JPH0570892A - High temperature corrosion resisting alloy for soda recovery boiler - Google Patents

High temperature corrosion resisting alloy for soda recovery boiler

Info

Publication number
JPH0570892A
JPH0570892A JP23800891A JP23800891A JPH0570892A JP H0570892 A JPH0570892 A JP H0570892A JP 23800891 A JP23800891 A JP 23800891A JP 23800891 A JP23800891 A JP 23800891A JP H0570892 A JPH0570892 A JP H0570892A
Authority
JP
Japan
Prior art keywords
alloy
high temperature
corrosion
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23800891A
Other languages
Japanese (ja)
Inventor
Toshiaki Nishio
敏昭 西尾
Masatomo Shinohara
正朝 篠原
Kazuo Hiromatsu
一男 廣松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23800891A priority Critical patent/JPH0570892A/en
Publication of JPH0570892A publication Critical patent/JPH0570892A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior high temp. corrosion resistance under a severe corrosive environment by controlling C content while maintaining Cr content at high value and also adding specific amounts of N and Ni. CONSTITUTION:The alloy has a composition consisting of, by weight, <=0.025% C, <=1% Si, <=5% Mn, <=0.04% P, <=0.03% S, 27-40% Cr, 35-55% Ni, 0.2-0.45% N, and the balance Fe with inevitable impurities. Further, if necessary, one or more kinds among <=3% Mo, <=2% Nb, and <=0.5% Ti are incorporated. Because this alloy has superior high temp. corrosion resistance under a severe corrosive environment, such as soda recovery boiler, and also has excellent carburizing resistance under a high CO3 environment, a high temp. and high pressure boiler can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は製紙工場のソーダ回収ボ
イラの過熱器管等の熱交換器並びにスペーサ等の付着金
物類等の材料に関し、一般ゴミ及び産業廃棄物を燃料と
する産業用ボイラ並びに粗悪油及び石炭を燃料とする事
業用ボイラの過熱器管及び付着金物類にも適用しうる材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger such as a superheater tube of a soda recovery boiler of a paper mill and materials such as spacers and other metal deposits, and an industrial boiler using general waste and industrial waste as fuel. Also, the present invention relates to a material that can be applied to superheater pipes and metal deposits of commercial boilers that use crude oil and coal as fuel.

【0002】[0002]

【従来の技術】ソーダ回収ボイラ過熱器管には熱効率の
向上(蒸気条件及び圧力の上昇)に伴い、低合金鋼か
ら、重量%にて、18%Cr含有のオーステナイトステ
ンレス鋼に移行し、更に現在では25%Cr含有の高N
オーステナイトステンレス鋼(特公昭50−8967号
公報)が使用されている。
2. Description of the Related Art In a soda recovery boiler superheater tube, due to improvement in thermal efficiency (increase in steam condition and pressure), low alloy steel is changed to austenitic stainless steel containing 18% Cr by weight%. Currently, high N containing 25% Cr
Austenitic stainless steel (Japanese Patent Publication No. 50-8967) is used.

【0003】[0003]

【発明が解決しようとする課題】現在、熱効率をより向
上させる目的で、更に蒸気条件の高温高圧化が検討され
ており、より苛酷な条件のもとで耐高温腐食性の優れた
材料が望まれている。こゝにおいて、耐高温腐食性とは
以下の2つの性質を同時に有する場合をいう。 (1)材料に密着した燃焼灰等の溶融によって生じる溶
融塩腐食に対する耐食性。この場合、特に耐粒界腐食性
が問題となる場合が多い。 (2)燃焼ガスに含まれる、あるいは材料に付着した燃
焼灰等に含まれるC成分によって生じる浸炭を伴う腐食
に対する耐食性。一般に浸炭が生じると耐食性は著しく
劣化するため、この場合、特に耐浸炭性が問題となる場
合が多い。
At present, for the purpose of further improving the thermal efficiency, further high temperature and high pressure steam conditions are being studied, and a material excellent in high temperature corrosion resistance under more severe conditions is desired. It is rare. Here, the high temperature corrosion resistance refers to the case where the following two properties are simultaneously present. (1) Corrosion resistance against molten salt corrosion caused by melting of combustion ash or the like that is in close contact with the material. In this case, intergranular corrosion resistance is often a problem. (2) Corrosion resistance to corrosion accompanied by carburization generated by the C component contained in the combustion gas or contained in the combustion ash adhered to the material. In general, when carburization occurs, corrosion resistance is significantly deteriorated, and in this case, carburization resistance is often a problem.

【0004】従来材料では蒸気条件の高温高圧化に伴う
メタル温度の上昇により、耐高温腐食性、特に耐浸炭性
の不足し、25%Cr含有の高Nオーステナイトステン
レス鋼においても1mm/年近い腐食が生じている。
[0004] With conventional materials, high temperature corrosion due to high temperature and high pressure under steam conditions results in insufficient high temperature corrosion resistance, especially carburization resistance, and even in high N austenitic stainless steel containing 25% Cr, corrosion of nearly 1 mm / year is achieved. Is occurring.

【0005】本発明は上記技術水準及び上記要望に応
じ、耐高温腐食性に優れた合金を提供しようとするもの
である。
According to the above-mentioned state of the art and the above-mentioned demands, the present invention aims to provide an alloy excellent in high-temperature corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明は (1)重量%にて、C:0.025%以下、Si:1%
以下、Mn:5%以下、P:0.04%以下、S:0.
03%以下、Cr:27〜40%、Ni:35〜55
%、N:0.2〜0.45%とし、残部がFe及び不可
避的不純物からなることを特徴とするソーダ回収ボイラ
用高温耐食合金。
MEANS FOR SOLVING THE PROBLEMS The present invention is (1) in% by weight, C: 0.025% or less, Si: 1%
Hereinafter, Mn: 5% or less, P: 0.04% or less, S: 0.
03% or less, Cr: 27-40%, Ni: 35-55
%, N: 0.2 to 0.45%, and the balance being Fe and inevitable impurities, a high temperature corrosion resistant alloy for a soda recovery boiler.

【0007】(2)上記(1)の成分に加えて、重量%
にてMo:3%以下、Nb:2%以下、Ti:0.5%
以下の1種又は2種以上を含むことを特徴とするソーダ
回収ボイラ用高温耐食合金。である。
(2) In addition to the above component (1), weight%
Mo: 3% or less, Nb: 2% or less, Ti: 0.5%
A high temperature corrosion resistant alloy for a soda recovery boiler, characterized in that it contains one or more of the following. Is.

【0008】すなわち、本発明はCrを27〜40%と
高く維持したままCを0.025%以下に限定し、Nを
0.2〜0.45%添加することにより優れた耐粒界腐
食性を保ちつつ、Niを35〜55%添加することによ
り耐浸炭性を向上したものである。
That is, the present invention provides excellent intergranular corrosion resistance by limiting C to 0.025% or less while maintaining Cr as high as 27 to 40% and adding N to 0.2 to 0.45%. The carburization resistance is improved by adding 35 to 55% of Ni while maintaining the property.

【0009】[0009]

【作用】以下に成分の限定理由について説明する。C;
Cは400℃以上の高温環境下の使用中にCrと結びつ
き、Cr236 等の炭化物を形成する。このため、粒界
近傍にCr欠乏層を形成し、粒界腐食を促進するので、
できるだけ低いことが望ましい。このため、0.025
%を上限とする。
The reason for limiting the components will be described below. C;
C combines with Cr during use in a high temperature environment of 400 ° C. or higher to form a carbide such as Cr 23 C 6 . Therefore, a Cr-deficient layer is formed in the vicinity of the grain boundary to promote grain boundary corrosion.
It is desirable to be as low as possible. Therefore, 0.025
% Is the upper limit.

【0010】Si;Siは結晶粒界への炭化物の析出を
促進するとともに、時効後靱性を阻害する為、上限を1
%とする。
Si: Si promotes the precipitation of carbides at the grain boundaries and inhibits the toughness after aging, so the upper limit is 1
%.

【0011】Mn;MnはCr236 の固溶度を増す元
素であり、粒界への炭化物の析出を抑制するが、多量添
加はσ相生成を促進するため、上限を5%とする。
Mn; Mn is an element that increases the solid solubility of Cr 23 C 6 and suppresses the precipitation of carbides at the grain boundaries. However, the addition of a large amount promotes σ phase formation, so the upper limit is made 5%. ..

【0012】P,S;P,Sはいずれも粒界腐食を促進
するので、できるだけ低いことが望ましい。しかし、製
鋼上避けられない不純物である。Pの上限を0.04%
としたのは、これを越すと溶接性が著しく損なわれるか
らである。またSの上限を0.03%としたのは、これ
を越すと溶接性は勿論、熱間加工性も劣化するからであ
る。
P and S; P and S both promote intergranular corrosion, so it is desirable that they be as low as possible. However, it is an unavoidable impurity in steelmaking. The upper limit of P is 0.04%
The reason for this is that if it exceeds this value, the weldability is significantly impaired. The upper limit of S is set to 0.03% because if it exceeds this range, not only weldability but also hot workability deteriorates.

【0013】Cr;Crは耐高温腐食性に対し重要な成
分であり、良好な耐高温腐食性を維持するため、下限を
27%とする。しかしCrはオーステナイト組織を不安
定化する元素であり、過剰な添加は靱性の低下をもたら
すため、上限を40%とする。
Cr: Cr is an important component for high temperature corrosion resistance, and the lower limit is 27% in order to maintain good high temperature corrosion resistance. However, Cr is an element that destabilizes the austenite structure, and excessive addition causes a decrease in toughness, so the upper limit is made 40%.

【0014】Ni;Niはオーステナイト組織を安定化
する効果があるとともに、耐浸炭性を高める効果があ
る。耐浸炭性を確保するため、下限を35%とする。し
かし、Niの増加に伴い後述するNの固溶度が低下する
ため、上限を55%とする。
Ni: Ni has an effect of stabilizing the austenite structure and an effect of enhancing carburization resistance. In order to secure the carburization resistance, the lower limit is set to 35%. However, since the solid solubility of N, which will be described later, decreases with an increase in Ni, the upper limit is set to 55%.

【0015】N;Nは高温強度を高めるとともに耐粒界
腐食性を向上させる効果がある。耐粒界腐食性を確保す
るため、下限を0.2%とする。しかしNはガス成分で
あるので、気泡発生防止の面から、固溶し得る限度によ
って上限が定まる。このNの固溶度はCr含有量の増加
に伴い増加し、Ni含有量の増加に伴って減少する。こ
のため、Crの上限値40%、Niの下限値35%とし
た場合を考慮してNの上限を0.45%とする。
N: N has the effect of increasing high temperature strength and improving intergranular corrosion resistance. In order to secure intergranular corrosion resistance, the lower limit is made 0.2%. However, since N is a gas component, from the viewpoint of preventing bubbles from being generated, the upper limit is determined by the limit of solid solution. The solid solubility of N increases as the Cr content increases, and decreases as the Ni content increases. Therefore, in consideration of the case where the upper limit value of Cr is 40% and the lower limit value of Ni is 35%, the upper limit of N is set to 0.45%.

【0016】Mo;Moは耐粒界腐食性を向上させると
ともに、高温強度を向上させる効果がある。これらが特
に必要な場合に添加する。しかし熱間加工性を良好に保
つために、その添加量が制約されるので上限を3%とす
る。
Mo: Mo has the effect of improving intergranular corrosion resistance and improving high temperature strength. These are added when particularly necessary. However, in order to maintain good hot workability, the amount added is limited, so the upper limit is made 3%.

【0017】Nb,Ti;Nb及びTiは耐粒界腐食性
を向上させるとともにクリープ破断強度を向上させる効
果がある。しかし過度の添加はNb及びTiの炭化物及
び窒化物の生成量が多くなり、クリープ破断強度及び清
浄度が逆に劣化してくるため、Nbの上限を2%及びT
iの上限を0.5%とする。
Nb, Ti; Nb and Ti have the effect of improving intergranular corrosion resistance and creep rupture strength. However, excessive addition causes a large amount of Nb and Ti carbides and nitrides to be produced, which in turn deteriorates creep rupture strength and cleanliness. Therefore, the upper limit of Nb is 2% and T
The upper limit of i is 0.5%.

【0018】[0018]

【実施例】実施例として用いた合金の化学成分を表Aに
示す。なお、表Aには本発明範囲外の比較合金と従来材
料の代表例としてSUS321HTB、SUS310S
TB及び特公昭50−8967号公報で知られる高Nオ
ーステナイトステンレス鋼を併せて示す。
EXAMPLES Table A shows the chemical composition of the alloys used as examples. In Table A, SUS321HTB and SUS310S are shown as representative examples of comparative alloys and conventional materials outside the scope of the present invention.
The high N austenitic stainless steels known from TB and Japanese Patent Publication No. 50-8967 are also shown.

【0019】本発明材料A〜I合金はCrが27%〜4
0%、Niが35%〜55%の範囲内にある。A〜E合
金が第1発明材料、F〜I合金が第2発明材料である。
F合金はMoを2.11%、G合金はNbを0.62
%、H合金はTiを0.35%、I合金はMoを1.5
7%、Nbを0.44%含有している。
The materials A to I of the present invention contain 27% to 4% of Cr.
0% and Ni are in the range of 35% to 55%. The A to E alloys are the first invention materials, and the F to I alloys are the second invention materials.
2.11% Mo for F alloy and 0.62 Nb for G alloy
%, H alloy 0.35% Ti, I alloy 1.5 Mo
It contains 7% and 0.44% Nb.

【0020】これに対して比較合金として用いたJ−O
合金はそれぞれ次の点が本発明成分範囲外である。すな
わち、J及びK合金はCrが25.4%及び22.1%
と低い。L及びM合金はNiが32.8%及び29.6
%と低い。N合金はNが0.12%と高い。O合金はC
が0.046%と高い。
On the other hand, JO used as a comparative alloy
The following points are out of the range of the composition of the present invention. That is, in the J and K alloys, Cr is 25.4% and 22.1%.
And low. The L and M alloys have Ni of 32.8% and 29.6.
% Is low. N alloy has a high N content of 0.12%. O alloy is C
Is as high as 0.046%.

【0021】また従来材料のP,Q及びR合金はそれぞ
れ、SUS321HTB、SUS310STB及び高N
オーステナイトステンレス鋼であり、Cr及びNiが低
く抑えられている。またP及びQ合金はNが添加されて
いない。
The conventional materials P, Q and R alloys are SUS321HTB, SUS310STB and high N, respectively.
Austenitic stainless steel with low Cr and Ni. N is not added to the P and Q alloys.

【0022】表Bに本発明合金、比較合金及び従来材料
の以下に示す2種の腐食環境下で加速試験を行い、粒界
腐食深さ及び全面腐食量を測定した結果を示す。これら
の腐食環境はソーダ回収ボイラ内で生じ得る溶融塩腐食
及び浸炭を伴う腐食を模擬したもので、供試材は以下に
示す模擬燃焼灰中に埋没し、模擬燃焼ガス気流中で腐食
試験を行った。
Table B shows the results of measuring the intergranular corrosion depth and the general corrosion amount by carrying out an accelerated test in the following two kinds of corrosive environments of the alloy of the present invention, the comparative alloy and the conventional material. These corrosive environments simulate molten salt corrosion and corrosion accompanied by carburization that may occur in the soda recovery boiler.The test material is buried in the simulated combustion ash shown below and subjected to a corrosion test in a simulated combustion gas flow. went.

【0023】 (1)高K高Cl環境(溶融塩腐食を生じる) 試験温度:570℃、試験時間:100時間 模擬燃焼灰組成(混合比):Na2 SO4 :K2 SO4 :NaCl= 5:1:1 模擬燃焼ガス組成:0.1%SO2 +5%O2 +5%CO2 +N2 (1) High K high Cl environment (causes molten salt corrosion) Test temperature: 570 ° C., test time: 100 hours Simulated combustion ash composition (mixing ratio): Na 2 SO 4 : K 2 SO 4 : NaCl = 5: 1: 1 Simulated combustion gas composition: 0.1% SO 2 + 5% O 2 + 5% CO 2 + N 2 balance

【0024】 (2) 高CO3 環境(浸炭を伴う腐食を生じる) 試験温度:570℃、試験時間:150時間 模擬燃焼灰組成(混合比):Na2 SO4 :K2 SO4 :NaCl: Na2 CO3 =4:1:1:4 模擬燃焼ガス組成:0.05%SO2 +5%O2 +10%CO2 +N2 (2) High CO 3 environment (causes corrosion accompanied by carburization) Test temperature: 570 ° C., test time: 150 hours Simulated combustion ash composition (mixing ratio): Na 2 SO 4 : K 2 SO 4 : NaCl: Na 2 CO 3 = 4: 1: 1: 4 Simulated combustion gas composition: 0.05% SO 2 + 5% O 2 + 10% CO 2 + N 2 balance

【0025】供試材は20w×20リットル×3tmm
の形状に機械加工後、全面600番エメリ研磨を行い、
試験前の寸法及び重量測定を行った。試験後、腐食によ
り生じたスケールを除去し、重量測定及び縦断面の粒界
腐食深さ測定を行った。
The test material is 20w × 20 liters × 3tmm
After machining into the shape of No. 6, the entire surface is subjected to No. 600 emery polishing,
The dimensions and weights before the test were measured. After the test, the scale produced by the corrosion was removed, and the weight measurement and the intergranular corrosion depth of the longitudinal section were measured.

【0026】表Bによれば、本発明材料A〜I合金はい
ずれも前述の高K高Cl環境下での粒界腐食深さは0μ
mであり、全面腐食量は従来材料の2分の1程度以下
で、これはソーダ回収ボイラの材料選定で目安として用
いられる0.2mm/年以下であり、優れた耐粒界腐食
性及び耐食性を有するといえる。また前述の高CO3
境下での全面腐食量は従来材料の5分の1程度以下で、
前述の目安0.2mm/年以下であり、優れた耐食性、
すなわち耐浸炭性を有するといえる。以上から本発明合
金は優れた耐高温腐食性を有するといえる。
According to Table B, the alloys A to I of the present invention all have an intergranular corrosion depth of 0 μ in the above-mentioned high K and high Cl environment.
m, the total amount of general corrosion is less than about half that of conventional materials, which is 0.2 mm / year or less, which is used as a guide when selecting materials for soda recovery boilers, and has excellent intergranular corrosion resistance and corrosion resistance. Can be said to have. Also, the amount of general corrosion under the above-mentioned high CO 3 environment is about 1/5 or less of the conventional material,
The above-mentioned standard is 0.2 mm / year or less, excellent corrosion resistance,
That is, it can be said that it has carburization resistance. From the above, it can be said that the alloy of the present invention has excellent high temperature corrosion resistance.

【0027】これに対して比較合金N合金並びに従来材
料P及びQ合金は高K高Cl環境中で粒界腐食を生じて
おり、耐粒界腐食性が不足しているといえる。ここで本
発明合金A〜E合金及び比較合金N合金についてN含有
量と粒界腐食深さの関係をプロットすると、図1のよう
にN含有量の増加とともに粒界腐食深さが減少し、本発
明のN含有量の下限値0.2%以上では粒界腐食深さは
0μmであることが分かる。ただし、N含有量が0.2
%以上でも、C含有量が0.025%以上であるO合金
は粒界腐食を生じている。よって前述のように耐粒界腐
食性を確保するためには、C及びNが条件を満たす必要
があることが分かる。
On the other hand, the comparative alloy N alloy and the conventional materials P and Q alloy undergo intergranular corrosion in a high K high Cl environment, and it can be said that the intergranular corrosion resistance is insufficient. Here, when the relationship between the N content and the intergranular corrosion depth is plotted for the alloys A to E of the present invention and the comparative alloy N alloy, the intergranular corrosion depth decreases as the N content increases as shown in FIG. It can be seen that the intergranular corrosion depth is 0 μm when the lower limit of the N content in the present invention is 0.2% or more. However, N content is 0.2
%, The O alloy having a C content of 0.025% or more causes intergranular corrosion. Therefore, as described above, it is understood that C and N must satisfy the conditions in order to secure the intergranular corrosion resistance.

【0028】また比較材料J〜M合金及び従来材料P〜
R合金は、高CO3環境中で前述の目安0.2mm/年
以上であり、耐食性、すなわち、耐浸炭性が不足してい
るといえる。ここで本発明合金A〜E及び比較合金J及
びKについてCr含有量と高CO3 環境下での全面腐食
量との関係をプロットすると、図2のようにCr含有量
の増加に伴って全面腐食量が減少していることが分か
る。すなわち、本発明のCr含有量の下限値27%以上
では、全面腐食量は前述の目安0.2mm/年以下とな
っていることが分かる。
Comparative materials J to M alloys and conventional materials P to
The R alloy has the above-mentioned guideline of 0.2 mm / year or more in a high CO 3 environment and can be said to have insufficient corrosion resistance, that is, carburization resistance. Here, when the relationship between the Cr content and the total corrosion amount in a high CO 3 environment is plotted for the alloys A to E of the present invention and the comparative alloys J and K, as shown in FIG. It can be seen that the amount of corrosion is decreasing. That is, it can be seen that when the lower limit of the Cr content of the present invention is 27% or more, the amount of general corrosion becomes the above-mentioned standard of 0.2 mm / year or less.

【0029】また本発明合金A〜E合金及び比較合金L
及びMについてNi含有量と高CO3 環境下での全面腐
食量との関係をプロットすると、図3のようにNi含有
量の増加に伴って全面腐食量が減少していることが分か
る。すなわち、本発明のNi含有量の下限値35%以上
では、全面腐食量は前述の目安0.2mm/年以下とな
っていることが分かる。
Inventive alloys A to E and comparative alloy L
When plotting the relationship between the Ni content and the general corrosion amount in a high CO 3 environment for M and M, it can be seen that the general corrosion amount decreases as the Ni content increases as shown in FIG. That is, it is understood that when the lower limit of the Ni content of the present invention is 35% or more, the amount of general corrosion is the above-mentioned standard of 0.2 mm / year or less.

【0030】また、第2発明合金はクリープ破断強度も
良好で、例えばG合金では Larson-Millerパラメータ法
による600℃クリープ破断強度の105 時間外挿値
が、15.1kgf/mm2 であり、通産省技術基準に
規定されたSUS321HTBの600℃許容引張応力
からの計算値(許容引張応力≒0.6)11.5kgf
/mm2 より高い値を有している。
The second invention alloy also has a good creep rupture strength. For example, in the case of the G alloy, the 10 5 hour extrapolated value of the 600 ° C. creep rupture strength by the Larson-Miller parameter method is 15.1 kgf / mm 2 . Calculated value from 600 ° C allowable tensile stress of SUS321HTB specified in the Ministry of International Trade and Industry technical standard (allowable tensile stress ≈ 0.6) 11.5 kgf
It has a value higher than / mm 2 .

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】回収ボイラ等のような苛酷な腐食環境
で、優れた耐高温腐食性を有する合金を提供することが
可能となり、ボイラの高温高圧化を可能とし、経済上極
めて有用な効果がもたらされる。
EFFECTS OF THE INVENTION It becomes possible to provide an alloy having excellent high temperature corrosion resistance in a severe corrosive environment such as a recovery boiler, and it is possible to increase the temperature and pressure of the boiler, which is a very economically useful effect. Be brought.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金のN含有量と粒界腐食深さの関係を
示す図表
FIG. 1 is a chart showing the relationship between the N content and the intergranular corrosion depth of the alloy of the present invention.

【図2】本発明合金のCr含有量と高CO3 環境下での
全面腐食量の関係を示す図表
FIG. 2 is a chart showing the relationship between the Cr content of the alloy of the present invention and the amount of general corrosion in a high CO 3 environment.

【図3】本発明合金のNi含有量と高CO3 環境下での
全面腐食量の関係を示す図表
FIG. 3 is a chart showing the relationship between the Ni content of the alloy of the present invention and the amount of general corrosion under a high CO 3 environment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、C:0.025%以下、S
i:1%以下、Mn:5%以下、P:0.04%以下、
S:0.03%以下、Cr:27〜40%、Ni:35
〜55%、N:0.2〜0.45%とし、残部がFe及
び不可避的不純物からなることを特徴とするソーダ回収
ボイラ用高温耐食合金。
1. C: 0.025% or less, S in weight%
i: 1% or less, Mn: 5% or less, P: 0.04% or less,
S: 0.03% or less, Cr: 27-40%, Ni: 35
~ 55%, N: 0.2 to 0.45%, the balance consisting of Fe and unavoidable impurities, high temperature corrosion resistant alloy for soda recovery boiler.
【請求項2】 請求項1の成分に加えて、重量%にてM
o:3%以下、Nb:2%以下、Ti:0.5%以下の
1種又は2種以上を含むことを特徴とするソーダ回収ボ
イラ用高温耐食合金。
2. In addition to the components of claim 1, M in% by weight
o: 3% or less, Nb: 2% or less, Ti: 0.5% or less, and one or more kinds of high temperature corrosion resistant alloys for soda recovery boilers.
JP23800891A 1991-09-18 1991-09-18 High temperature corrosion resisting alloy for soda recovery boiler Pending JPH0570892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23800891A JPH0570892A (en) 1991-09-18 1991-09-18 High temperature corrosion resisting alloy for soda recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23800891A JPH0570892A (en) 1991-09-18 1991-09-18 High temperature corrosion resisting alloy for soda recovery boiler

Publications (1)

Publication Number Publication Date
JPH0570892A true JPH0570892A (en) 1993-03-23

Family

ID=17023774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23800891A Pending JPH0570892A (en) 1991-09-18 1991-09-18 High temperature corrosion resisting alloy for soda recovery boiler

Country Status (1)

Country Link
JP (1) JPH0570892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570891A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler
EP4043590A4 (en) * 2019-10-10 2023-05-03 Nippon Steel Corporation Alloy material and seamless pipe for oil well

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201759A (en) * 1985-03-04 1986-09-06 Sumitomo Metal Ind Ltd High strength and toughness welded steel pipe for line pipe
JPS6383248A (en) * 1986-09-25 1988-04-13 Nkk Corp High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture
JPH0570891A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201759A (en) * 1985-03-04 1986-09-06 Sumitomo Metal Ind Ltd High strength and toughness welded steel pipe for line pipe
JPS6383248A (en) * 1986-09-25 1988-04-13 Nkk Corp High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture
JPH0570891A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570891A (en) * 1991-09-18 1993-03-23 Mitsubishi Heavy Ind Ltd High temperature corrosion resisting alloy for soda recovery boiler
EP4043590A4 (en) * 2019-10-10 2023-05-03 Nippon Steel Corporation Alloy material and seamless pipe for oil well

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
EP0151487B1 (en) Ferritic-austenitic duplex stainless steel
JP4428237B2 (en) High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
US20080163957A1 (en) Oxidation resistant high creep strength austentic stainless steel
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
MX2010010435A (en) Stainless steel for use in oil well tube.
JP2002518599A (en) Latest supercritical boiler tube alloys
EP0953401A1 (en) Wire for welding high-chromium steel
JPH10280085A (en) Welding material for low cr ferritic steel, excellent in toughness
JP3209433B2 (en) Austenitic stainless steel
JP2691093B2 (en) High temperature corrosion resistant alloy for soda recovery boiler
JPH0570892A (en) High temperature corrosion resisting alloy for soda recovery boiler
KR19990087246A (en) Austenitic stainless steels and their uses
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JP2003268508A (en) Corrosion resistant and heat resistant cast steel
JPH0570898A (en) Material with high temperature corrosion resistance for heat exchanger
GB2123437A (en) Dual phase stainless steel suitable for use in sour wells
JPH0885850A (en) High chromium ferritic heat resistant steel
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JPH06207238A (en) High-temperature corrosion resistant alloy for soda recovering boiler
JPH05195126A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler
JPH0430463B2 (en)
JPH04224656A (en) Martensitic stainless steel for oil well casting, tubing and drill pipe
JPS61551A (en) Heat resistant alloy having superior corrosion resistance in highly oxidizing and sulfurizing corrosive atmosphere