JP2691093B2 - High temperature corrosion resistant alloy for soda recovery boiler - Google Patents

High temperature corrosion resistant alloy for soda recovery boiler

Info

Publication number
JP2691093B2
JP2691093B2 JP3238007A JP23800791A JP2691093B2 JP 2691093 B2 JP2691093 B2 JP 2691093B2 JP 3238007 A JP3238007 A JP 3238007A JP 23800791 A JP23800791 A JP 23800791A JP 2691093 B2 JP2691093 B2 JP 2691093B2
Authority
JP
Japan
Prior art keywords
corrosion
less
alloy
high temperature
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3238007A
Other languages
Japanese (ja)
Other versions
JPH0570891A (en
Inventor
敏昭 西尾
正朝 篠原
一男 廣松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3238007A priority Critical patent/JP2691093B2/en
Publication of JPH0570891A publication Critical patent/JPH0570891A/en
Application granted granted Critical
Publication of JP2691093B2 publication Critical patent/JP2691093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は製紙工場のソーダ回収ボ
イラの過熱器管等の熱交換器並びにスペーサ等の付着金
物類等の材料に関し、一般ゴミ及び産業廃棄物を燃料と
する産業用ボイラ並びに粗悪油及び石炭を燃料とする事
業用ボイラの過熱器管及び付着金物類にも適用しうる材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger such as a superheater tube of a soda recovery boiler of a paper mill and materials such as spacers and other metal deposits, and an industrial boiler using general waste and industrial waste as fuel. Also, the present invention relates to a material that can be applied to superheater pipes and metal deposits of commercial boilers that use crude oil and coal as fuels.

【0002】[0002]

【従来の技術】ソーダ回収ボイラ過熱器管には熱効率の
向上(蒸気条件及び圧力の上昇)に伴い、低合金鋼か
ら、重量%にて、18%Cr含有のオーステナイトステ
ンレス鋼に移行し、更に現在では25%Cr含有の高N
オーステナイトステンレス鋼(特公昭50−8967号
公報)が使用されている。
2. Description of the Related Art In a soda recovery boiler superheater tube, due to improvement in thermal efficiency (increase in steam condition and pressure), low alloy steel is changed to austenitic stainless steel containing 18% Cr by weight%, and further, Currently, high N containing 25% Cr
Austenitic stainless steel (Japanese Patent Publication No. 50-8967) is used.

【0003】[0003]

【発明が解決しようとする課題】現在、ソーダ回収ボイ
ラでは排ガス規制等の点から燃焼温度等の変更が行われ
るようになってきており、このため腐食環境も変化して
いる。特に燃焼ガス中のSOx成分の減少に伴い、付着
灰中の炭酸塩濃度が増加することにより、浸炭を伴う腐
食が問題視されるようになっている。
At present, in the soda recovery boiler, the combustion temperature and the like are being changed from the viewpoint of exhaust gas regulations and the like, so that the corrosive environment is also changing. Particularly, as the SOx component in the combustion gas decreases, the concentration of carbonate in the adhering ash increases, and corrosion due to carburization has become a problem.

【0004】そこで、本発明では従来から主に検討され
てきた「材料に付着した燃焼灰等の溶融によって生じる
溶融塩腐食に対する耐食性」とともに、新たに問題視さ
れるようになった「燃焼ガス中に含まれる、あるいは材
料に付着した燃焼灰等に含まれるC成分によって生じる
浸炭現象を伴う腐食に対する耐食性」についても優れた
合金を提供しようとするものである。
Therefore, in the present invention, in addition to "corrosion resistance to molten salt corrosion caused by melting of combustion ash adhering to material" which has been mainly studied in the present invention, a new problem "in combustion gas It is intended to provide an alloy excellent in "corrosion resistance against corrosion accompanied by a carburizing phenomenon caused by a C component contained in combustion ash or the like contained in the material or the like".

【0005】ここで前者は耐粒界腐食性が、後者では耐
浸炭性が問題となる場合が多く、従来材である25%C
rオーステナイトステンレス鋼では耐粒界腐食性は優れ
ているものの耐浸炭性は不十分であり、1mm/年近い腐
食が生じている。なお、本発明では前述の2つの異った
環境での耐食性を合わせて、耐高温腐食性と呼ぶことと
する。
In the former case, intergranular corrosion resistance and in the latter case, carburization resistance often becomes a problem.
Although r-austenitic stainless steel has excellent intergranular corrosion resistance, carburization resistance is insufficient, and corrosion of about 1 mm / year occurs. In the present invention, the corrosion resistance in the above-mentioned two different environments will be collectively referred to as high temperature corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、 (1)重量にて、C:0.025%以下、Si:1%以
下、Mn:5%以下、P:0.04%以下、S:0.0
3%以下、Cr:22〜28%、Ni:25〜40%、
N:0.2〜0.4%とし、残部がFe及び不可避的不
純物からなり、溶融塩腐食及び浸炭を伴う腐食に対する
耐食性を備えたことを特徴とするソーダ回収ボイラ用高
温耐食合金。
Means for Solving the Problems (1) By weight, C: 0.025% or less, Si: 1% or less, Mn: 5% or less, P: 0.04% or less, S: 0.0
3% or less, Cr: 22-28%, Ni: 25-40%,
N: and from 0.2 to 0.4%, the balance Ri Do Fe and unavoidable impurities, to corrosion involving molten salt corrosion and carburizing
A high-temperature corrosion-resistant alloy for soda recovery boilers, which has corrosion resistance.

【0007】(2)上記(1)の成分に加えて、重量%
にて、Mo:3%以下、Nb:2%以下、Ti:0.5
%以下の1種又は2種以上を含み、溶融塩腐食及び浸炭
を伴う腐食に対する耐食性を備えたことを特徴とするソ
ーダ回収ボイラ用高温耐食合金。である。
(2) In addition to the above-mentioned component (1), weight%
At Mo: 3% or less, Nb: 2% or less, Ti: 0.5
% Or less of the observed including one or two or more, molten salt corrosion and carburizing
A high-temperature corrosion-resistant alloy for a soda recovery boiler, which is characterized by having corrosion resistance against corrosion due to corrosion. It is.

【0008】すなわち、本発明はCrを22〜28%と
高く維持したままCを0.025%以下に限定し、Nを
0.2〜0.4%添加することにより優れた耐粒界腐食
性を保ちつつ、Niを25〜40%添加することにより
耐浸炭性を向上したものである。
That is, the present invention provides excellent intergranular corrosion resistance by limiting C to 0.025% or less while maintaining Cr as high as 22 to 28% and adding N to 0.2 to 0.4%. Carburizing resistance is improved by adding Ni in an amount of 25 to 40% while maintaining the property.

【0009】[0009]

【作用】以下に成分の限定理由について説明する。 C;Cは400℃以上の高温環境下の使用中にCrと結
びつき、Cr236 等の炭化物を形成する。このため、
粒界近傍にCr欠乏層を形成し、粒界腐食を促進するの
で、できるだけ低いことが望ましい。このため、0.0
25%を上限とする。
The reason for limiting the components will be described below. C; C combines with Cr during use in a high temperature environment of 400 ° C. or higher to form a carbide such as Cr 23 C 6 . For this reason,
Since a Cr-deficient layer is formed in the vicinity of the grain boundaries to promote grain boundary corrosion, it is desirable that the Cr content be as low as possible. Therefore, 0.0
The upper limit is 25%.

【0010】Si;Siは結晶粒界への炭化物の析出を
促進するとともに、時効後靱性を阻害する為、上限を1
%とする。
Si; Si promotes the precipitation of carbides at the grain boundaries and inhibits the toughness after aging, so the upper limit is 1
%.

【0011】Mn;MnはCr236 の固溶度を増す元
素であり、粒界への炭化物の析出を抑制するが、多量添
加はσ相生成を促進するため、上限を5%とする。
Mn; Mn is an element that increases the solid solubility of Cr 23 C 6 and suppresses the precipitation of carbides at the grain boundaries. However, the addition of a large amount promotes σ phase formation, so the upper limit is made 5%. .

【0012】P,S;P,Sはいずれも粒界腐食を促進
するので、できるだけ低いことが望ましい。しかし、製
鋼上避けられない不純物である。Pの上限を0.04%
としたのは、これを越すと溶接性が著しく損なわれるか
らである。またSの上限を0.03%としたのは、これ
を越すと溶接性は勿論、熱間加工性も劣化するからであ
る。
P and S; P and S both promote intergranular corrosion, so it is desirable that they are as low as possible. However, it is an unavoidable impurity in steelmaking. The upper limit of P is 0.04%
The reason for this is that if it exceeds this value, the weldability is significantly impaired. The upper limit of S is set to 0.03% because if it exceeds this range, not only weldability but also hot workability deteriorates.

【0013】Cr;Crは耐高温腐食性に対し重要な成
分であり、0.025%以下の微量CによるCr236
の粒界析出に対しても、Cr欠乏層のCr量を維持すべ
く下限を22%とする。しかしCr量が28%を越すと
熱間加工性の劣化及びσ脆化が現れ易くなるため、上限
を28%とした。
Cr; Cr is an important component for high temperature corrosion resistance, and Cr 23 C 6 with a trace amount of C of 0.025% or less.
Even for the grain boundary precipitation of, the lower limit is set to 22% in order to maintain the Cr amount in the Cr-deficient layer. However, when the Cr content exceeds 28%, deterioration of hot workability and σ embrittlement are likely to occur, so the upper limit was made 28%.

【0014】Ni;Niはオーステナイト組織を安定化
する効果があるとともに、耐浸炭性を高める効果があ
る。耐浸炭性を確保するため、下限を25%とする。し
かし、Niの増加に伴い後述するNの固溶度が低下する
ため、上限を40%とする。
Ni: Ni has an effect of stabilizing the austenite structure and an effect of enhancing carburization resistance. In order to secure the carburization resistance, the lower limit is set to 25%. However, the solid solubility of N, which will be described later, decreases as Ni increases, so the upper limit is made 40%.

【0015】N;Nは高温強度を高めるとともに耐粒界
腐食性を向上させる効果がある。耐粒界腐食性を確保す
るため、下限を0.2%とする。しかしNはガス成分で
あるので気泡発生防止の面から、固溶し得る限度によっ
て上限が定まる。このNの固溶度はCr含有量の増加に
伴い増加し、Ni含有量の増加に伴って減少する。この
ため、Crの上限値28%、Niの下限値25%とした
場合を考慮してNの上限を0.4%とする。
N: N has the effect of increasing high temperature strength and improving intergranular corrosion resistance. In order to secure intergranular corrosion resistance, the lower limit is made 0.2%. However, since N is a gas component, from the viewpoint of preventing bubbles, the upper limit is determined by the limit of solid solution. The solid solubility of N increases as the Cr content increases, and decreases as the Ni content increases. Therefore, considering the case where the upper limit value of Cr is 28% and the lower limit value of Ni is 25%, the upper limit of N is set to 0.4%.

【0016】Mo;Moは耐粒界腐食性を向上させると
ともに、高温強度を向上させる効果がある。これらが特
に必要な場合に添加する。しかし熱間加工性を良好に保
つために、その添加量が制約されるので上限を3%とす
る。
Mo: Mo has the effect of improving intergranular corrosion resistance and also improving high temperature strength. These are added when particularly necessary. However, in order to maintain good hot workability, the amount added is limited, so the upper limit is made 3%.

【0017】Nb,Ti;Nb及びTiは耐粒界腐食性
を向上させるとともにクリープ破断強度を向上させる効
果がある。しかし過度の添加はNb及びTiの炭化物及
び窒化物の生成量が多くなり、クリープ破断強度及び清
浄度が逆に劣化してくるため、Nbの上限を2%及びT
iの上限を0.5%とする。
Nb, Ti; Nb and Ti have the effects of improving intergranular corrosion resistance and creep rupture strength. However, excessive addition increases the amount of carbides and nitrides of Nb and Ti and adversely deteriorates the creep rupture strength and cleanliness. Therefore, the upper limit of Nb is 2% and T
The upper limit of i is 0.5%.

【0018】[0018]

【実施例】実施例として用いた合金の化学成分を表Aに
示す。なお、表Aには本発明範囲外の比較合金と従来材
料の代表例としてSUS321HTB、SUS310S
TB及び特公昭50−8967号公報で知られている高
Nオーステナイトステンレス鋼を併せて示す。
EXAMPLES The chemical compositions of the alloys used as examples are shown in Table A. In Table A, SUS321HTB and SUS310S are representative examples of comparative alloys and conventional materials outside the scope of the present invention.
The high N austenitic stainless steels known from TB and Japanese Patent Publication No. 50-8967 are also shown.

【0019】本発明材料A〜I合金はNiが25%〜4
0%の範囲内にある。A〜E合金が第1発明材料、F〜
I合金が第2発明材料である。F合金はMoを1.96
%、G合金はNbを0.51%、H合金はTiを0.2
1%、I合金はMoを1.08%、Nbを0.37%含
有している。
The materials A to I of the present invention have a Ni content of 25% to 4%.
It is within the range of 0%. Alloys A to E are first invention materials, and F to
Alloy I is the second invention material. F alloy is Mo 1.96
%, The G alloy contains 0.51% of Nb, and the H alloy contains 0.2 of Ti.
1%, the I alloy contains 1.08% Mo and 0.37% Nb.

【0020】これに対して比較合金として用いたJ−O
合金はそれぞれ次の点が本発明成分範囲外である。すな
わち、J及びK合金はNiが19.8%及び22.8%
と低い。L及びM合金はNが0.09%及び0.17%
と低い。N合金はCが0.04%と高い。O合金はCr
が20.1%と低い。
On the other hand, JO used as a comparative alloy
The following points are out of the range of the components of the present invention. That is, in the J and K alloys, Ni is 19.8% and 22.8%.
And low. L and M alloys have 0.09% and 0.17% N
And low. N alloy has a high C of 0.04%. O alloy is Cr
Is as low as 20.1%.

【0021】また、従来材料のP,Q及びR合金はそれ
ぞれ、SUS321HTB、SUS310STB及び高
Nオーステナイトステンレス鋼であり、P及びQ合金は
Nを添加しておらず、R合金はNiが低く抑えられてい
る。
The conventional P, Q and R alloys are SUS321HTB, SUS310STB and high N austenitic stainless steel, respectively. The P and Q alloys do not contain N and the R alloy has a low Ni content. ing.

【0022】表Bに本発明合金、比較合金及び従来材料
の以下に示す2種の腐食環境下で加速試験を行い、粒界
腐食深さ及び全面腐食量を測定した結果を示す。これら
の腐食環境はソーダ回収ボイラ内で生じ得る溶融塩腐食
及び浸炭を伴う腐食を模擬したもので、供試材は以下に
示す模擬燃焼灰中に埋没し、模擬燃焼ガス気流中で腐食
試験を行った。
Table B shows the results of measuring the intergranular corrosion depth and the amount of general corrosion by performing an accelerated test in the following two types of corrosive environments of the alloy of the present invention, the comparative alloy and the conventional material. These corrosive environments simulate molten salt corrosion and corrosion accompanied by carburization that may occur in the soda recovery boiler.The test material is buried in the simulated combustion ash shown below and subjected to a corrosion test in a simulated combustion gas flow. went.

【0023】 (1)高K高Cl環境(溶融塩腐食を生じる) 試験温度:550℃、試験時間:100時間 模擬燃焼灰組成(混合比):Na2 SO4 :K2 SO4 :NaCl= 3:2:1 模擬燃焼ガス組成:0.05%SO2 +5%O2 +10%CO2 +N2 (1) High K high Cl environment (causing molten salt corrosion) Test temperature: 550 ° C., test time: 100 hours Simulated combustion ash composition (mixing ratio): Na 2 SO 4 : K 2 SO 4 : NaCl = 3: 2: 1 Simulated combustion gas composition: 0.05% SO 2 + 5% O 2 + 10% CO 2 + N 2 balance

【0024】 (2) 高CO3 環境(浸炭を伴う腐食を生じる) 試験温度:550℃、試験時間:150時間 模擬燃焼灰組成(混合比):Na2 SO4 :K2 SO4 :NaCl: Na2 CO3 =4:1:1:4 模擬燃焼ガス組成:0.05%SO2 +5%O2 +10%CO2 +N2 (2) High CO 3 environment (causing corrosion accompanied by carburization) Test temperature: 550 ° C., test time: 150 hours Simulated combustion ash composition (mixing ratio): Na 2 SO 4 : K 2 SO 4 : NaCl: Na 2 CO 3 = 4: 1: 1: 4 Simulated combustion gas composition: 0.05% SO 2 + 5% O 2 + 10% CO 2 + N 2 balance

【0025】供試材は20w×20リットル×3tmm
の形状に機械加工後、全面600番エメリ研磨を行い、
試験前の寸法及び重量測定を行った。試験後、腐食によ
り生じたスケールを除去し、重量測定及び縦断面の粒界
腐食深さ測定を行った。
The test material is 20w × 20 liters × 3tmm
After machining into the shape of No. 6, the whole surface is subjected to No. 600 emery polishing,
The dimensions and weights before the test were measured. After the test, the scale generated by the corrosion was removed, and the weight measurement and the intergranular corrosion depth of the vertical section were measured.

【0026】表Bによれば、本発明材料A〜I合金はい
ずれも前述の高K高Cl環境下での粒界腐食深さは0μ
mであり、全面腐食量は従来材料程度以下で、これはソ
ーダ回収ボイラの材料選定で目安として用いられる0.
2mm/年以下であり、優れた耐粒界腐食性及び耐食性
を有するといえる。また前述の高CO3 環境下での全面
腐食量は従来材料の2分の1程度以下で、前述の目安
0.2mm/年以下であり、優れた耐食性、すなわち耐
浸炭性を有するといえる。以上から本発明合金は優れた
耐高温腐食性を有するといえる。
According to Table B, the alloys A to I of the present invention all have an intergranular corrosion depth of 0 μ in the above-mentioned high K and high Cl environment.
The amount of general corrosion is less than or equal to that of conventional materials, which is used as a standard in selecting materials for soda recovery boilers.
It is 2 mm / year or less, and can be said to have excellent intergranular corrosion resistance and corrosion resistance. Further, the amount of general corrosion under the above-mentioned high CO 3 environment is about half or less of the conventional material and the above-mentioned guideline is 0.2 mm / year or less, and it can be said that it has excellent corrosion resistance, that is, carburization resistance. From the above, it can be said that the alloy of the present invention has excellent hot corrosion resistance.

【0027】これに対して比較合金L〜Q合金並びに従
来材料P及びQ合金は高K高Cl環境中で粒界腐食を生
じており、耐粒界腐食性が不足しているといえる。ここ
で本発明合金A〜E合金及び比較合金L及びMについて
N含有量と粒界腐食深さの関係をプロットすると、図1
のようにN含有量の増加とともに粒界腐食深さが減少
し、本発明のN含有量の下限値0.2%以上では粒界腐
食深さは0μmであることが分かる。ただし、N含有量
が0.2%以上でも、C含有量が0.025%以上であ
るN合金及びCr含有量が22%以下であるO合金につ
いては、ともに粒界腐食を生じている。よって前述のよ
うに耐粒界腐食性を確保するためには、Cr、C及びN
がすべて条件を満たす必要があることが分かる。
On the other hand, the comparative alloys L to Q and the conventional materials P and Q alloys undergo intergranular corrosion in a high K high Cl environment, and it can be said that the intergranular corrosion resistance is insufficient. Here, when the relationship between the N content and the intergranular corrosion depth is plotted for the alloys A to E of the present invention and the comparative alloys L and M, FIG.
As described above, the intergranular corrosion depth decreases as the N content increases, and it can be seen that the intergranular corrosion depth is 0 μm when the lower limit of the N content in the present invention is 0.2% or more. However, even when the N content is 0.2% or more, intergranular corrosion occurs in both the N alloy having a C content of 0.025% or more and the O alloy having a Cr content of 22% or less. Therefore, as described above, in order to secure the intergranular corrosion resistance, Cr, C and N are used.
It turns out that all must satisfy the conditions.

【0028】また比較材料J,K及びO合金並びに従来
材料P〜R合金は、高CO3 環境中で前述の目安0.2
mm/年以上であり、耐食性、すなわち、耐浸炭性が不
足しているといえる。ここで本発明合金A〜E及び比較
合金J及びKについてNi含有量と高CO3 環境下での
全面腐食量との関係をプロットすると、図2のようにN
i含有量の増加に伴って全面腐食量が減少していること
が分かる。すなわち、本発明のNi含有量の下限値25
%では、全面腐食量は前述の目安0.2mm/年以下と
なっていることが分かる。ただし、Ni含有量が25%
以上でもCr量が22%以下であるO合金は0.22m
m/年と大きな全面腐食量を示している。これは前述の
ようにCrは耐食性に大きな影響を与える元素であり、
Niにより耐浸炭性が向上したとしても、Cr含有量が
低いと本来の耐食性が不十分となるためである。
Further, the comparative materials J, K and O alloys and the conventional materials P to R alloys have the above-mentioned standard of 0.2 in a high CO 3 environment.
mm / year or more, and it can be said that the corrosion resistance, that is, the carburization resistance is insufficient. Here, when the relationship between the Ni content and the general corrosion amount under the high CO 3 environment is plotted for the alloys A to E of the present invention and the comparative alloys J and K, N is as shown in FIG.
It can be seen that the amount of general corrosion decreases as the i content increases. That is, the lower limit of the Ni content of the present invention is 25
In%, it can be seen that the amount of general corrosion is 0.2 mm / year or less as the above-mentioned standard. However, the Ni content is 25%
Above all, the O alloy with a Cr content of 22% or less is 0.22 m.
It shows a large amount of general corrosion of m / year. As described above, Cr is an element that has a great influence on the corrosion resistance,
This is because even if the carburization resistance is improved by Ni, the original corrosion resistance becomes insufficient if the Cr content is low.

【0029】また、第2発明合金はクリープ破断強度も
良好で、例えばG合金では Larson-Millerパラメータ法
による600℃クリープ破断強度の105 時間外挿値
が、16.7kgf/mm2 であり、通産省技術基準に
規定されたSUS321HTBの600℃許容引張応力
からの計算値(許容引張応力≒0.6)11.5kgf
/mm2 より高い値を有している。
The second invention alloy also has a good creep rupture strength. For example, in the case of the G alloy, the 10 5 hour extrapolated value of the 600 ° C. creep rupture strength by the Larson-Miller parameter method is 16.7 kgf / mm 2 . Calculated value from 600 ° C allowable tensile stress of SUS321HTB stipulated in MITI technical standard (allowable tensile stress ≈ 0.6) 11.5kgf
It has a value higher than / mm 2 .

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】回収ボイラ等のような苛酷な腐食環境で
優れた耐高温腐食性を有する合金を提供することが可能
となり、経済上極めて有用な効果がもたらされる。
EFFECT OF THE INVENTION It becomes possible to provide an alloy having excellent high temperature corrosion resistance in a severe corrosive environment such as a recovery boiler, which brings about an extremely economical effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金のN含有量と粒界腐食深さの関係を
示す図表
FIG. 1 is a chart showing the relationship between the N content and the intergranular corrosion depth of the alloy of the present invention.

【図2】本発明合金のNi含有量と高CO3 環境下での
全面腐食量の関係を示す図表
FIG. 2 is a chart showing the relationship between the Ni content of the alloy of the present invention and the amount of general corrosion in a high CO 3 environment.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量にて、C:0.025%以下、S
i:1%以下、Mn:5%以下、P:0.04%以下、
S:0.03%以下、Cr:22〜28%、Ni:25
〜40%、N:0.2〜0.4%とし、残部がFe及び
不可避的不純物からなり、溶融塩腐食及び浸炭を伴う腐
食に対する耐食性を備えたことを特徴とするソーダ回収
ボイラ用高温耐食合金。
1. By weight, C: 0.025% or less, S
i: 1% or less, Mn: 5% or less, P: 0.04% or less,
S: 0.03% or less, Cr: 22 to 28%, Ni: 25
To 40% N: and 0.2 to 0.4%, the balance Ri Do Fe and inevitable impurities, corrosion involving molten salt corrosion and carburizing
A high temperature corrosion resistant alloy for a soda recovery boiler, which has corrosion resistance against corrosion .
【請求項2】 請求項1の成分に加えて、重量%にて、
Mo:3%以下、Nb:2%以下、Ti:0.5%以下
の1種又は2種以上を含み、溶融塩腐食及び浸炭を伴う
腐食に対する耐食性を備えたことを特徴とするソーダ回
収ボイラ用高温耐食合金。
2. In addition to the components of claim 1, in weight percent,
Mo: 3% or less, Nb: 2% or less, Ti: see contains one or more than 0.5%, accompanied by a molten salt corrosion and carburizing
A high temperature corrosion resistant alloy for a soda recovery boiler, which has corrosion resistance against corrosion .
JP3238007A 1991-09-18 1991-09-18 High temperature corrosion resistant alloy for soda recovery boiler Expired - Fee Related JP2691093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238007A JP2691093B2 (en) 1991-09-18 1991-09-18 High temperature corrosion resistant alloy for soda recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238007A JP2691093B2 (en) 1991-09-18 1991-09-18 High temperature corrosion resistant alloy for soda recovery boiler

Publications (2)

Publication Number Publication Date
JPH0570891A JPH0570891A (en) 1993-03-23
JP2691093B2 true JP2691093B2 (en) 1997-12-17

Family

ID=17023758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238007A Expired - Fee Related JP2691093B2 (en) 1991-09-18 1991-09-18 High temperature corrosion resistant alloy for soda recovery boiler

Country Status (1)

Country Link
JP (1) JP2691093B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570892A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler
JP3104622B2 (en) * 1996-07-15 2000-10-30 住友金属工業株式会社 Nickel-based alloy with excellent corrosion resistance and workability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201759A (en) * 1985-03-04 1986-09-06 Sumitomo Metal Ind Ltd High strength and toughness welded steel pipe for line pipe
JPS6383248A (en) * 1986-09-25 1988-04-13 Nkk Corp High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture
JPH0570892A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler

Also Published As

Publication number Publication date
JPH0570891A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
EP0151487B1 (en) Ferritic-austenitic duplex stainless steel
JP4428237B2 (en) High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP4390089B2 (en) Ni-based alloy
JP6016331B2 (en) Austenitic stainless steel with excellent corrosion resistance and brazing
JP4656251B1 (en) Ni-based alloy material
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
US5879818A (en) Nickel-based alloy excellent in corrosion resistance and workability
JPWO2006106944A1 (en) Austenitic stainless steel
KR20040029142A (en) Duplex steel alloy
JP2005336599A (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
US4942922A (en) Welded corrosion-resistant ferritic stainless steel tubing having high resistance to hydrogen embrittlement and a cathodically protected heat exchanger containing the same
JP2002529599A (en) New uses for stainless steel with seawater applicability
JP2691093B2 (en) High temperature corrosion resistant alloy for soda recovery boiler
JP2002249838A (en) CORROSION-RESISTANT AND HEAT-RESISTANT Ni ALLOY FOR FOSSIL FUEL COMBUSTION EQUIPMENT
JP3960832B2 (en) High corrosion resistant heat resistant cast steel
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JPH0570892A (en) High temperature corrosion resisting alloy for soda recovery boiler
JPH0570898A (en) Material with high temperature corrosion resistance for heat exchanger
JPH06207238A (en) High-temperature corrosion resistant alloy for soda recovering boiler
GB2123437A (en) Dual phase stainless steel suitable for use in sour wells
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JPS629661B2 (en)
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
Niespodziany et al. Alloy UNS N06058: A solution for demanding applications where common members of the Ni-Cr-Mo alloys experience their limits

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805

LAPS Cancellation because of no payment of annual fees