JPH0619366B2 - Groundwater flow measuring device - Google Patents
Groundwater flow measuring deviceInfo
- Publication number
- JPH0619366B2 JPH0619366B2 JP60234907A JP23490785A JPH0619366B2 JP H0619366 B2 JPH0619366 B2 JP H0619366B2 JP 60234907 A JP60234907 A JP 60234907A JP 23490785 A JP23490785 A JP 23490785A JP H0619366 B2 JPH0619366 B2 JP H0619366B2
- Authority
- JP
- Japan
- Prior art keywords
- groundwater
- tracer
- measurement
- flow
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Geophysics And Detection Of Objects (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、孔井内において地下水流動の速度や方向を直
接観察し測定する装置に関し、更に詳しくは、流動する
地下水中に放出したトレーサの動きをテレビカメラで撮
影することにより、直接地下水の流動を観測できるよう
にした装置に関するものである。TECHNICAL FIELD The present invention relates to an apparatus for directly observing and measuring the velocity and direction of groundwater flow in a borehole, and more specifically, the movement of a tracer released into flowing groundwater. It relates to a device that enables direct observation of the flow of groundwater by taking a picture with a TV camera.
[従来の技術] 地下水の流動に関する最も基礎的な公式はダルシーによ
って提案された次式である。[Prior Art] The most basic formula for groundwater flow is the following formula proposed by Darcy.
地下水の流速=動水勾配×透水係数 従来の地下水の流速調査は、多数の井戸あるいはボーリ
ング孔を利用して地下水位を観測し、動水勾配(地下水
の距離的勾配)を求めると共に、ボーリング等により地
盤の透水係数を求め、その両側定値を上記ダルシー則に
当てはめて求めていた。また地下水の流向調査は、流体
が位置エネルギーの高い方から低い方に向かって流れる
ことを利用し、地下水位の観測結果を平面上で等高線に
整理し、その等高線に垂直で高水位から低水位に向かう
方向を地下水の流向としていた。このような地下水流動
測定は謂わば間接的な測定方法である。Groundwater flow velocity = hydraulic gradient × hydraulic conductivity In the conventional groundwater flow velocity survey, the groundwater level is observed using a number of wells or boreholes, and the hydraulic gradient (distance gradient of groundwater) is obtained, as well as boring, etc. The permeability coefficient of the ground was calculated by the method, and the constant values on both sides of the coefficient were applied to the above Darcy law. In addition, the groundwater flow direction survey uses the fact that the fluid flows from the higher potential energy to the lower potential energy, arranges the observation results of the groundwater level into contour lines on a plane, and is perpendicular to the contour lines and changes from the high water level to the low water level. The direction toward the groundwater was the groundwater flow direction. Such groundwater flow measurement is a so-called indirect measurement method.
それに対して最近、地下水の汚染等の公害問題に関連
し、微細的な地下水の流動状況を的確に把握する必要が
生じてきており、これらの要求に対処するため地下水の
流向および流速を一点において直接測定する単孔式測定
装置も幾つか提案されている。On the other hand, recently, in connection with pollution problems such as pollution of groundwater, it has become necessary to accurately grasp the flow condition of fine groundwater. Several single-hole measuring devices for direct measurement have also been proposed.
例えば周囲に複数の電極を配置した円盤からなるセンサ
部を孔底に降ろし、地下水と異なった導電率をもつトレ
ーサ液を用いてセンサ部の地下水と置換し、地下水流に
よって導電率が変化するのを測定する導電率方式(電位
差測定方式)の測定装置や、ホウ素の中性子吸収断面積
が大きいことを利用し、ホウ素を含んだ水をトレーサと
して用いて地下水流によるホウ素濃度の変化を放射能測
定器で測定するラジオアイソトープ方式(中性子計数方
式)の測定装置、あるいは地下水中に熱源を入れ、地下
水温の拡散を温度計にて測定する熱拡散測定方式の測定
装置等がある。For example, the sensor part consisting of a disk with multiple electrodes placed around it is lowered to the bottom of the hole, and the tracer liquid having a conductivity different from that of groundwater is used to replace the groundwater of the sensor part, and the conductivity changes due to the groundwater flow. Conductivity measurement (potentiometric measurement) measuring device and the large neutron absorption cross section of boron are used to measure the change in boron concentration due to groundwater flow using water containing boron as a tracer. There is a radioisotope type (neutron counting type) measuring device that measures with a measuring instrument, or a thermal diffusion measuring type measuring device that measures the diffusion of groundwater temperature with a thermometer by putting a heat source in groundwater.
[発明が解決しようとする問題点] 上記のような間接的な地下水流動測定方法は多孔式であ
るため多数の井戸またはボーリング孔を必要とし、経済
的な負担が大きく、また都市部等では用地の関係からも
多数の井戸等を利用できず、十分な精度の調査が出来な
い場合が多い。[Problems to be Solved by the Invention] Since the indirect groundwater flow measuring method as described above requires a large number of wells or boring holes because it is a porous method, the economical burden is large, and the land is not used in urban areas. Because of this, many wells cannot be used, and it is often impossible to conduct surveys with sufficient accuracy.
他方、単孔式の測定装置はそれぞれ特徴があるが、一般
に装置構成が複雑で測定操作も煩瑣な場合が多く、測定
に熟練した経験者でないと測定データの判断解析が困難
である。On the other hand, the single-hole type measuring devices have their respective characteristics, but in general, the device configuration is generally complicated and the measuring operation is often complicated, and it is difficult for a person skilled in the measurement to judge and analyze the measured data.
例えば導電率方式の測定装置の場合は、センサ部に蒸留
水を充填するため繰り返し測定が出来ないし、方位検出
に地球磁場を利用するため周辺に磁場がある場合等では
流向に狂いが生じる。また分子拡散が起こるので流速の
遅い場合(10-3cm/sec以下)には測定が困難である。
ラジオアイソトープ方式の測定装置では放射能の知識や
化学的知識が必要だし、更に熱源を使用する測定装置で
は地下水流が非常に遅い場合に地下水の対流が生じて精
度が低下してしまう等の欠点がある。For example, in the case of a conductivity type measuring device, since the sensor part is filled with distilled water, repeated measurement cannot be performed, and since the earth's magnetic field is used for direction detection, the flow direction may be distorted if there is a magnetic field in the periphery. Moreover, since molecular diffusion occurs, measurement is difficult when the flow velocity is slow (10 −3 cm / sec or less).
Radioisotope type measurement equipment requires knowledge of radioactivity and chemical knowledge, and measurement equipment that uses a heat source has disadvantages such as groundwater convection when the groundwater flow is very slow and the accuracy decreases. There is.
本発明の目的は、上記のような従来技術の欠点を解消
し、構造が極めて簡単でありかつ測定操作も容易である
ことに加えて、測定精度が高く極めて信頼性の高い測定
結果を得ることができるような単孔式の地下水流動測定
装置を提供することにある。The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to obtain a measurement result with high measurement accuracy and extremely high reliability, in addition to having an extremely simple structure and easy measurement operation. It is to provide a single-hole type groundwater flow measuring device capable of performing the above.
[問題点を解決するための手段] 上記のような問題点を解決することのできる本発明は、
内部にテレビカメラを装着される筒体と、該筒体の先端
に取り付けられてその内部を地下水が流通自在の測定室
と、前記筒体内空間と測定室との間を仕切る透明目盛り
板と、測定室の内部の一定位置にトレーサを放出するト
レーサ放出装置とを備えている単孔式の地下水流動測定
装置である。[Means for Solving Problems] The present invention that can solve the above problems is
A tubular body in which a television camera is mounted, a measurement chamber attached to the tip of the tubular body, through which ground water can freely flow, and a transparent scale plate that partitions between the tubular body space and the measurement chamber. It is a single-hole type groundwater flow measuring device provided with a tracer discharging device that discharges a tracer to a certain position inside a measuring chamber.
トレーサ放出装置としては、例えば液状の色素を所定の
タイミングで一滴だけ滴下できるような装置や、あるい
は地下水と同程度の比重を有する微小な固体を所定のタ
イミングで放出できるような装置が用いられる。As the tracer releasing device, for example, a device that can drop only one drop of a liquid dye at a predetermined timing or a device that can release a minute solid having a specific gravity similar to that of groundwater at a predetermined timing is used.
トレーサとして液体色素を用いる場合には、例えばスト
レーナで囲んだ測定室の内部にガラスビーズのような透
明の粒状体を充填し、地下水がそれら粒状体の間隙を通
って自由に流通できるような構造とする。また別の実施
態様としては測定室をほんの僅かの間隙を介して配置し
た2枚の板で構成し、その間を地下水が流通するような
構成とすることも可能である。そのような場合にはトレ
ーサとして液体のみならず固体を用いることもできる。When a liquid dye is used as a tracer, for example, a measurement chamber surrounded by a strainer is filled with transparent granules such as glass beads, and ground water can flow freely through the gaps between the granules. And In another embodiment, the measurement chamber may be composed of two plates arranged with a slight gap therebetween, and the ground water may flow between them. In such a case, not only the liquid but also the solid can be used as the tracer.
[作用] 放出されたトレーサは地下水の流動に伴って移動する。
従ってテレビカメラによりそのトレーサの移動を時間と
共に観測すれば、地下水の流動状況即ち流向並びに流速
を直接的に測定することもできる。[Operation] The released tracer moves with the flow of groundwater.
Therefore, if the movement of the tracer is observed with a television camera over time, the flow condition of groundwater, that is, the flow direction and the flow velocity can be directly measured.
測定室の内部に入れられた透明粒状体や測定室を構成す
る間隔の狭い2枚の板はトレーサ液滴の拡散を抑え降下
を防止し、水平方向に、2次元的にトレーサを移動させ
る機能を果たす。The transparent granular material placed inside the measurement chamber and the two closely spaced plates that make up the measurement chamber prevent tracer droplets from diffusing and prevent them from falling, and the function of moving the tracer two-dimensionally in the horizontal direction Fulfill.
テレビカメラが装着される筒体の先端に配置されている
透明目盛り板は、トレーサの位置を読み取るための基準
となる。The transparent scale plate arranged at the tip of the cylindrical body on which the television camera is mounted serves as a reference for reading the position of the tracer.
[実施例] 第1図は本発明に係る地下水流動測定装置の一実施例を
示す説明図であり、第2図はテレビカメラを組み込んだ
状態を示す説明図である。これらの図から明らかなよう
に、本装置は内部にテレビカメラ10が装着される筒体
12と、その先端に取り付けられている測定室14と、
前記筒体内空間と測定室14との間を仕切る透明目盛り
板15と、トレーサ放出管16とを備えている。[Embodiment] FIG. 1 is an explanatory view showing an embodiment of the groundwater flow measuring device according to the present invention, and FIG. 2 is an illustration showing a state in which a television camera is incorporated. As is clear from these figures, the present apparatus has a cylindrical body 12 in which the television camera 10 is mounted, a measurement chamber 14 mounted at the tip thereof,
A transparent scale plate 15 for partitioning the space inside the cylinder and the measurement chamber 14 and a tracer discharge pipe 16 are provided.
テレビカメラ装着用の筒体12は、透明な材料からなり
底部に透明目盛り板15が取り付けられ、内部は清水で
満たされて良好な視界が維持できるようになっている。
筒体12の上端は径違い継手20に接続され、更にその
上端はカップリング22を介してボーリングロッド24
に接続される。図示されていないが、テレビカメラ10
は、その先端中央にレンズが位置しその周囲に複数の光
源が配列された構造であり、光源やテレビカメラ動作等
のための電力の伝送、並びに撮影された映像信号の伝送
用としてコード26が地表との間に設けられる。トレー
サ放出管16もボーリングロッド24並びに径違い継手
20等に沿って配置されており、その上端は地表に達
し、下端は透明目盛り板15の中央を貫通して測定室1
4の上端部にて開口する。The television camera mounting cylinder 12 is made of a transparent material and has a transparent scale plate 15 attached to the bottom thereof, and the inside thereof is filled with fresh water so that a good field of view can be maintained.
The upper end of the cylindrical body 12 is connected to the reducing joint 20, and the upper end of the cylindrical body 12 is further connected to a boring rod 24 via a coupling 22.
Connected to. Although not shown, the TV camera 10
Is a structure in which a lens is located at the center of the tip and a plurality of light sources are arranged around the lens, and a code 26 is provided for transmitting power for operating the light source, TV camera, etc., and for transmitting captured video signals. It is provided between the ground surface. The tracer discharge pipe 16 is also arranged along the boring rod 24 and the reducing joint 20, etc., the upper end thereof reaches the surface of the earth, and the lower end thereof penetrates the center of the transparent scale plate 15 to measure the chamber 1.
Open at the upper end of 4.
さて測定室14は、周囲がストレーナ28で囲まれ底板
30で仕切られており、内部に細かな(例えば直径1.
0〜1.5mm程度)のガラスビーズ32が多数充填され
た構造である。The measuring chamber 14 is surrounded by a strainer 28 and is partitioned by a bottom plate 30. The measuring chamber 14 has a fine inside (for example, a diameter of 1.
It has a structure in which a large number of glass beads 32 (about 0 to 1.5 mm) are filled.
このように構成された装置の使用方法は次の如くであ
る。ボーリング孔等を利用して本装置を地表から挿入し
地下水が流動している所定深度に設置する。この時ボー
リングロッド24と組み合わせることのできる径違い継
手20を用いているから、掘削等に用いる各種資材をそ
のまま利用して本装置を所定の位置に設置することがで
きる。この状態において孔内の地下水はストレーナ28
を通りカラスビーズ32同士の間隙を縫って自由に流通
する。地表からトレーサ放出管16を利用して液体色素
を一滴滴下する。すると測定室14内には前記のように
多数のガラスビーズが充填されているから、液状色素の
拡散が抑えられると共に、下方への降下が阻止され、滴
下した液滴の状態から幾分流れ方向に拡がりながら、流
動する地下水とともにほぼ水平方向に移動していく。こ
の様子をテレビカメラ10により撮影し、得られた映像
信号を地表に伝送してモニタしたりビデオテープに記憶
する。また必要があればモニタを写真撮影する。この
時、透明目盛り板15も同時に撮影されるから、滴下し
た色素の移動した位置を正確に把握でき、それによって
地下水の流向ならびに流速を求めることができる。The method of using the device thus configured is as follows. This device is inserted from the surface of the earth using a boring hole and installed at a specified depth where groundwater is flowing. At this time, since the reducing joint 20 that can be combined with the boring rod 24 is used, the present apparatus can be installed at a predetermined position by using various materials used for excavation and the like as they are. In this state, the groundwater in the hole is strainer 28
It passes through and sew the gap between the crow beads 32 to freely flow. A drop of liquid dye is dripped from the surface of the earth using the tracer discharge pipe 16. Then, since the measurement chamber 14 is filled with a large number of glass beads as described above, the diffusion of the liquid dye is suppressed and the downward movement is prevented, so that the flow direction of the dropped liquid droplets may be somewhat increased. It spreads horizontally and moves with the flowing groundwater almost horizontally. This state is photographed by the television camera 10, and the obtained video signal is transmitted to the ground surface for monitoring or storing on a video tape. If necessary, take a picture of the monitor. At this time, since the transparent scale plate 15 is also photographed at the same time, the moved position of the dropped pigment can be accurately grasped, and the flow direction and the flow velocity of the groundwater can be obtained accordingly.
このような装置によって地下水の流速が非常に遅い場合
でも長時間にわたる測定を継続することによって十分信
頼性の高い測定データを得ることができる。またトレー
サの滴下を繰り返せば、多数回の観測も簡単に行うこと
ができる。With such a device, it is possible to obtain sufficiently reliable measurement data by continuing the measurement for a long time even when the groundwater flow velocity is very low. In addition, repeating the tracer dropping makes it possible to easily perform a large number of observations.
測定装置は前記のようにボーリングロッドに径違い継手
を用いて連結できる構成となっているから、テレビカメ
ラからのコード等に装置の荷重がかからず安定かつ強固
に装置を保持することができるし、また通常のボーリン
グ作業に用いる資材で装置の所定位置への設置ができる
ことから経済性に優れており取り扱いも容易である。As described above, since the measuring device can be connected to the boring rod by using the reducing joint, the load of the device is not applied to the cord from the TV camera and the device can be stably and firmly held. In addition, since it is possible to install the device at a predetermined position with a material used for a normal boring operation, it is economical and easy to handle.
第3図は本発明の他の実施例を示す要部説明図である。
テレビカメラが装着される筒体12およびその上部構造
は前記第2図に示した実施例の場合と全く同様であって
もよい。従って説明を簡略化するため対応する部分には
同一符号を付し、それらについての説明は省略する。FIG. 3 is a main part explanatory view showing another embodiment of the present invention.
The cylindrical body 12 on which the television camera is mounted and the upper structure thereof may be exactly the same as in the case of the embodiment shown in FIG. Therefore, in order to simplify the description, corresponding parts are designated by the same reference numerals, and description thereof will be omitted.
この実施例では測定室44として前記透明目盛り板15
と僅かの間隔(通常1mm程度以下)を介して配置した底
板46とから構成される。この底板46としてはトレー
サの観測を容易にするため白色板を用いるのが好まし
い。このように地下水が流動する部分の間隔が狭いと滴
下したトレーサは下方への移動が阻止され液滴の状態を
保ちつつ間隙を流れる地下水流動に乗って移動するか
ら、前記実施例の場合と同様にその移動位置を正確に把
握でき経過時間と関連させて観測することによって地下
水の流動を測定することができる。In this embodiment, the transparent scale plate 15 is used as the measuring chamber 44.
And a bottom plate 46 arranged with a slight gap (usually about 1 mm or less). As the bottom plate 46, it is preferable to use a white plate to facilitate the observation of the tracer. In this way, when the interval of the portion where the groundwater flows is narrow, the tracer that dripped is prevented from moving downward and moves along with the flow of groundwater flowing through the gap while maintaining the state of droplets, so that it is the same as in the case of the above embodiment The groundwater flow can be measured by observing the movement position accurately and observing it in relation to the elapsed time.
この第3図に示すような測定室の構造とすると、トレー
サとしては液体状の色素のみならず地下水と同等の比重
を持つ固体を用いることも可能となる。つまり透明目盛
り板15の中央下端に固体トレーサの放出手段を設けて
おけば、その固体の移動を観測することによって地下水
の流動を求めることができる。この場合、液滴と異なり
分子拡散の影響を受けないので流速が極端に遅い場合
(10-3cm/sec以下)の測定も可能になる。With the structure of the measurement chamber as shown in FIG. 3, not only a liquid dye but also a solid having a specific gravity equivalent to groundwater can be used as the tracer. In other words, if a solid tracer discharge means is provided at the lower center of the transparent scale plate 15, the flow of groundwater can be obtained by observing the movement of the solid. In this case, unlike droplets, it is not affected by molecular diffusion, so that it is possible to measure even when the flow velocity is extremely slow (10 −3 cm / sec or less).
[発明の効果] 本発明は上記のようにテレビカメラによってトレーサの
動きを観測することにより地下水の流向あるいは流速を
求めるように構成されているから、一本の孔井で測定が
できるし、装置も極めて簡単な構成で済み、操作も簡単
で経済性に優れている効果がある。[Effects of the Invention] Since the present invention is configured to determine the flow direction or flow velocity of groundwater by observing the movement of the tracer with the television camera as described above, measurement can be performed with a single well, and the device can be used. It has an extremely simple structure, is easy to operate, and has an economical advantage.
本発明は特に地下水の流動を直接撮影して測定できるか
ら測定上の誤りあるいはその測定結果の解釈上の誤りを
防ぐことができ、データの信頼性が極めて高く良好な測
定が可能となる。また非常に流速の遅い場合でも測定が
可能である点で甚だ優れた効果を有する。In the present invention, since the flow of groundwater can be directly photographed and measured, an error in measurement or an error in interpretation of the measurement result can be prevented, and the reliability of data is extremely high, and good measurement can be performed. In addition, it has a very excellent effect in that measurement is possible even when the flow velocity is very slow.
第1図は本発明に係る地下水流動測定装置の一実施例を
示す要部説明図、第2図はその使用状態の一例を示す全
体構成図、第3図は本発明の他の実施例を示す要部説明
図である。 10……テレビカメラ、12……筒体、14……測定
室、15……透明目盛り板、16……トレーサ放出管、
28……ストレーナ、30……底板、32……ガラスビ
ーズ、44……測定室、46……底板。FIG. 1 is an explanatory view of essential parts showing an embodiment of a groundwater flow measuring device according to the present invention, FIG. 2 is an overall constitutional view showing an example of its usage state, and FIG. 3 is another embodiment of the present invention. It is a principal part explanatory view shown. 10 ... TV camera, 12 ... Cylindrical body, 14 ... Measuring room, 15 ... Transparent scale plate, 16 ... Tracer discharge tube,
28 ... strainer, 30 ... bottom plate, 32 ... glass beads, 44 ... measuring chamber, 46 ... bottom plate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上沢 弘 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 (72)発明者 奥村 興平 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Uesawa 4-2-6 Kudankita 4-chome, Chiyoda-ku, Tokyo Within Geological Co., Ltd. (72) Kohei Okumura 4-26-6 Kudankita, Chiyoda-ku, Tokyo No. Geotechnical Co., Ltd.
Claims (1)
該筒体の先端に取り付けられてその内部を地下水が流通
自在の測定室と、前記筒体内空間と測定室との間を仕切
る透明目盛り板と、測定室の内部の一定位置にトレーサ
を放出するトレーサ放出装置とを備えていることを特徴
とする地下水流動測定装置。1. A cylindrical body in which a television camera is mounted,
A measurement chamber attached to the tip of the cylinder, through which ground water can freely flow, a transparent scale plate that partitions the space inside the cylinder and the measurement chamber, and a tracer is discharged to a fixed position inside the measurement chamber. A groundwater flow measuring device comprising a tracer discharging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60234907A JPH0619366B2 (en) | 1985-10-21 | 1985-10-21 | Groundwater flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60234907A JPH0619366B2 (en) | 1985-10-21 | 1985-10-21 | Groundwater flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6293667A JPS6293667A (en) | 1987-04-30 |
JPH0619366B2 true JPH0619366B2 (en) | 1994-03-16 |
Family
ID=16978162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60234907A Expired - Lifetime JPH0619366B2 (en) | 1985-10-21 | 1985-10-21 | Groundwater flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0619366B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113484531B (en) * | 2021-06-30 | 2022-08-26 | 中国热带农业科学院橡胶研究所 | Automatic rubber tree rubber discharge monitoring system and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57191561A (en) * | 1981-05-21 | 1982-11-25 | Taisei Kiso Sekkei Kk | Measuring method for flow of fluid |
JPS5987369A (en) * | 1982-11-10 | 1984-05-19 | Nippon Furnace Kogyo Kaisha Ltd | Method for measuring speed in water current model |
JPS6036968A (en) * | 1983-08-10 | 1985-02-26 | Hitachi Ltd | Method for measuring flow rate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604130Y2 (en) * | 1979-02-06 | 1985-02-05 | 日本電信電話株式会社 | Smoke type wind speed measuring device |
-
1985
- 1985-10-21 JP JP60234907A patent/JPH0619366B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57191561A (en) * | 1981-05-21 | 1982-11-25 | Taisei Kiso Sekkei Kk | Measuring method for flow of fluid |
JPS5987369A (en) * | 1982-11-10 | 1984-05-19 | Nippon Furnace Kogyo Kaisha Ltd | Method for measuring speed in water current model |
JPS6036968A (en) * | 1983-08-10 | 1985-02-26 | Hitachi Ltd | Method for measuring flow rate |
Also Published As
Publication number | Publication date |
---|---|
JPS6293667A (en) | 1987-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4267446A (en) | Dual scintillation detector for determining grade of uranium ore | |
Belcher | The measurement of soil moisture and density by neutron and gamma-ray scattering | |
Fleischer | Radon in the environment—opportunities and hazards | |
US6997257B2 (en) | Apparatus and method for determining the dip of an underground formation in a cased or uncased borehole | |
US5001342A (en) | Radioactive tracer cement thickness measurement | |
Abelin et al. | Channeling experiments in crystalline fractured rocks | |
US3489219A (en) | Method of locating tops of fluids in an annulus | |
KR101974503B1 (en) | Collecting device for radioactive gas including radon and/or thoron and method for collecting thereof | |
US20080116365A1 (en) | Gamma ray spectral tool for improved accuracy and reproducibility in wellbore logging | |
WO1994007147A1 (en) | Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow | |
Wilson | An evaluation of borehole flowmeters used to measure horizontal ground-water flow in limestones of Indiana, Kentucky, and Tennessee, 1999 | |
US3432656A (en) | Gage device for measurement of density profiles of snowpack | |
US20010019106A1 (en) | Process and devices for characterising ground water measurement points by distinguishing ground water from subterranean water accumulation | |
US20060131016A1 (en) | Apparatus and method for determining the dip of an underground formation in a cased or uncased borehole | |
Nelson et al. | Transport of radon in flowing boreholes at Stripa, Sweden | |
US2961539A (en) | Productivity well logging | |
JPH0619366B2 (en) | Groundwater flow measuring device | |
US3621255A (en) | Two detector pulse neutron logging porosity technique | |
RU2769169C1 (en) | Multi-method multi-probe neutron logging equipment - mmnl for sector-sector scanning of sections of oil and gas wells | |
EP0763731A2 (en) | Liquid flow monitor | |
US2631671A (en) | Borehole method and apparatus | |
US2947869A (en) | Method of studying subsurface formations | |
CN208309555U (en) | Hollow side wall wiring formula static cone penetration equipment | |
US3123709A (en) | Density measurements of borehole fluids using axially | |
US3064468A (en) | Method and apparatus for measuring properties of fluid |