接部熱影響部での
これら析出物による脆性の緩和に大きく寄与する。なお
、C。
It has also been revealed that the addition of Co to duplex stainless steel significantly improves corrosion resistance in environments containing chlorine ions, such as seawater. Furthermore, Co has been found to have the effect of suppressing the agglomeration of precipitates while remaining as a solid solution in the matrix. Therefore, it has been found that Co has the effect of suppressing the agglomeration of precipitates, which is a major problem with conventional duplex stainless steels, such as σ-phase brittleness and 475°C brittleness, especially in welding. This greatly contributes to alleviating the brittleness caused by these precipitates in the heat-affected zone. In addition, C.

はNiと同じくオーステナイト生成元素であるから、本
発明に規定するフェライト量(30〜70%)を確保す
るためには、coの添加によるオーステナイト相の増量
を考慮してNi量を低減することができる。
Since, like Ni, is an austenite-forming element, in order to secure the ferrite amount (30 to 70%) specified in the present invention, it is necessary to reduce the Ni amount by considering the increase in the amount of austenite phase due to the addition of co. can.

上記諸効果を発揮させるためのCO含有量は少くとも0
.2%を必要とする。含有量の増加に従ってその効果は
増大するが、4.0%までの添加により機械的性質、耐
食性、ミクロ組織等の十分な改善効果が得られるので、
それをこえて添加する必要はない。Coは高価な元素で
あり、それ以上の添加はコスト的に不利である。よって
、0.2〜4.0%とする。
The CO content in order to exhibit the above effects is at least 0.
.. 2% is required. The effect increases as the content increases, but sufficient improvement effects on mechanical properties, corrosion resistance, microstructure, etc. can be obtained by adding up to 4.0%.
There is no need to add more than that. Co is an expensive element, and adding more than that is disadvantageous in terms of cost. Therefore, it is set to 0.2 to 4.0%.

NO,05〜0.3% Nは通常有害な不純物元素として扱われるが、本発明で
は強度向上および耐食性改善を目的として上記範囲内で
添加される。
NO, 05-0.3% N is normally treated as a harmful impurity element, but in the present invention it is added within the above range for the purpose of improving strength and corrosion resistance.

NはCと同じく強力なオーステナイト生成元素であり、
かつ侵入型固溶元素であるため、鋼基地の結晶格子に強
い格子歪みをもたらし、強度向上に顕著に寄与する。
Like C, N is a strong austenite-forming element,
Since it is an interstitial solid solution element, it causes strong lattice distortion in the crystal lattice of the steel base, contributing significantly to improving the strength.

また、Nは2相組織において、CrXN4.M。In addition, N is present in the two-phase structure in CrXN4. M.

等の主要元素のフェライト相並びにオーステナイト相へ
の分配率に影響を与え、ことに耐食性に寄与する元素C
rXMo などをオーステナイト相へ高濃度で分配する
ことにより2相ステンレス鋼の耐食性を高める。すなわ
ち、通常2相ステンレス鋼において、Cr、MO,、S
iなどのフェライト生成元素はフェライト相に、またC
、Mn、Ni などのオーステナイト生成元素はオース
テナイト相にそれぞれ高濃度で分配されるが、上記のよ
うにNの存在によって耐食性に寄与するCr、Mo等の
フェライト生成元素がオーステナイト相へ高濃度に分配
されシことにより、2相ステンレス鋼の耐食性、就中す
きま腐食や孔食などの局部腐食に対する抵抗性が高めら
れるわけである。
Element C, which affects the distribution ratio of major elements such as to the ferrite phase and austenite phase, and particularly contributes to corrosion resistance.
Corrosion resistance of duplex stainless steel is improved by distributing rXMo and the like into the austenite phase at high concentrations. That is, in normal duplex stainless steel, Cr, MO, S
Ferrite-forming elements such as i form the ferrite phase, and C
Austenite-forming elements such as , Mn, and Ni are distributed in high concentrations in the austenite phase, but as mentioned above, ferrite-forming elements such as Cr and Mo, which contribute to corrosion resistance due to the presence of N, are distributed in high concentrations in the austenite phase. This increases the corrosion resistance of the duplex stainless steel, particularly its resistance to localized corrosion such as crevice corrosion and pitting corrosion.

特に、本発明鋼のように、CrおよびMo濃度が高く、
そのフェライト相/オーステナイト相への分配率の差が
顕著な、言いかえると偏析の度合いの大きい合金系にお
いては、Nの添加はこれらの耐食性元素をより高濃度で
オーステナイト相に分配しようとする作用を有し、従っ
てそれによる耐食性、とくに局部腐食抵抗性の向上も顕
著にあられれる。
In particular, like the steel of the present invention, the Cr and Mo concentrations are high,
In alloy systems where the difference in the distribution ratio between the ferrite phase and the austenite phase is significant, in other words, the degree of segregation is large, the addition of N has the effect of distributing these corrosion-resistant elements to the austenite phase at a higher concentration. Therefore, corrosion resistance, especially local corrosion resistance, is significantly improved.

上記の効果を十分に発揮させるためにN量は少くとも0
.05%を必要とする。N量の増加に伴って効果も増す
が、0.3%をこえると窒化物として析出し、却って耐
食性を悪くする。Nは固溶状態にあってこそ前記の強度
向上および耐食性の改善に著効を奏するのである。従っ
て、N量は0.05〜0゜3%とする。
In order to fully exhibit the above effects, the amount of N is at least 0.
.. 05% is required. The effect increases as the amount of N increases, but if it exceeds 0.3%, it will precipitate as nitrides, which will actually worsen the corrosion resistance. N has a significant effect on improving the strength and corrosion resistance as described above only when it is in a solid solution state. Therefore, the amount of N is set to 0.05 to 0.3%.

本発明鋼は、上記各成分元素を含有し、残部は不可避的
に混入する不純物元素を除き実質的にFeからなる。
The steel of the present invention contains each of the above-mentioned component elements, and the remainder consists essentially of Fe, excluding impurity elements that are unavoidably mixed.

次に、本発明鋼の組織について説明すると、本発明鋼は
、δ−フェライト量が面積率で30〜70%を占めるフ
ェライト−オーステナイト2相組織を有することを特徴
とする。第4図にその組織を示す。この2相の量的バラ
ンスによって、強度と靭性との調和のとれた機械的性質
が確保されるのであり、フェライト量が30%に満たな
いと、強度が不足し、一方70%をこえると、延性、靭
性の低下が著しくなる。
Next, to explain the structure of the steel of the present invention, the steel of the present invention is characterized by having a ferrite-austenite two-phase structure in which the amount of δ-ferrite occupies 30 to 70% in terms of area ratio. Figure 4 shows the organization. The quantitative balance of these two phases ensures mechanical properties that are in harmony with strength and toughness.If the amount of ferrite is less than 30%, the strength will be insufficient, while if it exceeds 70%, Ductility and toughness decrease significantly.

また、2相組織におけるフェライト量は耐食性とも密接
に関連する。すなわち、腐食環境、特に塩素イオンを含
む環境下での応力腐食割れに対する抵抗性は、フェライ
ト量30%以上において顕著な向上をみる。逆に硫化水
素(H2S)を含む環境下では、フェライト量が70%
を越えると、フェライト相の硫化物応力腐食割れに対す
る感受性が増大するとともに、フェライト相の選択的な
孔食、すきま腐食等を引起し易くなる。従って、耐食性
の面からもフェライト量は30〜70%に規定される。
Further, the amount of ferrite in the two-phase structure is closely related to corrosion resistance. That is, the resistance to stress corrosion cracking in a corrosive environment, particularly in an environment containing chlorine ions, is significantly improved when the amount of ferrite is 30% or more. Conversely, in an environment containing hydrogen sulfide (H2S), the amount of ferrite decreases to 70%.
If the value exceeds 0.05, the susceptibility of the ferrite phase to sulfide stress corrosion cracking increases, and selective pitting corrosion, crevice corrosion, etc. of the ferrite phase are likely to occur. Therefore, also from the viewpoint of corrosion resistance, the amount of ferrite is specified to be 30 to 70%.

この2相組織における量的バランスは各合金成分につい
ての前記規定の範囲内で成分組成を調整することにより
達成される。
The quantitative balance in this two-phase structure is achieved by adjusting the composition of each alloy component within the specified range.

なお、本発明鋼は鋳造後、常法に従い溶体化処理が施こ
される。その熱処理は、例えば温度1000〜1200
°Cに加熱保持したのち、急冷(例えば水冷)すること
により達成される。
After casting, the steel of the present invention is subjected to solution treatment according to a conventional method. The heat treatment is performed at a temperature of 1000 to 1200, for example.
This is achieved by heating and maintaining the temperature at °C and then rapidly cooling it (for example, by water cooling).

実施例 第1表に示す成分組成およびフェライト量を有する供試
鋼について機械的性質測定、溶接試験および各種耐食試
験を行った。
Examples Mechanical property measurements, welding tests, and various corrosion resistance tests were conducted on test steels having the compositions and ferrite amounts shown in Table 1.

調香2〜4.6.7.14および15は本発明例、調香
1.5および8〜13は比較例である。
Perfumes 2 to 4, 6, 7, 14 and 15 are examples of the present invention, and Perfumes 1.5 and 8 to 13 are comparative examples.

比較例のうち、調香10.11は各々JIS G345
9 5US329J1および5US316、調香12は
JIS G51.21 5C5I4A。
Among the comparative examples, perfume notes 10 and 11 are each JIS G345.
9 5US329J1 and 5US316, fragrance 12 is JIS G51.21 5C5I4A.

また調香13は5FSA CD−4MCuである。Moreover, perfume 13 is 5FSA CD-4MCu.

調香l〜9および12〜15は金型遠心鋳造管(外径L
85mm、長さ600闘)を供試材とし、調香10.1
1は市販品を使用した。なお、各供試材はすべて110
0°Cで肉厚25厘当り1時間保持したのち水冷する熱
処理を施した。
Perfumes 1 to 9 and 12 to 15 are molded centrifugally cast tubes (outer diameter L
85mm, length 600cm) was used as the test material, and fragrance adjustment 10.1
1 used a commercially available product. In addition, each sample material is all 110
After being held at 0°C for 1 hour per wall thickness of 25 mm, heat treatment was performed by cooling with water.

[A] 機械的性質 (1)第2表に常温引張性質、硬度およびシャルピー衝
撃試験による吸収エネルギーを示す。
[A] Mechanical properties (1) Table 2 shows the room temperature tensile properties, hardness, and absorbed energy by Charpy impact test.

本発明例の調香2〜4.6.7.14.15の機械的性
質ことに0.2%耐力は、比較例の調香1(N以外の成
分組成およびフェライト量は本発明規定の範囲内にある
)のそれに比しすぐれている。
The mechanical properties and 0.2% yield strength of perfumes 2 to 4.6.7.14.15 of the invention examples are the same as those of the comparative example perfume 1 (components other than N and the amount of ferrite are as specified in the invention). (within the range).

その上昇の度合いは、フェライト量をほぼ5o%の一定
とした場合、約3.5 k’j/ma/ 0.1%Nに
相当する比例的関係にあることが認められる。この機械
的性質の向上は二相ステンレス鋼におけるN添加の顕著
な効果を示すものである。
It is recognized that the degree of increase is proportional to approximately 3.5 k'j/ma/0.1%N when the amount of ferrite is kept constant at approximately 50%. This improvement in mechanical properties shows the remarkable effect of N addition in duplex stainless steel.

調香8.9はフェライト量が本発明の規定範囲(30〜
70%)から逸脱する例であり、フェライト量の不足す
る調香8(フェライト量28%)は02%耐力が54.
”akg/−と低く、一方フエライト量が過剰(74%
)の調香9では衝撃吸収エネルギーが11.8kg・m
と本発明例のそれに劣っている。このことがら二相ステ
ンレス鋼におけるフェライト量も機械的性質に影響する
大きな因子であり、強度面からは30%以上であること
を要し、靭性確保の点から70%が上限とされる。
Perfume 8.9 has a ferrite amount within the specified range of the present invention (30~
This is an example of deviation from 70%), and perfume 8 (ferrite amount 28%) with insufficient ferrite amount has a 02% yield strength of 54.
”akg/-, while the amount of ferrite is excessive (74%
)'s perfume 9 has a shock absorption energy of 11.8 kg・m
and is inferior to that of the example of the present invention. For this reason, the amount of ferrite in duplex stainless steel is also a major factor that affects mechanical properties, and from the viewpoint of strength, it is required to be 30% or more, and from the viewpoint of ensuring toughness, the upper limit is 70%.

また後記のようにフェライト量が多すぎると、時効後の
靭性の低下が著しくなるので、この点からも本発明鋼に
おけるフェライト量の上限は70%に定められる。
Further, as described later, if the amount of ferrite is too large, the toughness after aging will be significantly reduced, so from this point of view as well, the upper limit of the amount of ferrite in the steel of the present invention is set at 70%.

本発明例の調香3.14.15を比較することにより、
N量を0.18%前後で一定とし、フエライト量を50
%前後で一定とした場合、Coの添加により顕著な0.
2%耐力の上昇が認められ、その上昇の度合は約2kq
/rd/1%Coに相等する比例的な関係があることが
見い出された。また、引張強さも上昇する。しかも、こ
れら強度の向上に比べて、延性・靭性の低下は少ない。
By comparing perfumes 3.14.15 of the present invention example,
The amount of N was kept constant around 0.18%, and the amount of ferrite was 50%.
%, the addition of Co causes a noticeable increase in 0.0%.
A 2% increase in yield strength was observed, and the degree of increase was approximately 2kq.
It was found that there is a proportional relationship equivalent to /rd/1%Co. Moreover, the tensile strength also increases. Moreover, compared to these improvements in strength, the decrease in ductility and toughness is small.

延性・靭性の低下をおさえて、強度を高め得る点が2相
ステンレス鋼に於けるCo添加の非常に優れた効果の1
つである。
One of the outstanding effects of Co addition in duplex stainless steel is that it can suppress the decline in ductility and toughness and increase strength.
It is one.

また、本発明例は、従来材の5US816(調香11)
、5C514A(調香12)、CD−4MCu(調香1
8)との比較から明らかなように、機械的性質特に0.
2%耐力並びに引張強さに於いてはるかにすぐれた強度
を示している。これは主として本発明鋼のフェライト量
のコントロール、合金元素としてのCo、Nの添加効果
による相乗効果に起因する。
In addition, in the example of the present invention, the conventional material 5US816 (fragrance 11)
, 5C514A (Fragrance 12), CD-4MCu (Fragrance 1)
As is clear from the comparison with 8), the mechanical properties, especially 0.
It shows far superior strength in terms of 2% yield strength and tensile strength. This is mainly due to the control of the amount of ferrite in the steel of the present invention and the synergistic effect of the addition of Co and N as alloying elements.

(2)熱時効後の靭性 第8表および第1図に、475°Cでの熱時効を受けた
場合のシャルピー衝撃試験(2NMvノツチ、0°C)
による吸収エネルギー(kti・m)を示す。
(2) Toughness after thermal aging Table 8 and Figure 1 show the Charpy impact test (2NMv notch, 0°C) when thermally aged at 475°C.
It shows the absorbed energy (kti・m) by

まず本発明例の調香3は、従来の二相鋼である5US8
29J1(鋼種10)に比し、475°C1000時間
時効後の靭性の低下が極めて少ない。
First, the perfume 3 of the example of the present invention is made of conventional duplex steel 5US8.
Compared to 29J1 (steel type 10), the decrease in toughness after aging at 475°C for 1000 hours is extremely small.

すなわち本発明鋼では、従来の二相ステンレス鋼の最大
の弱点である475°C脆性が著しく改善されている。
That is, in the steel of the present invention, 475°C embrittlement, which is the greatest weakness of conventional duplex stainless steels, is significantly improved.

また、本発明例の調香3とN量が0.02%と非常に低
い比較例の調香1とを対比すると調香8の熱時効に対す
る靭性はすぐれた結果を示している。
Further, when comparing Perfume 3 of the present invention example with Perfume 1 of Comparative Example, which has a very low N content of 0.02%, Perfume 8 shows excellent toughness against thermal aging.

従がって二相ステンレス鋼に於ける熱時効に対する靭性
の劣化に対してNは顕著な改善効果を有している。さら
に調香1は上記の如(熱時効を受けた場合に靭性の劣化
を示すが、その劣化の程度は従来材である調香10に比
較すると格段にすぐれており、本発明に於ける主要な効
果の1つであるCoの影響を如実に示している。従がっ
て本発明鋼である調香15はこのCoとNの添加の相乗
効果を受けて時効後の衝撃吸収エネルギーの劣化の傾向
が非常に少なく、1000hr時効後も、表3に認めら
れるように11.9#・722と非常に高い吸収エネル
ギーを保持している。このようにNSC。
Therefore, N has a significant improvement effect on the deterioration of toughness due to thermal aging in duplex stainless steel. Furthermore, perfume 1 exhibits deterioration in toughness as described above (when subjected to thermal aging, but the degree of deterioration is much better than that of perfume 10, which is a conventional material, and is a key feature of the present invention). This clearly shows the influence of Co, which is one of the effective effects of Co. Therefore, the inventive steel 15 suffers from the synergistic effect of the addition of Co and N, which reduces the deterioration of shock absorption energy after aging. Even after aging for 1000 hours, the absorption energy is very high at 11.9 #722 as seen in Table 3.In this way, NSC.

の添加は従来の2相ステンレス鋼の弱点である475°
C脆性を改良する極めて有効な元素であることが見い出
された。 − なおフェライト量が過剰の調香9(73%)は靭性の低
下が著しい。フェライト相の存在は耐応力腐食割れ性の
点から有利であるが、靭性面からみると、構造材料等と
しての安全性確保を考慮した上限値が定められるべきで
あり、本発明鋼ではフェライト量は70%が上限とされ
る。
The addition of 475° is a weak point of conventional duplex stainless steel.
It has been discovered that C is an extremely effective element for improving brittleness. - Incidentally, perfume 9 (73%) with an excessive amount of ferrite has a significant decrease in toughness. The presence of a ferrite phase is advantageous in terms of stress corrosion cracking resistance, but from the perspective of toughness, an upper limit should be set in consideration of ensuring safety as a structural material. The upper limit is 70%.

[B] 溶接性 本発明例の調香2.3.4.6.7.14.15につい
て、開先角度20、ルート厚さ1.6鯖の開先形状を準
備し、初層および第2層目をTIG溶接、第3層目から
最終層までを被覆アーク溶接により突合せ溶接を行い、
溶接後非破壊検査および溶接部切断面の液体浸透検査の
結果、割れ等の欠陥は皆無で、溶接性が良好であり、配
管材料として問題は全くないことが確認された。
[B] Weldability Regarding the inventive example perfume 2.3.4.6.7.14.15, a groove shape with a groove angle of 20 and a root thickness of 1.6 was prepared, and the first layer and the second layer were prepared. The second layer is TIG welded, the third layer to the final layer is butt welded using covered arc welding,
As a result of post-weld non-destructive inspection and liquid penetration inspection of the cut surface of the welded part, it was confirmed that there were no defects such as cracks, that the weldability was good, and that there were no problems as a piping material.

(q 耐食性 (1)試験1(孔食試験) ASTM G48 A法に規定されている塩化第2鉄(
Fe(J?3)溶液による孔食試験(−TotaiII
mlersion Ferric Chloride 
Te5t ) を行ない、第4表に示す結果を得た。本
発明例(調香2.8.4.6.7.14.15)は従来
材である5US829J1(調香10)、5US816
(調香11)、SC514A(調香12)及びCD−4
MCu(調香13)に比し格段にすぐれた耐孔食性を示
し、腐食減量は全く認められない。
(q Corrosion resistance (1) Test 1 (pitting corrosion test) Ferric chloride (as specified in ASTM G48 A method)
Pitting corrosion test with Fe(J?3) solution (-Totai II
mlersion Ferric Chloride
Te5t) was carried out, and the results shown in Table 4 were obtained. Examples of the present invention (perfume 2.8.4.6.7.14.15) are conventional materials 5US829J1 (perfume 10) and 5US816.
(Perfume 11), SC514A (Perfume 12) and CD-4
It exhibits much better pitting corrosion resistance than MCu (Fragrance 13), and no corrosion weight loss is observed.

Nの量が非常に低い調香1との比較から明らがなように
、Nの耐孔食性改善に対する寄与は顕著であり、本発明
に於けるN添加の意義を如実に示すものである。
As is clear from the comparison with Perfume 1, which has a very low amount of N, the contribution of N to the improvement of pitting corrosion resistance is significant, clearly demonstrating the significance of N addition in the present invention. .

また、Nの量の少ない調香1、調香2と、従来材である
5US829J1(調香io)、5US316(調香1
1)、SC5I 4A(調香12)及びCD−4MCu
(調香18)との比較がら明らかなように、Co添加の
耐孔食性改善に対する寄与は顕著であることが見い出さ
れた。
In addition, Perfume 1 and Perfume 2, which have a small amount of N, and conventional materials 5US829J1 (Perfume io) and 5US316 (Perfume 1
1), SC5I 4A (Fragrance 12) and CD-4MCu
As is clear from the comparison with (Fragrance 18), it was found that the contribution of Co addition to the improvement of pitting corrosion resistance was significant.

なお、発明例4と比較例5の結果からN量は最高0.3
%で十分であり、これ以上加えても耐孔食性は向上しな
いことが認められる。
Furthermore, from the results of Invention Example 4 and Comparative Example 5, the maximum amount of N was 0.3.
% is sufficient, and it is recognized that adding more than this does not improve the pitting corrosion resistance.

(2)試験2(隙間腐食試験) “ ASTM G48 B法に規定されている塩化第2鉄溶
液による隙間腐食試験(Ferric Chlo −r
ide Crevice Te5t )を行ない、第4
表に示す結果を得た。本発明鋼(明番2.3.4.6.
7.14.15)は、従来材である5US829J1(
明番io)、5US316(明番11)及び5C514
A(明番12)、CD−4MCu(明番13)に比し、
格段にすぐれた耐隙間腐食性を示している。これは主と
して合金成分としてのCo、Nに起因することは明らか
である。
(2) Test 2 (crevice corrosion test) “Crevice corrosion test using ferric chloride solution specified in ASTM G48 B method (Ferric Chlo-r
ide Crevice Te5t) and the fourth
The results shown in the table were obtained. Invention steel (Mei number 2.3.4.6.
7.14.15) is the conventional material 5US829J1 (
Meiban io), 5US316 (Meiban 11) and 5C514
A (light number 12), compared to CD-4MCu (light number 13),
Shows exceptional crevice corrosion resistance. It is clear that this is mainly due to Co and N as alloy components.

また、明番lとの比較から明らかなように耐隙間腐食特
性の改善に対するNの添加効果は顕著であり、これによ
り腐食減量は約115〜1/6に低減している。
Furthermore, as is clear from the comparison with Aki No. 1, the effect of adding N on improving the crevice corrosion resistance is remarkable, and the corrosion weight loss is reduced by about 115 to 1/6.

更に明番8.9の結果を見るとフェライト量も耐隙間腐
食特性に影響を与える因子であり、この点からも本発明
鋼のフェライト量の適当な範囲は80〜70%に規定さ
れるべきことがわかる。
Furthermore, looking at the results of Akira No. 8.9, the amount of ferrite is also a factor that affects the crevice corrosion resistance, and from this point of view, the appropriate range of the amount of ferrite in the steel of the present invention should be defined as 80 to 70%. I understand that.

N量の少ない明番1、明番2と、従来材である5US8
29J1(明番10)、5US816(明番11)、5
C6I4A(明番12)及びCD−4MCu(明番18
)と比較するとCo添加の耐孔食性改善に対する寄与は
顕著であることが明確に認められる。
Ai No. 1 and Ai No. 2 with a small amount of N, and the conventional material 5US8
29J1 (number 10), 5US816 (number 11), 5
C6I4A (light number 12) and CD-4MCu (light number 18)
), it is clearly recognized that the contribution of Co addition to the improvement of pitting corrosion resistance is significant.

なお発明例4と比較例5の結果から、N量は最大0,3
%で十分であり、これ以上加えても耐隙間腐食性は向上
しないことが認められる。
Furthermore, from the results of Invention Example 4 and Comparative Example 5, the amount of N is at most 0.3
% is sufficient, and it is recognized that adding more than this does not improve crevice corrosion resistance.

(3)耐応力腐食割れ性 沸騰42%塩化マグネシウム(MgCn 2 )溶液中
での定負荷法による応力腐食割れ試験結果を第2図に示
す。
(3) Resistance to stress corrosion cracking The results of a stress corrosion cracking test conducted in a boiling 42% magnesium chloride (MgCn 2 ) solution using a constant load method are shown in FIG.

本発明例(明番3)は従来材であるSUS 829Jl
(明番10)、5US816 (明番11)、CD−4
MCu(明番18)に比し格段にすぐれた耐応力腐食割
れ特性を有することがわかる。例えば、80に9/−の
負荷応力に対してSUS 829J1の破断時間は約2
時間であるのに対し、本発明例である明番3のそれは約
80時間と大幅な向上を示している。
The example of the present invention (number 3) is SUS 829Jl, which is a conventional material.
(Mei No. 10), 5US816 (Mei No. 11), CD-4
It can be seen that it has much better stress corrosion cracking resistance than MCu (Amber No. 18). For example, the rupture time of SUS 829J1 is approximately 2 for a load stress of 80 to 9/-.
In contrast, the time for light number 3, which is an example of the present invention, is approximately 80 hours, which is a significant improvement.

本発明鋼におけるNの添加効果は明番1と明番3とを比
較することにより明瞭となる。フェライト量がほぼ同一
のレベル(明番1. 3のいづれも約50%)の場合に
Nを添加することにより耐応力腐食割れ性が向上するこ
とがわかる。従って、本発明鋼はCβ−の存在する環境
下で耐応力腐食割れ性を要求される用途に好適である。
The effect of adding N in the steel of the present invention becomes clear by comparing Bright No. 1 and Bright No. 3. It can be seen that stress corrosion cracking resistance is improved by adding N when the amount of ferrite is at approximately the same level (approximately 50% for both numbers 1 and 3). Therefore, the steel of the present invention is suitable for applications requiring stress corrosion cracking resistance in an environment where Cβ- is present.

フェライト量の影響をみると、フェライト量が28%と
低い明番8の耐応力腐食割れ性は、5US829J1(
明番10)のそれと同程度にすぎない。耐応力腐食割れ
性を確保するためのフェライト量は少くとも30%であ
ることが必要である。
Looking at the influence of the ferrite content, the stress corrosion cracking resistance of Aki No. 8, which has a low ferrite content of 28%, is 5US829J1 (
It is only about the same level as that of Meiban 10). In order to ensure stress corrosion cracking resistance, the amount of ferrite must be at least 30%.

一方、フェライト量が74%と高い明番9は本発明例の
明番3に勝る耐応力腐食割れ性を示すが、その反面前記
のように靭性および時効後の延性に劣るので、フェライ
ト量の上限は70%に規定される。
On the other hand, light number 9, which has a high ferrite content of 74%, exhibits stress corrosion cracking resistance superior to the present invention example, light number 3, but on the other hand, as mentioned above, it is inferior in toughness and ductility after aging, so the ferrite content is low. The upper limit is set at 70%.

次に明番1の結果を見゛るとCoの添加が耐応力腐食割
れに顕著な効果を及ぼすことが認められる。
Next, looking at the results for Aki No. 1, it is recognized that the addition of Co has a significant effect on stress corrosion cracking resistance.

すなわち明番1はN量が0.02%と非常に低いが明番
10(SUS329J1)、明番18(CD−4MCu
)に比較するとより応力腐食割れに対してすぐれた抵抗
性を示す。これは構成元素がら見ると明らかにCoの効
果であり、本発明に於けるCoの添加の意義を如実に示
すものである。
In other words, the N content of light number 1 is very low at 0.02%, but light number 10 (SUS329J1), light number 18 (CD-4MCu)
) shows superior resistance to stress corrosion cracking. This is clearly an effect of Co when viewed from the constituent elements, and clearly shows the significance of the addition of Co in the present invention.

従って明番3と明番15がすぐれた耐応力腐食割れ性を
示すことは、上記のCo、Nの合金元素としての添加効
果並びにフェライト量のレベルを30%〜70%の範囲
に制御することの相乗効果に依存するのである。
Therefore, the fact that Ai No. 3 and Ai No. 15 exhibit excellent stress corrosion cracking resistance is due to the above-mentioned effect of adding Co and N as alloying elements and controlling the level of ferrite content within the range of 30% to 70%. It depends on the synergistic effect of

(4)腐食疲労強度 第3図に、人工海水中での小野式回転曲げ疲労試験結果
を示す(試験機回転数800Orpm)。
(4) Corrosion fatigue strength Figure 3 shows the results of the Ono rotary bending fatigue test in artificial seawater (testing machine rotation speed: 800 rpm).

人工海水は米国海事により規定される方法に従って調製
した。
Artificial seawater was prepared according to methods prescribed by the United States Maritime Administration.

本発明例である明番8は従来の二相合金であるCD−4
MCu(調香13)およびオーステナイト系ステンレス
鋼である5US816(調香11)に比し海水中での疲
労強度がすぐれている。特に4 X 107 サイクル
での調香13の腐食疲労強度が約22ktj/−である
のに対し、本発明例のそれは約82kq/−と、約10
A:g/−高い値を示す。
Ai number 8, which is an example of the present invention, is CD-4, which is a conventional two-phase alloy.
It has superior fatigue strength in seawater compared to MCu (Fragrance 13) and 5US816 (Fragrance 11), which is an austenitic stainless steel. In particular, the corrosion fatigue strength of perfume 13 at 4 x 107 cycles is about 22 ktj/-, whereas that of the example of the present invention is about 82 kq/-, which is about 10
A: Shows a high value of g/-.

また調香1と調香13を比較することによりCoの効果
が明確になる。すなわち調香1のN量は0.03%と非
常に低いレベルにあり、調香13疲労強度の向上に効果
的であることがわかる。
Furthermore, by comparing Perfume 1 and Perfume 13, the effect of Co becomes clear. In other words, it can be seen that the amount of N in Perfume 1 is at a very low level of 0.03%, which is effective in improving the fatigue strength of Perfume 13.

さらに調香1と調香3を比較することによりNの効果が
明確になる。このことはC1−を含む環境下での2相合
金の腐食疲労強度改善に対しNの添加が極めて有効なこ
とを示すもので、本発明鋼の最大の特徴の1つである。
Furthermore, by comparing Perfume 1 and Perfume 3, the effect of N becomes clear. This shows that the addition of N is extremely effective in improving the corrosion fatigue strength of a two-phase alloy in an environment containing C1-, and is one of the greatest features of the steel of the present invention.

以上の結果は、調香3が海水中で高い腐食疲労強度を有
するのは合金元素としてのN、Coの添加が相乗効果を
もたらすためであることを示して第 3 表 熱時効を受けた場合の衝撃吸収エネルギー(k’j −
m ) 第4表 以上のように、本発明の二相ステンレス鋼は、従来のF
e−Cr−Niベースの二相ステンレス鋼に比し、苛酷
な使用条件、とくに塩素イオン、硫化水素、炭酸ガスな
どの腐食因子を多量に含む環境での一般耐食性はもとよ
り、応力腐食割れ、孔食、すきま腐食などに対する抵抗
性が強く、かつ強度、延性などの機械的性質にすぐれる
。従って、例えば石油、天然ガス、海水のチューブイン
グ・ラインパイプなど、その他耐食性と機械的性質が要
求される用途において従来材にまさる耐久性、安定性を
もたらす。
The above results indicate that Perfume 3 has high corrosion fatigue strength in seawater because the addition of N and Co as alloying elements has a synergistic effect. Shock absorption energy (k'j −
m) As shown in Table 4 and above, the duplex stainless steel of the present invention
Compared to e-Cr-Ni-based duplex stainless steel, it has better general corrosion resistance under harsh operating conditions, especially in environments containing large amounts of corrosive factors such as chlorine ions, hydrogen sulfide, and carbon dioxide, as well as stress corrosion cracking and porosity. It has strong resistance to corrosion and crevice corrosion, and has excellent mechanical properties such as strength and ductility. Therefore, it provides greater durability and stability than conventional materials in applications requiring corrosion resistance and mechanical properties, such as tubing and line pipes for oil, natural gas, and sea water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱時効による衝撃特性の変化を示すグラフ、第
2図は耐応力腐食割れ特性を示すグラフ、第3図は回転
曲げ疲労試験における腐食疲労強度を示すグラフ、第4
図は本発明鋼の金属組織を示す図面代用顕微鏡写真であ
る。 代理人 弁理士 宮 崎 新八部 第1図 手続補正書 昭和60年 4月26日 1、事件の表示 昭和59年 特 許 願 第021388号2、発明の
名称 高耐食性高耐カ二相ステンレス鋼3、補正をする
者 事件との関係 特許出願人 4、代理人 6、補正により増加する発明の数 なし7、補正の対象 8、補正の内容 (1)明細書の「発明の詳細な説明」の欄+11 第1
1真下6行に「第4図」とあるを1第3図」に訂正。 (2)第13真下7行の行頭にr(1) Jとあるを削
除。 (3) 第15真下3行〜第17頁11行に「(2)熱
時効後の靭性・・・上限とされる。」とあるを削除。 (4)第18頁6行に「第4表」とあるを「第3表」に
訂正。 (5) 第19頁8行に「第4表」とあるを「第3表」
に訂正。 (6) 第20真下6〜5行に「第2図」とあるを「第
1図」に訂正。 (7) 第22真下5行に「第3図」とあるを「第2図
」に訂正。 (8) 第27頁1行の「第3表」、同頁2〜3行の「
熱時効・・・ (kg−m)Jおよび同頁の表を削除。 (9)第28頁1行に「第4表」とあるを[第3表」に
訂正。 (II)明細書の1図面の簡単な説明」の欄(1) 第
29頁13〜14行に「第1図は・・・示すグラフ、」
とあるを削除。 (2)第29頁14行に「第2図」とあるを「第1図」
に、同頁15行に「第3図」とあるを「第2図」に、お
よび同頁16行に「第4図」とあるを「第3図」にそれ
ぞれ訂正。 (l[[)図面 別紙のとおり (第1図を削除し、第2図を第1図に、第3図を第2図
に、および第4図を第3図にそれぞれ朱書のとおり訂正
)。 (以 上)
Figure 1 is a graph showing changes in impact properties due to thermal aging, Figure 2 is a graph showing stress corrosion cracking resistance, Figure 3 is a graph showing corrosion fatigue strength in rotary bending fatigue tests, and Figure 4 is a graph showing changes in impact properties due to thermal aging.
The figure is a photomicrograph substituted for a drawing showing the metallographic structure of the steel of the present invention. Agent Patent Attorney Miyazaki Shin VIII Part Figure 1 Procedural Amendment April 26, 1985 1, Case Description 1988 Patent Application No. 021388 2, Title of Invention Highly Corrosion-Resistant Highly Potassium-Resistant Duplex Stainless Steel 3. Relationship with the case of the person making the amendment Patent applicant 4, Agent 6, Number of inventions increased by amendment None 7, Subject of amendment 8, Contents of amendment (1) “Detailed description of the invention” in the specification Column +11 1st
In the 6th line directly below 1, the text ``Figure 4'' has been corrected to ``Figure 1 3''. (2) Delete r(1) J at the beginning of the 7th line directly below No. 13. (3) From line 3 directly below No. 15 to line 11 on page 17, the text "(2) Toughness after thermal aging... shall be the upper limit." has been deleted. (4) On page 18, line 6, "Table 4" was corrected to "Table 3." (5) On page 19, line 8, replace “Table 4” with “Table 3.”
Corrected. (6) Corrected "Figure 2" to "Figure 1" in lines 6-5 directly below No. 20. (7) In the 5th line directly below No. 22, "Figure 3" was corrected to "Figure 2." (8) “Table 3” on page 27, line 1, “Table 3” on page 27, lines 2-3
Thermal aging... (kg-m)J and the table on the same page have been deleted. (9) On page 28, line 1, "Table 4" was corrected to "Table 3." (II) "Brief explanation of one drawing of the specification" column (1) On page 29, lines 13-14, "Figure 1 is a graph showing..."
Deleted a certain thing. (2) On page 29, line 14, replace “Figure 2” with “Figure 1”
In line 15 of the same page, ``Figure 3'' was corrected to ``Figure 2,'' and on line 16 of the same page, ``Figure 4'' was corrected to ``Figure 3.'' (l[[) As shown in the attached drawing sheet (Deletion of Figure 1, correction of Figure 2 to Figure 1, Figure 3 to Figure 2, and Figure 4 to Figure 3 as indicated in red) . (that's all)

Claims (1)

【特許請求の範囲】[Claims] (1) C0,08%以下、Si 0.2〜2.0%、
Mn0、2〜2.0%、Cr24.0〜80.0%、N
i4.0〜9.0%、Mo 1.0〜5.0%、Cu 
O,5〜8.0%、Co 0.2〜4.0%、NO,0
5〜0.8%、残部実質的にFeからなり、かつ金属組
織におけるδ−フェライト相の面積率が30〜70%で
ある高耐食性高耐カ二相ステンレス鋼。
(1) C0.08% or less, Si 0.2-2.0%,
Mn0, 2-2.0%, Cr24.0-80.0%, N
i4.0~9.0%, Mo1.0~5.0%, Cu
O, 5-8.0%, Co 0.2-4.0%, NO, 0
5 to 0.8%, and the remainder substantially consists of Fe, and the area ratio of the δ-ferrite phase in the metal structure is 30 to 70%.
JP2138884A 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel Granted JPS60165362A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2138884A JPS60165362A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel
CA000473261A CA1242095A (en) 1984-02-07 1985-01-31 Ferritic-austenitic duplex stainless steel
EP85101255A EP0151487B1 (en) 1984-02-07 1985-02-06 Ferritic-austenitic duplex stainless steel
DE8585101255T DE3561162D1 (en) 1984-02-07 1985-02-06 Ferritic-austenitic duplex stainless steel
US07/622,401 US5238508A (en) 1984-02-07 1990-12-03 Ferritic-austenitic duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138884A JPS60165362A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel

Publications (2)

Publication Number Publication Date
JPS60165362A true JPS60165362A (en) 1985-08-28
JPH0232342B2 JPH0232342B2 (en) 1990-07-19

Family

ID=12053687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138884A Granted JPS60165362A (en) 1984-02-07 1984-02-07 Highly corrosion resistant and high yield strength two- phase stainless steel

Country Status (1)

Country Link
JP (1) JPS60165362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198448A (en) * 1988-02-03 1989-08-10 Kubota Ltd Two-phase stainless steel having excellent drill workability
JPH03146641A (en) * 1989-11-01 1991-06-21 Taiheiyo Tokushu Chuzo Kk Duplex stainless cast steel for manufacturing apparatus for wet type phosphoric acid
KR100989022B1 (en) * 2001-09-02 2010-10-20 산드빅 인터렉츄얼 프로퍼티 에이비 Duplex steel alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091516A (en) * 1973-12-14 1975-07-22
JPS50101213A (en) * 1974-01-07 1975-08-11
JPS52153821A (en) * 1976-06-17 1977-12-21 Nippon Yakin Kogyo Co Ltd High strength austenitic ferritic stainles steel
JPS5852464A (en) * 1981-09-22 1983-03-28 Kubota Ltd Two-phase stainless steel with high corrosion fatigue strength
JPS58144460A (en) * 1982-02-23 1983-08-27 Kubota Ltd Two-phase cast stainless steel having high corrosion resistant and high fatique strength
JPH0232343A (en) * 1988-07-21 1990-02-02 Konica Corp Device for processing silver halide photographic sensitive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091516A (en) * 1973-12-14 1975-07-22
JPS50101213A (en) * 1974-01-07 1975-08-11
JPS52153821A (en) * 1976-06-17 1977-12-21 Nippon Yakin Kogyo Co Ltd High strength austenitic ferritic stainles steel
JPS5852464A (en) * 1981-09-22 1983-03-28 Kubota Ltd Two-phase stainless steel with high corrosion fatigue strength
JPS58144460A (en) * 1982-02-23 1983-08-27 Kubota Ltd Two-phase cast stainless steel having high corrosion resistant and high fatique strength
JPH0232343A (en) * 1988-07-21 1990-02-02 Konica Corp Device for processing silver halide photographic sensitive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198448A (en) * 1988-02-03 1989-08-10 Kubota Ltd Two-phase stainless steel having excellent drill workability
JPH03146641A (en) * 1989-11-01 1991-06-21 Taiheiyo Tokushu Chuzo Kk Duplex stainless cast steel for manufacturing apparatus for wet type phosphoric acid
JPH0541692B2 (en) * 1989-11-01 1993-06-24 Taiheiyo Tokushu Chuzo Kk
KR100989022B1 (en) * 2001-09-02 2010-10-20 산드빅 인터렉츄얼 프로퍼티 에이비 Duplex steel alloy

Also Published As

Publication number Publication date
JPH0232342B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
US5238508A (en) Ferritic-austenitic duplex stainless steel
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
US5849111A (en) Duplex stainless steel
RU2421539C2 (en) Martensite stainless steel for welded structures
US6159310A (en) Wire for welding high-chromium steel
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
US5275893A (en) Line pipe having good corrosion-resistance and weldability
JPS60165363A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JPS6261107B2 (en)
EP0169373B1 (en) Machines or machine parts made of austenitic cast iron having resistance to stress corrosion cracking
JPS60165362A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
KR850001766B1 (en) Phosphirous containing seawater-resistance steel of improved weldability
JPS6389644A (en) High-strength ferritic steel for boiler steel tube
JP3164978B2 (en) High Cr steel welding method
JPS60165361A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JP3165902B2 (en) High Cr steel welding method
JPS60165364A (en) Highly corrosion resistant and high yield strength two-phase stainless steel
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JPS629661B2 (en)
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
CA1299071C (en) Method of making a duplex stainless steel and duplex stainless steel product with improved mechanical properties
Sagara et al. Corrosion Performances of Modified Grade-Duplex Stainless Steel for Line Pipe Usage in Slightly Sour Environment
JPS6043467A (en) Two-phase stainless steel
JPS63213633A (en) Highly corrosion resistant clad steel pipe for line pipe
JPH031372B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term