JPS6293667A - Apparatus for measuring flow of ground water - Google Patents

Apparatus for measuring flow of ground water

Info

Publication number
JPS6293667A
JPS6293667A JP60234907A JP23490785A JPS6293667A JP S6293667 A JPS6293667 A JP S6293667A JP 60234907 A JP60234907 A JP 60234907A JP 23490785 A JP23490785 A JP 23490785A JP S6293667 A JPS6293667 A JP S6293667A
Authority
JP
Japan
Prior art keywords
groundwater
flow
tracer
ground water
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60234907A
Other languages
Japanese (ja)
Other versions
JPH0619366B2 (en
Inventor
Nobuyuki Marui
丸井 伸之
Yukio Oi
幸雄 大井
Hiroshi Yamazaki
博 山崎
Hiroshi Uesawa
上沢 弘
Kohei Okumura
奥村 興平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP60234907A priority Critical patent/JPH0619366B2/en
Publication of JPS6293667A publication Critical patent/JPS6293667A/en
Publication of JPH0619366B2 publication Critical patent/JPH0619366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To make it possible to directly measure the flow of ground water by photographing the same, by photographing the movement of the tracer discharged in flowing ground water with a TV camera. CONSTITUTION:A drop of a liquid dye is dripped from ground surface by utilizing a tracer discharge pipe 16. Whereupon, because a measuring chamber 14 is filled with a large number of glass beads, not only the diffusion of the liquid dye is suppressed but also the downward falling thereof is prevented and this liquid dye moves in an almost horizontal direction along with flowing ground water while slightly spreads in a flow direction from a dripped liquid droplet state. This state is photographed by a TV camera and the obtained image signal is transmitted to ground surface to be monitored or recorded by a video tape. At this time, because a transparent graduations plate 15 is also simultaneously photographed, the movement position of the dripped dye can be accurately recognized and the flow direction and velocity of ground water can be calculated on the basis of said position.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、孔井内において地下水流動の速度や方向を直
接観察し測定する装置に関し、更に詳しくは、流動する
地下水中に放出したトレーサの動きをテレビカメラで撮
影することにより、直接地下水の流動を観測できるよう
にした装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for directly observing and measuring the speed and direction of groundwater flow in a borehole, and more specifically, the present invention relates to a device for directly observing and measuring the velocity and direction of groundwater flow in a borehole, and more specifically, for monitoring the movement of a tracer released into flowing groundwater. This relates to a device that makes it possible to directly observe the flow of underground water by photographing it with a television camera.

[従来の技術] 地下水の流動に関する最も基礎的な公式はダルシーによ
って提案された次式である。
[Prior Art] The most basic formula regarding groundwater flow is the following equation proposed by Darcy.

地下水の流速=動水勾配×透水係数 従来の地下水の流速調査は、多数の井戸あるいはポーリ
ング孔を利用して地下水位を[*L、動水勾配(地下水
の距離的勾配)を求めると共に、ポーリング等により地
盤の透水係数を求め、その両側定値を上記ダルシー則に
当てはめて求めていた。また地下水の流向調査は、流体
が位置エネルギーの高い方がら低い方に向がって流れる
ことを利用し、地下風位の観測結果を平面上で等高線に
整理し、その等高線に垂直で高水位から低水位に向かう
方向を地下水の流向としていた。このような地下水流動
測定は謂わば間接的な測定方法である。
Groundwater flow velocity = Hydraulic gradient × Hydraulic coefficient The permeability coefficient of the ground was determined using the above method, and the constant values on both sides were applied to the above Darcy's law. In addition, groundwater flow direction surveys take advantage of the fact that fluid flows from the side with higher potential energy to the side with lower potential energy, and organize the observation results of underground wind height into contour lines on a plane. The flow direction of groundwater was defined as the direction from the ground to the low water level. Such groundwater flow measurement is a so-called indirect measurement method.

それに対して最近、地下水の汚染等の公害問題に関連し
、微細的な地下水の流動状況を的確に把握する必要が生
じてきており、これらの要求に対処するため地下水の流
向および流速を−点において直接測定する単孔式測定装
置も幾つか提案されている。
On the other hand, recently, in connection with pollution problems such as groundwater contamination, it has become necessary to accurately understand the minute flow conditions of groundwater. Several single-hole measuring devices have also been proposed for direct measurement.

例えば周囲に複数の電極を配置した円盤からなるセンサ
部を孔底に降ろし、地下水と異なった導電率をもつトレ
ーサ液を用いてセンサ部の地下水と置換し、地下水流に
よって導電率が変化するのを測定する導電率方式(電位
差測定方式)の測定装置や、ホウ素の中性子吸収断面積
が大きいことを利用し、ホウ素を含んだ水をトレーサと
して用いて地下水流によるホウ素濃度の変化を放射能測
定器で測定するラジオアイソトープ方式(中性子計数方
式)の測定装置、あるいは地下水中に熱源を入れ、地下
水温の拡散を温度計にて測定する熱拡散測定方式の測定
装置等がある。
For example, a sensor unit consisting of a disk with multiple electrodes arranged around it is lowered to the bottom of a hole, and a tracer liquid with a conductivity different from that of groundwater is used to replace the groundwater in the sensor unit, and the conductivity changes depending on the groundwater flow. Radioactivity can be measured using a conductivity method (potential difference measurement method) measurement device that measures the neutron concentration, and by using boron-containing water as a tracer, using boron's large neutron absorption cross section. There are measurement devices that use a radioisotope method (neutron counting method), which uses a device to measure temperature, and measurement devices that use a thermal diffusion method, which uses a thermometer to measure the diffusion of groundwater temperature by inserting a heat source into groundwater.

[発明が解決しようとする問題点] 上記のような間接的な地下水流動測定方法は多孔式であ
るため多数の井戸またはポーリング孔を必要とし、経済
的な負担が大きく、また都市部等では用地の関係からも
多数の井戸等を利用できず、十分な精度の調査が出来な
い場合が多い。
[Problems to be solved by the invention] The above-mentioned method for indirectly measuring groundwater flow is a porous method, so it requires a large number of wells or poling holes, which imposes a heavy economic burden, and also requires a lot of land in urban areas. Due to this, a large number of wells cannot be used, and surveys with sufficient accuracy are often not possible.

他方、単孔式の測定装置はそれぞれ特徴があるが、一般
に装置構成が複雑で測定操作も煩瑣な場合が多く、測定
に熟練した経験者でないと測定データの判断解析が困難
である。
On the other hand, although each single-hole measuring device has its own characteristics, in general, the device configuration is complex and the measurement operation is often cumbersome, and it is difficult for those who are not experienced in measurement to judge and analyze the measured data.

例えば導電率方式の測定装置の場合は、センサ部に蒸留
水を充填するため繰り返し測定が出来ないし、方位検出
に地球磁場を利用するため周辺に磁場がある場合等では
流向に狂いが生じる。また分子拡散が起こるので流速の
遅い場合(10”’cs/sec以下)には測定が困難
である。
For example, in the case of a conductivity-type measuring device, repeated measurements are not possible because the sensor part is filled with distilled water, and because the earth's magnetic field is used to detect direction, the flow direction may be distorted if there is a nearby magnetic field. Furthermore, since molecular diffusion occurs, measurement is difficult when the flow rate is slow (10''cs/sec or less).

ラジオアイソトープ方式の測定装置では放射能の知識や
化学的知識が必要だし、更に熱源を使用する測定装置で
は地下水流が非常に遅い場合に地下水の対流が生じて精
度が低下してしまう等の欠点がある。
Radioisotope measurement devices require knowledge of radioactivity and chemistry, and measurement devices that use a heat source have disadvantages such as convection of groundwater that occurs when the groundwater flow is very slow, reducing accuracy. There is.

本発明の目的は、上記のような従来技術の欠点を解消し
、構造が極めて簡単でありかつ測定代作も容易であるこ
とに加えて、測定精度が高く極めて信転性の高い測定結
果を得ることができるような単孔式の地下水流動測定装
置を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, to provide extremely simple structure and easy measurement substitutes, as well as to provide highly accurate and highly reliable measurement results. The object of the present invention is to provide a single-hole groundwater flow measuring device that can be obtained.

[問題点を解決するための手段] 上記のような問題点を解決することのできる本発明は、
内部にテレビカメラが装着される筒体と、該筒体の先端
に取り付けられてその内部を地下水が流通自在の測定室
と、前記筒体内空間と測定室との間を仕切る透明目盛り
板と、測定室の内部にトレーサを放出するトレーサ放出
装置とを備えている単孔式の地下水流動測定装置である
[Means for solving the problems] The present invention, which can solve the above problems,
a cylindrical body into which a television camera is attached; a measurement chamber attached to the tip of the cylindrical body through which groundwater can freely flow; and a transparent scale plate partitioning between the space inside the cylinder and the measurement chamber; This is a single-hole groundwater flow measurement device that is equipped with a tracer release device that releases a tracer into the measurement chamber.

トレーサ放出装置としては、例えば液状の色素を所定の
タイミングで一滴だけ滴下できるような装置や、あるい
は地下水と同程度の比重を有する微小な固体を所定のタ
イミングで放出できるような装置が用いられる。
As the tracer release device, for example, a device that can drop a single drop of liquid dye at a predetermined timing, or a device that can release a minute solid having a specific gravity similar to that of groundwater at a predetermined timing is used.

トレーサとして液体色素を用いる場合には、例えばスト
レーナで囲んだ測定室の内部にガラスピーズのような透
明の粒状体を充填し、地下水がそれら粒状体の間隙を通
って自由に流通できるような構造とする。また別の実施
態様としては測定室をほんの僅かの間隙を介して配置し
た2枚の板で構成し、その間を地下水が流通するような
構成とすることも可能である。そのような場合にはトレ
ーサとして液体のみならず固体を用いることもできる。
When using a liquid dye as a tracer, for example, a measurement chamber surrounded by a strainer is filled with transparent granules such as glass beads, and the structure is such that groundwater can freely flow through the gaps between the granules. shall be. In another embodiment, the measurement chamber may be constructed of two plates placed with a slight gap between them, allowing groundwater to flow between them. In such cases, not only liquids but also solids can be used as tracers.

[作用] 放出されたトレーサは地下水の流動に伴って移動する。[Effect] The released tracer moves with the flow of groundwater.

従ってテレビカメラによりそのトレーサの移動を時間と
共に観測すれば、地下水の流動状況即ち流向並びに流速
を直接的に測定することができる。
Therefore, by observing the movement of the tracer over time using a television camera, it is possible to directly measure the flow state of groundwater, that is, the direction and velocity of the flow.

測定室の内部に入れられた透明粒状体や測定室を構成す
る間隔の狭い2枚の板はトレーサ液滴の拡散を抑え降下
を防止し、水平方向に、2次元的にトレーサを移動させ
る機能を果たす。
The transparent granules placed inside the measurement chamber and the two closely spaced plates that make up the measurement chamber suppress the diffusion of tracer droplets, prevent them from falling, and move the tracer horizontally and two-dimensionally. fulfill.

テレビカメラが装着される筒体の先端に配置されている
透明目盛り板は、トレーサの位置を読み取るための基準
となる。
A transparent scale plate placed at the tip of the barrel to which the television camera is attached serves as a reference for reading the position of the tracer.

[実施例] 第1図は本発明に係る地下水流動測定装置の一実施例を
示す説明図であり、第2図はテレビカメラを組み込んだ
状態を示す説明図である。
[Example] Fig. 1 is an explanatory diagram showing an embodiment of the groundwater flow measuring device according to the present invention, and Fig. 2 is an explanatory diagram showing a state in which a television camera is installed.

これらの図から明らかなように、本装置は内部にテレビ
カメラ10が装着される筒体12と、その先端に取り付
けられている測定室14と、前記筒体内空間と測定室1
4との間を仕切る透明目盛り板15と、トレーサ放出管
16とを備えている。
As is clear from these figures, this device includes a cylinder 12 into which the television camera 10 is mounted, a measurement chamber 14 attached to the tip of the cylinder, and a space within the cylinder and the measurement chamber 1.
4, and a tracer discharge tube 16.

テレビカメラ装着用の筒体12は、透明な材料からなり
底部に透明目盛り板15が取り付けられ、内部は清水で
満たされて良好な視界が維持できるようになっている。
The cylindrical body 12 for mounting the television camera is made of a transparent material, has a transparent scale plate 15 attached to the bottom, and is filled with fresh water to maintain good visibility.

筒体12の上端は径違い継−手20に接続され、更にそ
の上端はカンプリング22を介してボーリングロッド2
4に接続される。図示されていないが、テレビカメラ1
0は、その先端中央にレンズが位置しその周囲に複数の
光源が配列された構造であり、光源やテレビカメラ動作
等のための電力の伝送、並びに撮影された映像信号の伝
送用としてコード26が地表との間に設けられる。トレ
ーサ放出管16もボーリングロッド24並びに径違い継
手20等に沿ってはいちされており、その上端は地表に
達し、下端は透明目盛り仮15の中央を貫通して測定室
14の上端部にて開口する。
The upper end of the cylindrical body 12 is connected to a reducing joint 20, and the upper end is connected to a boring rod 2 via a camp ring 22.
Connected to 4. Although not shown, TV camera 1
0 has a structure in which a lens is located at the center of the tip and multiple light sources are arranged around it. Code 26 is used for transmitting power for the light source and TV camera operation, as well as for transmitting photographed video signals. is installed between the ground and the ground. The tracer discharge pipe 16 is also installed along the boring rod 24, the reducing joint 20, etc., and its upper end reaches the ground surface, and its lower end passes through the center of the temporary transparent scale 15 and reaches the upper end of the measurement chamber 14. Open your mouth.

さて測定室14は、周囲がストレーナ28で囲まれ底板
30で仕切られており、内部に細かな(例えば直径1.
0〜1.5mm程度)のガラスピーズ32が多数充填さ
れた構造である。
Now, the measurement chamber 14 is surrounded by a strainer 28 and partitioned by a bottom plate 30, and has a fine (for example, 1.5 mm diameter) inside.
The structure is filled with a large number of glass beads 32 (approximately 0 to 1.5 mm).

このように構成された装置の使用方法は次の如くである
。ポーリング孔等を利用して本装置を地表から挿入し地
下水が流動している所定深度に設置する。この時ボーリ
ングロッド24と組み合わせることのできる径違い継手
20を用いているから、掘削等に用いる各種資材をその
まま利用して本装置を所定の位置に設置することができ
る。この状態において孔内の地下水はストレーナ28を
通りカラスビーズ32同士の間隙を縫って自由に流通す
る。地表からトレーサ放出管16を利用して液体色素を
一滴滴下する。すると測定室14内には前記のように多
数のガラスピーズが充填されているから、液状色素の拡
散が抑えられると共に、下方への降下が阻止され、滴下
しだ液滴の状態から幾分流れ方向に拡がりながら、流動
する地下水とともにほぼ水平方向に移動していく。この
様子をテレビカメラ10により撮影し、得られた映像信
号を地表に伝送してモニタしたりビデオテープに記録す
る。また必要があればモニタを写真撮影する。この時、
透明目盛り板15も同時に撮影されるから、滴下した色
素の移動した位置を正確に把握でき、それによって地下
水の流向ならびに流速を求めることができる。
The method of using the device configured as described above is as follows. This device is inserted from the ground surface using a poling hole, etc., and installed at a specified depth where groundwater is flowing. At this time, since the reducing joint 20 that can be combined with the boring rod 24 is used, the present apparatus can be installed at a predetermined position using various materials used for excavation, etc. as they are. In this state, the groundwater in the hole freely flows through the strainer 28 and through the gaps between the crow beads 32. One drop of liquid dye is dropped from the earth's surface using the tracer discharge tube 16. Then, since the measurement chamber 14 is filled with a large number of glass beads as described above, the diffusion of the liquid dye is suppressed, and the downward descent is also prevented, causing the liquid dye to flow slightly from the droplet state. While expanding in the direction, it moves almost horizontally along with the flowing groundwater. This situation is photographed by a television camera 10, and the obtained video signal is transmitted to the earth's surface for monitoring or recording on videotape. Also, take a photo of the monitor if necessary. At this time,
Since the transparent scale plate 15 is also photographed at the same time, it is possible to accurately determine the position to which the dropped dye has moved, and thereby the flow direction and velocity of the groundwater can be determined.

このような装置によって地下水の流速が非常に遅い場合
でも長時間にわたる測定を継続することによって十分信
顛性の高い測定データを得ることができる。またトレー
サの滴下を繰り返せば、多数回の観測も簡単に行うこと
ができる。
With such a device, even when the groundwater flow velocity is very slow, it is possible to obtain sufficiently reliable measurement data by continuing measurements over a long period of time. Furthermore, by repeating the dripping of the tracer, it is possible to easily perform multiple observations.

測定装置は前記のようにボーリングロッドに径違い継手
を用いて連結できる構成となっているから、テレビカメ
ラからのコード等に装置の荷重がかからず安定かつ強固
に装置を保持することができるし、また通常のポーリン
グ作業に用いる資材で装置の所定位置への設置ができる
ことから経済性に優れており取り扱いも容易である。
As mentioned above, the measuring device is configured so that it can be connected to the boring rod using a reducing joint, so the device can be held stably and firmly without any load on the cord from the TV camera, etc. Furthermore, since the device can be installed at a predetermined location using materials used for normal polling operations, it is economical and easy to handle.

第3図は本発明の他の実施例を示す要部説明図である。FIG. 3 is an explanatory diagram of main parts showing another embodiment of the present invention.

テレビカメラが装着される筒体12およびその上部構造
は前記第2図に示した実施例の場合と全く同様であって
よい。従って説明を筒略化するため対応する部分には同
一符号を付し、それらについての説明は省略する。
The cylindrical body 12 on which the television camera is mounted and its upper structure may be completely the same as in the embodiment shown in FIG. 2 above. Therefore, in order to simplify the explanation, corresponding parts are given the same reference numerals and the explanation thereof will be omitted.

この実施例では測定室44として前記透明目盛り板15
と僅かの間隔(通常11程度以下)を介して配置した底
板46とから構成される。
In this embodiment, the transparent scale plate 15 serves as the measurement chamber 44.
and a bottom plate 46 arranged with a slight spacing (usually about 11 or less).

この底板46としてはトレーサの観測を容易にするため
白色板を用いるのが好ましい。このように地下水が流動
する部分の間隔が狭いと滴下したトレーサは下方への移
動が阻止され液滴の状態を保ちつつ間隙を流れる地下水
流動に乗って移動するから、前記実施例の場合と同様に
その移動位置を正確に把握でき経過時間と関連させて観
測することによって地下水の流動を測定することができ
る。
It is preferable to use a white plate as the bottom plate 46 in order to facilitate observation of the tracer. If the interval between the parts where groundwater flows is narrow in this way, the dripped tracer will be prevented from moving downward and will move along with the flow of groundwater flowing through the gap while maintaining the state of droplets, similar to the case of the previous example. It is possible to accurately determine the movement position of groundwater, and by observing it in relation to the elapsed time, it is possible to measure the flow of groundwater.

この第3図に示すような測定室の構造とすると、トレー
サとしては液体状の色素のみならず地下水と同等の比重
を持つ固体を用いることも可能となる。つまり透明目盛
り板15の中央下端に固体トレーサの放出手段を設けて
おけば、その固体の移動を観測することによって地下水
の流動を求めることができる。この場合、液滴と異なり
分子拡散の影響を受けないので流速が極端に遅い場合<
 10−3cn+/sec以下)の測定も可能になる。
If the measurement chamber is structured as shown in FIG. 3, it becomes possible to use not only a liquid dye but also a solid having a specific gravity equivalent to that of groundwater as a tracer. In other words, if a solid tracer release means is provided at the lower central end of the transparent scale plate 15, the flow of groundwater can be determined by observing the movement of the solid. In this case, unlike droplets, it is not affected by molecular diffusion, so if the flow rate is extremely slow <
10-3cn+/sec) can also be measured.

[発明の効果] 本発明は上記のようにテレビカメラによってトレーサの
動きを観測することにより地下水の流向あるいは、・′
、j、aを求めるように構成されているから、一本のr
L井で測定ができるし、装置も極めてM単な構成で済み
、操作も簡単で経済性に優れている効果がある。
[Effects of the Invention] As described above, the present invention detects the flow direction of groundwater or...
, j, a, so one r
Measurement can be carried out in the L well, the device has an extremely simple configuration, is easy to operate, and is highly economical.

本発明は特に地下水の流動を直接tri影して測定でき
るから測定上の誤りあるいはその測定結果の解釈上の誤
りを防ぐことができ、データの信顧性が極めて高く良好
な測定が可能となる。
In particular, the present invention can directly measure the flow of groundwater, thereby preventing errors in measurement or interpretation of the measurement results, making it possible to perform good measurements with extremely high reliability of data. .

また非常に流速の遅い場合でも測定が可能である点で甚
だ優れた効果を有する。
Furthermore, it has an extremely excellent effect in that measurement can be performed even when the flow velocity is extremely slow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る地下水流動測定値;aの一実施例
を示す要部説明図、第2図はその使用状態の一例を示す
全体構成図、第3図は本発明の他の実施例を示す要部説
明図である。 10・・・テレビカメラ、12・・・筒体、14・・・
測定室、15・・・透明目盛り板、16・・・トレーサ
放出管、28・・・ストレーナ、30・・・底板、32
・・・ガラスピーズ、44・・・測定室、46・・・底
板。 特許出願人   応用地質株式会社 代  理  人     茂  見     穣第1図 第3図 第2図
Fig. 1 is an explanatory diagram of the main part showing one embodiment of measured groundwater flow according to the present invention; Fig. 2 is an overall configuration diagram showing an example of its usage state; Fig. 3 is another embodiment of the present invention. It is an explanatory diagram of a main part showing an example. 10...TV camera, 12...Cylinder body, 14...
Measurement chamber, 15... Transparent scale plate, 16... Tracer discharge tube, 28... Strainer, 30... Bottom plate, 32
...Glass beads, 44...Measurement chamber, 46...Bottom plate. Patent Applicant: Oyoyo Geological Co., Ltd., Mr. Minoru Shigeru, Figure 1, Figure 3, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、内部にテレビカメラが装着される筒体と、該筒体の
先端に取り付けられてその内部を地下水が流通自在の測
定室と、前記筒体内空間と測定室との間を仕切る透明目
盛り板と、測定室の内部にトレーサを放出するトレーサ
放出装置とを備えていることを特徴とする地下水流動測
定装置。
1. A cylindrical body into which a television camera is attached, a measurement chamber attached to the tip of the cylindrical body through which groundwater can freely flow, and a transparent scale plate that partitions the space inside the cylinder and the measurement chamber. and a tracer release device that releases a tracer into the inside of a measurement chamber.
JP60234907A 1985-10-21 1985-10-21 Groundwater flow measuring device Expired - Lifetime JPH0619366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234907A JPH0619366B2 (en) 1985-10-21 1985-10-21 Groundwater flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234907A JPH0619366B2 (en) 1985-10-21 1985-10-21 Groundwater flow measuring device

Publications (2)

Publication Number Publication Date
JPS6293667A true JPS6293667A (en) 1987-04-30
JPH0619366B2 JPH0619366B2 (en) 1994-03-16

Family

ID=16978162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234907A Expired - Lifetime JPH0619366B2 (en) 1985-10-21 1985-10-21 Groundwater flow measuring device

Country Status (1)

Country Link
JP (1) JPH0619366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484531A (en) * 2021-06-30 2021-10-08 中国热带农业科学院橡胶研究所 Automatic rubber tree rubber discharge monitoring system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113964U (en) * 1979-02-06 1980-08-11
JPS57191561A (en) * 1981-05-21 1982-11-25 Taisei Kiso Sekkei Kk Measuring method for flow of fluid
JPS5987369A (en) * 1982-11-10 1984-05-19 Nippon Furnace Kogyo Kaisha Ltd Method for measuring speed in water current model
JPS6036968A (en) * 1983-08-10 1985-02-26 Hitachi Ltd Method for measuring flow rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113964U (en) * 1979-02-06 1980-08-11
JPS57191561A (en) * 1981-05-21 1982-11-25 Taisei Kiso Sekkei Kk Measuring method for flow of fluid
JPS5987369A (en) * 1982-11-10 1984-05-19 Nippon Furnace Kogyo Kaisha Ltd Method for measuring speed in water current model
JPS6036968A (en) * 1983-08-10 1985-02-26 Hitachi Ltd Method for measuring flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484531A (en) * 2021-06-30 2021-10-08 中国热带农业科学院橡胶研究所 Automatic rubber tree rubber discharge monitoring system and method
CN113484531B (en) * 2021-06-30 2022-08-26 中国热带农业科学院橡胶研究所 Automatic rubber tree rubber discharge monitoring system and method

Also Published As

Publication number Publication date
JPH0619366B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
Drost et al. Point dilution methods of investigating ground water flow by means of radioisotopes
Yates et al. Experimental methods in fluidization research
US5001342A (en) Radioactive tracer cement thickness measurement
CN105652034B (en) A kind of landslide monitoring groundwater velocity and direction detection intelligence sensor
US20060277980A1 (en) Percolation Testing Apparatus and Method
US3489219A (en) Method of locating tops of fluids in an annulus
WO1994007147A1 (en) Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow
Melville et al. Laboratory investigation and analysis of a ground‐water flowmeter
US6498341B2 (en) Method for characterizing ground water measurement points by distinguishing ground water from subterranean water accumulation
JPS6293667A (en) Apparatus for measuring flow of ground water
CN102828743B (en) Tracing quantum dot water injection cross-section logging method
US2961539A (en) Productivity well logging
US3084250A (en) Material flow detector and method
US3064468A (en) Method and apparatus for measuring properties of fluid
JP2001183471A (en) Method and device for measuring flow of underground water
CN208309555U (en) Hollow side wall wiring formula static cone penetration equipment
JPS63106589A (en) Method and apparatus for measuring flow of underground water
JPS634668B2 (en)
RU2488834C2 (en) Device for determining direction and speed of underground water flow
RU2724814C2 (en) Method of quantitative estimation of profile and composition of inflow in low-flow water-flooded oil wells
US1833889A (en) Bore-hole clinometer
Kearl et al. Characterization of a fractured aquifer using the colloidal borescope
SU661481A1 (en) Device for determining the direction and velocity of underground water flow
SU726317A1 (en) Apparatus for determining direction of subsoil water motion in a well
JP3210105B2 (en) Measuring device for groundwater flow