WO1994007147A1 - Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow - Google Patents

Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow Download PDF

Info

Publication number
WO1994007147A1
WO1994007147A1 PCT/DE1993/000856 DE9300856W WO9407147A1 WO 1994007147 A1 WO1994007147 A1 WO 1994007147A1 DE 9300856 W DE9300856 W DE 9300856W WO 9407147 A1 WO9407147 A1 WO 9407147A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
tracer
image plane
groundwater
borehole
Prior art date
Application number
PCT/DE1993/000856
Other languages
German (de)
French (fr)
Inventor
Markus SCHÖTTLER
Original Assignee
Schoettler Markus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoettler Markus filed Critical Schoettler Markus
Priority to AU49441/93A priority Critical patent/AU4944193A/en
Publication of WO1994007147A1 publication Critical patent/WO1994007147A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B27/00Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
    • E21B27/02Dump bailers, i.e. containers for depositing substances, e.g. cement or acids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/124Units with longitudinally-spaced plugs for isolating the intermediate space
    • E21B33/1243Units with longitudinally-spaced plugs for isolating the intermediate space with inflatable sleeves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • E21B47/114Locating fluid leaks, intrusions or movements using electrical indications; using light radiations using light radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to a video technology method and an apparatus for the simultaneous determination of the direction and speed of groundwater flow in a borehole.
  • the determination is carried out by means of video-technical registration of flow-related changes in location of optically recognizable tracers on an image plane running parallel to the free flow within a groundwater-filled measuring room in the borehole.
  • Packing devices are provided above and below the measuring range to prevent interfering vertical flows, but also to lock the probe in the borehole.
  • Packing and registration device can be designed together as a probe, which can be sunk into the corresponding target depth d hole. Depending on the design of the packer device, d the use of the method is suitable for all borehole diameters larger than 2 ".
  • D Video-technically viewed section of the focused image plane is stationary with respect to the drilling wall and lies in the area of the free horizontal flow of groundwater within the measuring room.
  • the tracers are preferably fluorescent Particles that are released on the focused image plane and are excited with a suitable light source to emit their own light. These tracer particles are transported horizontally on the image plane in accordance with the prevailing flow (filter speed v suspending.
  • the optical resolution corresponds to the image plane surface under consideration
  • the video resolution of the two-dimensional capturing CCD matrix sensor module used, so that the center of an optical device corresponds to the virtual one projected onto the video sensor surface Image or object size ideally the real image or object size on the viewed image plane.
  • Emission filters are provided to eliminate light sources other than the fluorescent light re-emitted by the tracer particles, which ensures good video-technical detection due to the resulting light / dark contrasting.
  • the signals registered during the measurement are processed on the recording device to digital raw data, which are stored directly or passed on to the earth's surface and can be processed immediately by PC to determine the end data.
  • Methods and devices for determining underground and groundwater flows using the single borehole method are already known. Some methods, such as described in DT-AS 1271412, are based on the knowledge that the dilution as a function of the time of a groundwater measurement volume radioactively marked in the borehole is proportional to the inflow of nicly marked groundwater.
  • the determination of the unmarked amount of water that has flowed into the measuring volume enables conclusions to be drawn about the groundwater flow through the borehole.
  • the groundwater in the measuring section of the borehole is marked homogeneously with short-lived, radioactive isotopes.
  • the direction and speed of the radiation intensity, which decreases due to the horizontal flow through the borehole of groundwater, is then determined with a suitable probe.
  • the isotope radiation is registered with scintillation counters or Geiger-Müller counter tubes, which are designed as collimated detectors to simultaneously determine the direction of the groundwater flow.
  • This design in the form of a rotatable cylindrical lead shield has a gap for passing the radiation and can thus detect a 360 ° distribution of the radiation concentration in the borehole.
  • detectors can be used in a direction-dependent arrangement on a horizontal plane with specially designed lead shields.
  • Another method As is known, for example, from DT 2157848 C3, determine the flow characteristics from the displacement of a tracer cloud injected into the flow to be measured, the movement characteristics of which are recorded by means of an arrangement of specially shielded detectors around the injection site.
  • Radiometric single-borehole methods have been further developed by the Deutschen für Strahl- und Anlagen Kau mbH, Kunststoff / Neuherberg 1 .
  • a fluorescent dye preferably uranine
  • uranine is homogeneously distributed in the water in a packaged measuring section of the borehole.
  • monochromatic or coherent light is directed into the marked water.
  • the light beam emerges from a small two-fiber optic probe head in the transmitter and receiver light guides, which end in parallel next to each other, into the measuring room.
  • the light introduced into the measuring space is absorbed by the dye, which stimulates it to re-emit light of a certain wavelength
  • JP 63106589 A 880511 Another method is known from JP 63106589 A 880511, where an artificial groundwater surface is generated in the borehole below an upwardly concave cavity by means of a subaquatic gas cell. A floating tracer is released on the artificial groundwater surface, which moves with the current acting on the water surface. The tracer movements of this water surface can be tracked from above using a camera.
  • miniskus effects at the interfaces, electrostatic charges and flow anomalies at the phase boundary can influence the measurement results st.
  • radiometric methods are very complex due to the use of radioactive isotopes and requires appropriate safety precautions so that approval procedures are required.
  • Almost all radiometric and fluorescence tracing methods for determining the groundwater flow using the single borehole method are based on the dilution method.
  • the radial diffusion of the tracer and the resulting low concentration gradient as a function of time have a very disadvantageous effect on the measurement time, which can be up to an hour at a flow of 10 ⁇ 5 m / s per measurement 1 .
  • the distance / time distance between the release of the tracer cloud and the detector also requires long measuring times at very low flow speeds. Due to long measurement times and the associated costs, the reliability of each measurement must be given s
  • the invention is based on the following objects:
  • Groundwater flows in wells are to be determined within a considerably shorter period of time than with previous methods.
  • the observability of the tracer is ensured by ideally using a fluorescent medium which is irradiated with monochromatic or coherent light.
  • the light re-emitted by the tracer which is preferably in the spectral range of the maximum sensitivity of the CCD line sensor module, is directed to the sensor surface via an emission filter, which only allows light of the wavelength of the light re-emitted by the tracer particles to pass through.
  • S Avoidance-related registration errors caused by turbid substances or scattered light are avoided and an optimal light yield and contrast is guaranteed.
  • An appropriately chosen tracer particle size largely prevents Brownian molecular movement and thus diffusion.
  • the density of the tracer particles largely corresponds to that of the surrounding medium
  • REPLACEMENT LEAF which, in cooperation with the particle size, ensures a very long suspension duration, more or less independent of pressure, temperature, density and chemistry of the suspension medium. Since groundwater is almost always laminar, the risk of turbulence swirling in the section of the image plane under consideration is very low. Thus, the tracer media remain long enough for the duration of the measurement on the observed horizontal image plane in suspension and video technology. No turbulence occurs when the tracer is released.
  • Re 3 Due to the very high video resolution of the observed image plane section, the use of less than 0.1 mg tracer substance per measurement is sufficient to indicate the flow, so that there is no contamination of the groundwater. The tracer substance can also be suctioned off after the measurement.
  • Re 4 Due to the short measuring times, it is possible to carry out several successive reference measurements or to reduce the measuring depth distance in the borehole in order to ensure statistical certainty of the measuring accuracy. Measurement errors can thus be quickly detected and eliminated.
  • the tracers' motion sequences are recorded in video technology immediately after their release and the signals are converted into digital raw data. These can be saved directly or, after forwarding to a PC outside the drilling hole, including additional drill hole data, immediately processed to final data, which can be displayed and saved on site.
  • Figures 1 and 2 schematically represent an embodiment:
  • the device for video recording consisting of a CCD video sensor module (1).
  • Emission filter (10) and optics (10). forms together with the tracer transmitter unit (and device for releasing the tracer substance (3a) and the lighting device (13a, 8) a unit which is arranged in a borehole section forming the measuring space between two packers (4a, b).
  • the entire device is as Specially designed with which an uncased borehole or lined with filter pipes can be loaded.
  • the method can be used for all borehole diameters larger than 2 ".
  • Upper and lower packer section (4a, b) is suitable rigidly connected by at least three thin pipes (5a, b, c which are led past the edge of the measuring space. They also serve to receive electrical lines for the compass (12) and pressure line (16) for inflating the packers (4a, b), and as a bypass (5a) for vertical flow in the borehole (4a.b) prevented.
  • the groundwater can flow freely through the borehole.
  • the measuring room can be protected by a circumferential sealing shield during the sinking of the probe.
  • the video sensor module (1) with optics (7) and emission filter (10) as well as light source outlet (8) and tracer transmitter device (3,3a) are arranged at certain intervals and rigidly connected to each other by means of three thin struts (5d, e)
  • the unit is suspended free-cardanically (9), so that the image plane (2) under consideration is basically aligned horizontally. This is important because boreholes in larger depths usually show deviations from the vertical, but groundwater flows horizontally through the borehole in the measuring section.
  • D Tracer is centered at height of the viewed image plane section (2) by means of a thin device (3a) protruding from the tracer transmitter unit (3) into the image plane. This embodiment largely prevents a disturbance of the free flow on the image plane (2).
  • the bottom end of the probe has a device ( 11) for receiving a component (1) aligned with the probe, by means of which the registered str direction of the magnetic north can be determined.
  • a light source (13), an electronic central control (18), and electronic module of the video sensor (17) and tracer transmitter unit (19) are accommodated within the packer section above the measuring space (4a).
  • the monochromatic light emitted by the light source (13) is guided by means of an optical fiber (13a) into the measuring room to the light source outlet (8), from where the image plane section (2) viewed by the video sensor module (1) is illuminated during the measurement.
  • the end of the probe, which ends at the top, is formed by a holding device (14) for guiding the probe in the borehole, as well as feedthrough (15) for supply and data lines.
  • the probe After lowering the probe to the desired target depth, it is fixed in the borehole by inflating the packer device (I6, 4a, b). After a time to dampen the turbulence caused, the measuring process is initiated by lighting and video-technical recording of the image plane section (2). Immediately afterwards, the tracer is released from the center of the tracer device (3, 3a) at the level of the image plane section (2) under consideration. D Monochromatic excitation light absorbed by the tracer causes the re-emission of monochromatic light of a different wavelength.
  • the level of the tracer particle shining in this way is checked by means of an optical system (7) and an emission filters (10), which only allows the wavelength range of the light re-emitted by the tracer to pass through, is focused on the CCD video sensor surface (1).
  • Location deviations of the tracer particle on the captured image plane section (2) caused by flow trans are continuously recorded as a migration of the virtual light source or light source cloud on the CCD video sensor surface (1).
  • the virtual image size is ideally in a ratio of 1: 1 to the real image size.
  • the use of an emission filter (10) eliminates stray light effects and a light / dark contrast, which ensures good optical-video detection of the tracer parts. If the tracer drifts vertically out of the image plane, the image plane height can be optically adjusted or refocused.
  • the flow velocity and direction are immediately determined by means of the registered movement parameters. If the data values remain constant, the measurement is ended.
  • the light source (1 is switched off.
  • the tracer substance is removed from the image plane (2) under consideration by water exchange and swirling. However, it can also be suctioned off using a suitable device. A new measuring process can then be initiated a horizontal section (A-A ') through the probe at the level of the focused image plane

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

State-of-the-art bore hole processes mostly use radioisotopes, dyes or other tracer substances, and groundwater flow characteristic values are usually detected by tracer concentration variations per unit of time. Radial tracer diffusion, as well as the tracer transport time elapsed between tracer input and detection have a negative effect on measurement times at low speeds of flow. The disclosed videotechnical measurement process should supply reliable data, in particular on very small flows, in a substantially shorter time. In order to record the smallest flow movements within the shortest period of time, a horizontal image plane is videotechnically detected in the area of the free flow of groundwater in the measurement section of the bore hole, so that virtual image parameters focussed by optic elements on the CCD-video sensor module ideally correspond to the observed, real image parameters. A tracer in the form of one or several fluorescent particles, is released on this image plane, is horizontally transported in suspension within the flow at the level of the image plane and is excited so as to become self-luminescent. Location deviations of the tracer particles caused by transport in the flow are continuously registered as a displacement of the virtual light source on the CCD-matrix sensor surface and directly evaluated. This process is useful for rapidly detecting the direction and speed of flow of optically transparent, monophasic fluid media, in particular groundwater disturbances, by a single bore hole process.

Description

Einzel-Bohrloch-Verfahren und Vorrichtung zur gleichzeitigen videotechnischen Ermittlu der Grundwasser-Strömungsrichtung und -geschwindigkeitSingle borehole method and device for simultaneous video-technical determination of the groundwater flow direction and speed
BESCHREIBUNGDESCRIPTION
Die Erfindung betrifft ein videotechnisches Verfahren bzw. eine Vorrichtung zur gleic zeitigen Feststellung der Grundwasser-Strömungsrichtung und -geschwindigkeit einem Bohrloch. Die Ermittlung erfolgt mittels videotechnischer Registrierung v strömungsbedingten Standortänderungen optisch erkennbarer Tracer auf einer parall zur freien Strömung verlaufenden Bildebene innerhalb eines grundwassererfüllten Mess raumes im Bohrloch. Zur Unterbindung störender Vertikalströmungen, aber auch z Arretierung der Sonde im Bohrloch, sind oberhalb und unterhalb des Messbereich Packervorrichtungen vorgesehen. Abpackerungs- und Registriervorrichtung könne zusammen als Sonde ausgeführt sein , welche in die entsprechende Solltiefe d Bohrung abgeteuft werden kann. Je nach Ausführung der Packervorrichtung ist d Einsatz des Verfahrens für alle Bohrlochdurchmesser größer als 2" geeignet. D videotechnisch betrachtete Ausschnitt der fokussierten Bildebene ist stationär bezügli der Bohrwandung und liegt im Bereich der freien horizontalen Grundwasse durchströmung innerhalb des Messraumes. Als Tracer dienen vorzugsweise fluores zierende Partikel, die auf der fokussierten Bildebene freigesetzt, und mit ein geeigneten Lichtquelle zur Eigenlichtemission angeregt werden. Diese Tracerpartik werden entsprechend der herrschenden Strömung (Filtergeschwindigkeit v suspendierend horizontal auf der Bildebene transportiert. Zum Zweck der Erfassun sehr kleiner Bewegungsabläufe entspricht die optische Auflösung der betrachtete Bildebenenfläche idealerweise der videotechnischen Auflösung des verwendeten zweidimensional erfassenden CCD-Matrixsensormoduls. Somit entspricht die mitte einer optischen Vorrichtung auf die Videosensorfläche projezierte virtuelle Bild- bz Gegenstandsgröße idealerweise der realen Bild- bzw. Gegenstandsgröße auf d betrachteten Bildebene. Zur Eleminierung von anderen Lichtquellen als das von de Tracerpartikeln reemittierte Fluoreszenzlicht sind Emissionsfilter vorgesehen, wodurc aufgrund der resultierenden hell/dunkel Kontrastierung eine gute videotechnisch Erfassung gewährleistet wird. Die während der Messung registrierten Signale werde an der Erfassungs Vorrichtung zu digitalen Rohdaten aufgearbeitet, die direkt gespeiche oder weiter zur Erdoberfläche geleitet und sofort per PC zur Ermittlung der End daten verarbeitet werden können. Es sind bereits Verfahren und Vorrichtungen zur Ermittlung von Untergrund- un Grundwasserströmungen nach dem Einzel-Bohrloch-Verfahren bekannt. Einige Verfahre wie beispielsweise in der DT-AS 1271412 beschrieben, basieren auf der Erkenntni daß die Verdünnung als Funktion der Zeit eines im Bohrloch radioaktiv markierte Grundwasser- Messvoiumens proportional der zugeströmten Menge von nic markiertem Grundwasser ist. Die Ermittlung der in das Messvolumen zugeströmte unmarkierten Wassermenge ermöglicht einen Rückschluß auf die Grundwasser durchströmung des Bohrlochs. Bei diesen Methoden wird das Grundwasser im Mess abschnitt des Bohrlochs homogen mit kurzlebigen, radioaktiven Isotopen markier Anschließend wird mit einer geeigneten Sonde Richtung und Geschwindigkeit der i Bohrloch abnehmenden Strahlungsintensität ermittelt, die durch die horizontale Durch strömung des Bohrlochs von Grundwasser verursacht wird. Die Registrierung de Isotopenstrahlung erfolgt mit Szintillationszählern oder Geiger-Müller-Zählrohren, di zur gleichzeitigen Ermittlung der Grundwasser-Strömungsrichtung einerseits al kollimierte Detektoren ausgeführt sind. Diese Ausführung in Form einer drehbare zylindrischen Bleiabschirmung weist einen Spalt zum Passieren der Strahlung auf un kann somit eine 360° Verteilung der Strahlungskonzentration im Bohrloch erfasse Andererseits können mehrere Detektoren in einer richtungsabhängigen Anordnung a einer horizontalen Ebene mit speziell gestalteten Bleiabschirmungen eingesetzt werde Eine andere Methode, wie beispielsweise aus der DT 2157848 C3 bekannt, ermittel die Strömungskennwerte aus der Verlagerung einer in die zu vermessende Strömun injizierten Tracerwolke, deren Bewegungskennwerte mittels einer Anordnung vo speziell abgeschirmten Detektoren um die Injektionsstelle herum erfasst werden.The invention relates to a video technology method and an apparatus for the simultaneous determination of the direction and speed of groundwater flow in a borehole. The determination is carried out by means of video-technical registration of flow-related changes in location of optically recognizable tracers on an image plane running parallel to the free flow within a groundwater-filled measuring room in the borehole. Packing devices are provided above and below the measuring range to prevent interfering vertical flows, but also to lock the probe in the borehole. Packing and registration device can be designed together as a probe, which can be sunk into the corresponding target depth d hole. Depending on the design of the packer device, d the use of the method is suitable for all borehole diameters larger than 2 ". D Video-technically viewed section of the focused image plane is stationary with respect to the drilling wall and lies in the area of the free horizontal flow of groundwater within the measuring room. The tracers are preferably fluorescent Particles that are released on the focused image plane and are excited with a suitable light source to emit their own light. These tracer particles are transported horizontally on the image plane in accordance with the prevailing flow (filter speed v suspending. For the purpose of recording very small movements, the optical resolution corresponds to the image plane surface under consideration Ideally, the video resolution of the two-dimensional capturing CCD matrix sensor module used, so that the center of an optical device corresponds to the virtual one projected onto the video sensor surface Image or object size ideally the real image or object size on the viewed image plane. Emission filters are provided to eliminate light sources other than the fluorescent light re-emitted by the tracer particles, which ensures good video-technical detection due to the resulting light / dark contrasting. The signals registered during the measurement are processed on the recording device to digital raw data, which are stored directly or passed on to the earth's surface and can be processed immediately by PC to determine the end data. Methods and devices for determining underground and groundwater flows using the single borehole method are already known. Some methods, such as described in DT-AS 1271412, are based on the knowledge that the dilution as a function of the time of a groundwater measurement volume radioactively marked in the borehole is proportional to the inflow of nicly marked groundwater. The determination of the unmarked amount of water that has flowed into the measuring volume enables conclusions to be drawn about the groundwater flow through the borehole. With these methods, the groundwater in the measuring section of the borehole is marked homogeneously with short-lived, radioactive isotopes. The direction and speed of the radiation intensity, which decreases due to the horizontal flow through the borehole of groundwater, is then determined with a suitable probe. The isotope radiation is registered with scintillation counters or Geiger-Müller counter tubes, which are designed as collimated detectors to simultaneously determine the direction of the groundwater flow. This design in the form of a rotatable cylindrical lead shield has a gap for passing the radiation and can thus detect a 360 ° distribution of the radiation concentration in the borehole. On the other hand, several detectors can be used in a direction-dependent arrangement on a horizontal plane with specially designed lead shields. Another method, As is known, for example, from DT 2157848 C3, determine the flow characteristics from the displacement of a tracer cloud injected into the flow to be measured, the movement characteristics of which are recorded by means of an arrangement of specially shielded detectors around the injection site.
Radiometrische Einzel-Bohrloch-Verfahren sind von der Gesellschaft für Strahlen- un Umweltforschung mbH, München/Neuherberg 1 weiterentwickelt worden.Radiometric single-borehole methods have been further developed by the Gesellschaft für Strahl- und Umweltforschung mbH, Munich / Neuherberg 1 .
Aufgrund der aufwendigen Arbeitsweise mit radioaktiven Isotopen wurde ein weiteres auch auf der Verdünnunngsmethode basierendes Einzel-Bohrloch-Verfahren entwickelt2 Hierbei wird ein fluoreszierender Farbstoff, vorzugsweise Uranin, in einem abgepackerte Messabschnitt des Bohrloches homogen im Wasser verteilt. Mittels eines dünne Lichtleiter-Fasers wird monochromatisches bzw. kohärentes Licht in das markiert Wasser geleitet. Der Lichtstrahl tritt aus einem kleinen Zwei-Lichtfaser-Sondenkopf in dem Sende- und Empfänger-Lichtleiter parallel nebeneinander enden, in den Mess raum. Das in den Messraum eingeleitete Licht wird von dem Farbstoff absorbier wodurch dieser zur Reemittierung von Licht bestimmter Wellenlänge angeregt wirDue to the complex work with radioactive isotopes, another single borehole method based on the dilution method was developed. 2 Here, a fluorescent dye, preferably uranine, is homogeneously distributed in the water in a packaged measuring section of the borehole. Using a thin light guide fiber, monochromatic or coherent light is directed into the marked water. The light beam emerges from a small two-fiber optic probe head in the transmitter and receiver light guides, which end in parallel next to each other, into the measuring room. The light introduced into the measuring space is absorbed by the dye, which stimulates it to re-emit light of a certain wavelength
ATT Dieses Licht wird mittels des zweiten Glasfaser- Lichtleiters im Sondenkopf ü einen Emissionsfilter zu einem Fotodetektor außerhalb des Bohrlochs geleitet, der Intensität des reemittierten Lichts ermittelt. Die gemessene Intensität ist proporti der am Sondenkopf herrschenden Farbstoffkonzentration. Die Farbstoff-Konzentratio abnähme bzw. -Verdünnung als Funktion der Zeit gibt Aufschluß über die ins Me volumen zuströmende Wassermenge und somit auch der Strömungsgeschwindigk Zur Ermittlung der Richtung der Konzentrationsabnahme des Farbstoffes bzw. Grundwasser-Strömungsrichtung, wird eine Anordnung von mindestens drei beschriebenen Sondenköpfe auf einer horizontalen Ebene ins Bohrloch eingebra die mittels eines kontinuierlichen Vergleichs der an den jeweiligen Sondenk herrschenden Farbstoffkonzentration Aussagen über die Strömungsrichtung ermöglichATT This light is guided by means of the second glass fiber light guide in the probe head ü an emission filter to a photodetector outside the borehole, which determines the intensity of the re-emitted light. The measured intensity is proportional to the dye concentration at the probe head. The decrease in dye concentration or dilution as a function of time provides information about the volume of water flowing into the measurement volume and thus also the flow rate. To determine the direction of the decrease in concentration of the dye or the direction of the groundwater flow, an arrangement of at least three described probe heads is given a horizontal plane into the borehole, which makes it possible to make statements about the direction of flow by means of a continuous comparison of the dye concentration prevailing at the respective probe
Ein weiteres Verfahren ist aus der JP 63106589 A 880511 bekannt, wo im Bohrl eine künstliche Grundwasseroberfläche unterhalb eines nach oben konkav gewölb Hohlraumes mittels einer subaquatischen Gaszelle erzeugt wird. Auf der künstlic Grundwasseroberfläche wird ein schwimmender Tracer freigesetzt, der sich mit an der Wasseroberfäche wirkenden Strömung bewegt. Die Tracerbewegungen dieser Wasseroberfläche können mittels einer Kamera von oben verfolgt werden.Another method is known from JP 63106589 A 880511, where an artificial groundwater surface is generated in the borehole below an upwardly concave cavity by means of a subaquatic gas cell. A floating tracer is released on the artificial groundwater surface, which moves with the current acting on the water surface. The tracer movements of this water surface can be tracked from above using a camera.
Beim letzteren Verfahren können Miniskuseffekte an den Grenzflächen, elektrostatis Aufladungen und Strömungsanomalien an der Phasengrenze die Messergebnisse st beeinflussen.In the latter method, miniskus effects at the interfaces, electrostatic charges and flow anomalies at the phase boundary can influence the measurement results st.
Die Anwendung radiometrischer Methoden ist aufgrund der Verwendung radioakti Isotope sehr aufwendig und setzt entsprechende Sicherheitsvorkehrungen so Genehmigungsverfahren voraus. Fast alle radiometrischen und Fluoreszenztrac methoden zur Ermittlung der Grundwasserströmung nach dem Einzel-Bohrloch-Verfah basieren auf der Vedünnungsmethode. Bei sehr kleinen Strömungsgeschwindigkei wirkt sich die radiale Diffusion des Tracers und das resultierende geringe Konzentratio gefälle als Funktion der Zeit sehr nachteilig auf die Messzeit aus, die bei Strömun von 10~5 m/s pro Messung bis zu einer Stunde betragen kann1. Auch bei Verfolgung kleiner Tracermengen, die in die Strömung ohne eine anschließe ' Durchmischung des gesamten Messvolumens injiziert werden, kann die radiale Diffus der Tracerwolke sehr kleine Strömungen überdecken. Auch die Weg/Zeit Dist zwischen Freisetzung der Tracerwolke und Detektor macht bei sehr kleinen Strömun geschwindigkeiten lange Messzeiten erforderlich. Aufgrund langer Messzeiten und damit verbundenen Kosten muß die Verläßlichkeit einer jeden Messung gegeben s Der Erfindung liegen folgende Aufgaben zugrunde:The use of radiometric methods is very complex due to the use of radioactive isotopes and requires appropriate safety precautions so that approval procedures are required. Almost all radiometric and fluorescence tracing methods for determining the groundwater flow using the single borehole method are based on the dilution method. At very low flow velocities, the radial diffusion of the tracer and the resulting low concentration gradient as a function of time have a very disadvantageous effect on the measurement time, which can be up to an hour at a flow of 10 ~ 5 m / s per measurement 1 . Even when tracking small amounts of tracer that are injected into the flow without subsequent mixing of the entire measurement volume, the radial diffuse of the tracer cloud can cover very small flows. The distance / time distance between the release of the tracer cloud and the detector also requires long measuring times at very low flow speeds. Due to long measurement times and the associated costs, the reliability of each measurement must be given s The invention is based on the following objects:
1.: Es sollen Grundwasser-Strömungen in Brunnen innerhalb eines wesentlich kürzere Zeitraumes als mit bisherigen Methoden ermittelt werden.1 .: Groundwater flows in wells are to be determined within a considerably shorter period of time than with previous methods.
2.: Standortveränderungen des Tracers sollten auch in leicht getrübten Grundwasse für den Zeitraum der Messung videotechnisch gut registrierbar sein.2 .: Changes in the location of the tracer should be easy to record by video technology even in slightly cloudy groundwater for the period of the measurement.
3.: Eine Kontamination des Grundwassers durch Tracersubstanzen soll so gering wi möglich gehalten werden.3 .: Contamination of the groundwater by tracer substances should be kept as low as possible.
4.: Fehlmessungen sollten so gering wie möglich auftreten bzw. rasch aufgedeck werden können. Die Messungen sollen verläßliche Daten liefern. 5.: Die ermittelten Daten sollen unmittelbar nach der Messung zur Verfügung stehen.4 .: Incorrect measurements should occur as little as possible or should be uncovered quickly. The measurements should provide reliable data. 5 .: The determined data should be available immediately after the measurement.
Die Aufgaben werden durch das erfindungsgemäße Verfahren wie folgt gelöst:The tasks are solved by the method according to the invention as follows:
Zu 1.: Die optische Auflösung des CCD-Matrixsensormoduls wird auf die betrachtet fokkusierte Bildebene idealerweise im Maßstab 1 :1 übertragen , d.h. die mittels eine optischen Vorrichtung auf die CCD-Matrixsensorfläche erzeugten virtuellen Bildgröß entspricht idealerweise der realen Bildgröße des fokkusierten Bildebenenausschnitts Derzeit gebräuchliche CCD-Matrixsensoren besitzen ein optisches Auflösungs vermögen von mehreren μm pro Pixel. Daher ist es möglich, in laminar strömenden optisch transparenten Fluiden Standortveränderungen von mittransportierten mikros kopischen Tracermedien bei einer Biidübertragung im Maßstab 1 :1 rasch zu erfassen Beispielsweise können somit Strömungen von 10_7 m/s , ( = 0,1μm/s. , innerhalb eine Minute in Richtung und Geschwindigkeit erfasst werden. Die Registrierung vo Bewegungsabläufen bei gößeren Strömungs- Geschwindigkeiten beispielsweise 10"2 m/ wird durch die hohe Abtastfrequenz des CCD-Matrixsensormoduls ermöglicht.Re 1 .: The optical resolution of the CCD matrix sensor module is ideally transferred to the focussed image plane considered on a scale of 1: 1, ie the virtual image size generated by means of an optical device on the CCD matrix sensor surface ideally corresponds to the real image size of the focussed image plane section currently used CCD -Matrix sensors have an optical resolution of several μm per pixel. Therefore, it is possible scopic in laminar flowing optically transparent fluids location changes carried along mikros tracer media at a Biidübertragung in scale 1: 1 rapidly detect example, flows can thus 10 _7 m / s (= 0.1 .mu.m / s within. One minute in direction and speed are recorded. The registration of movement sequences at higher flow speeds, for example 10 "2 m /, is made possible by the high sampling frequency of the CCD matrix sensor module.
Zu 2.: Die Beobachtbarkeit des Tracers ist dadurch gewährleistet, daß idealerweis ein fluoreszierendes Medium eingesetzt wird, welches mit monochromatischen bzw kohärentem Licht bestrahlt wird. Das vom Tracer reemitierte Licht, das vorzugsweis im Spektralbereich der maximalen Empfindlichkeit des CCD-Zeilensensormoduls liegt wird über einen Emissionsfilter, der nur Licht von der Wellenlänge des von de Tracerpartikeln reemitierten Lichts passieren läßt, auf die Sensorfläche geleitet. S werden durch Trübstoffe oder Streulicht verursachte viodeotechnische Registrierungs fehler vermieden und eine optimale Lichtausbeute und Kontrastierung gewährleistet Durch eine entsprechend gewählte Tracerpartikelgröße wird eine Beeinflussung durc Brownsche Molekularbewegung und somit eine Diffusion weitgehend vermieden. Di Dichte der Tracerpartikel entspricht weitestgehend der des umgebenden Mediums2 .: The observability of the tracer is ensured by ideally using a fluorescent medium which is irradiated with monochromatic or coherent light. The light re-emitted by the tracer, which is preferably in the spectral range of the maximum sensitivity of the CCD line sensor module, is directed to the sensor surface via an emission filter, which only allows light of the wavelength of the light re-emitted by the tracer particles to pass through. S Avoidance-related registration errors caused by turbid substances or scattered light are avoided and an optimal light yield and contrast is guaranteed. An appropriately chosen tracer particle size largely prevents Brownian molecular movement and thus diffusion. The density of the tracer particles largely corresponds to that of the surrounding medium
ERSATZBLATT wodurch im Zusammenwirken mit der Partikelgröße eine sehr lange Suspensionsdau mehr oder weniger unabhängig von Druck, Temperatur, Dichte und Chemismus d Suspensionsmediums , gewährleistet ist. Da Grundwasser fast immer laminar strö ist auch die Gefahr der Verwirbelung der Tracer im betrachteten Bildebenenausschn sehr gering. Somit verbleiben die Tracermedien für die Dauer der Messung lan genug auf der beobachteten, horizontalen Bildebene in Suspension und videotechnis gut verfolgbar. Bei der Freisetzung des Tracers treten keine Turbolenzen auf. Zu 3.: Aufgrund der sehr hohen videotechnischen Auflösung des beobachtet Bildebenenausschnitts ist ein Einsatz von weniger 0,1 mg Tracersubstanz pro Messung z Kenntlichmachung der Strömung ausreichend, so daß keine Belastung des Grundwasse auftritt. Auch kann die Tracersubstanz nach der Messung abgesaugt werden.REPLACEMENT LEAF which, in cooperation with the particle size, ensures a very long suspension duration, more or less independent of pressure, temperature, density and chemistry of the suspension medium. Since groundwater is almost always laminar, the risk of turbulence swirling in the section of the image plane under consideration is very low. Thus, the tracer media remain long enough for the duration of the measurement on the observed horizontal image plane in suspension and video technology. No turbulence occurs when the tracer is released. Re 3 .: Due to the very high video resolution of the observed image plane section, the use of less than 0.1 mg tracer substance per measurement is sufficient to indicate the flow, so that there is no contamination of the groundwater. The tracer substance can also be suctioned off after the measurement.
Zu 4.: Aufgrund der kurzen Messzeiten ist es möglich, mehrere aufeinanderfolgen Referenzmessungen durchzuführen oder den Messtiefenabstand im Bohrloch verkleinern, um so eine statistische Sicherheit der Messgenauigkeit zu gewährleiste Messfehler können somit schnell entdeckt und ausgeschaltet werden.Re 4 .: Due to the short measuring times, it is possible to carry out several successive reference measurements or to reduce the measuring depth distance in the borehole in order to ensure statistical certainty of the measuring accuracy. Measurement errors can thus be quickly detected and eliminated.
Zu 5.: Die Bewegungsabläufe der Tracer werden unmittelbar nach deren Freisetzu videotechnisch registriert und die Signale in digitale Rohdaten umgewandelt. Die können direkt gespeichert, oder nach Weiterleitung zu einem PC außerhalb des Boh loches unter Einbeziehung zusätzlicher Bohrlochkenndaten sofort zu Enddaten weite verarbeitet werden, welche vor Ort angezeigt und gespeichert werden können.5 .: The tracers' motion sequences are recorded in video technology immediately after their release and the signals are converted into digital raw data. These can be saved directly or, after forwarding to a PC outside the drilling hole, including additional drill hole data, immediately processed to final data, which can be displayed and saved on site.
Abbildung 1 und 2 stellen schematisch ein Ausführungsbeispiel dar: Die Vorrichtung zur videotechnischen Erfassung , bestehend aus CCD-Videosensormod (1). Emissionsfilter (10) und Optik (10). bildet zusammen mit der Tracergebereinheit ( und Vorrichtung zur Freisetzung der Tracersubstanz (3a) sowie der Beleuchtung Vorrichtung (13a, 8) eine Einheit, die in einem den Messraum bildenden Bohrlochabschn zwischen zwei Packern (4a,b) angeordnet ist. Die gesamte Vorrichtung ist als Sond ausgeführt, mit der ein unverrohrtes oder mit Filterrohren ausgekleidetes Bohrlo beschickt werden kann. Je nach Ausführung der Packervorrichtungen (4a,b) ist d Einsatz der Methode für alle Bohrlochdurchmesser größer als 2" geeignet. Ober und unterer Packerabschnitt (4a,b) ist durch mindestens drei dünne Rohre (5a,b,c die randlich am Messraum vorbeigeführt werden, starr verbunden. Sie dienen zusätzli zur Aufnahme von elektrischen Leitungen für den Kompass (12) und Druckleitung (16) zum Aufpumpen der Packer (4a,b) , sowie als Bypass (5a) für Vertikalströmung im Bohrloch. Vertikale Strömungen im Messraum der Sonde werden durch die Pack (4a.b) unterbunden. Im Messabschnitt, insbesonders auf Höhe der Bildebene (2), ka das Grundwasser das Bohrloch frei durchströmen. Der Messraum kann während d Abteufung der Sonde durch eine umlaufend abdichtende Abschirmung geschü werden. Im Messraum ist das Videosensormodul (1) mit Optik (7) und Emissionsfilt (10) sowie Lichtquelienaustritt (8) und Tracergebervorrichtung (3,3a) in bestimmt Abständen untereinander angeordnet und starr mittels drei dünnen Streben (5d,e, miteinander verbunden. Diese Einheit ist freikardanisch aufgehangen (9), so daß betrachtete Bildebene (2) grundsätzlich horizontal ausgerichtet ist. Dies ist wichti da Bohrlöcher in größeren Teufen meist Abweichungen von der Lotrechten aufweis daß Grundwasser das Bohrloch im Messabschnitt aber horizontal durchströmt. D Tracer wird mittig auf Höhe des betrachteten Bildebenenausschnitts (2) mittels ein aus der Tracergebereinheit (3) in die Bildebene hineinragenden dünnen Vorrichtu (3a) freigesetzt. Diese Ausführungsform verhindert weitgehend eine Störung d freien Strömung auf der Bildebene (2). Das unterste Ende der Sonde weist ei Vorrichtung (11) zur Aufnahme eines an der Sonde ausgerichteten Kompanden (1 auf, mittels dem die registrierte Strömungsrichtung bezüglich magnetisch Nord bestim werden kann. Innerhalb des Packerabschnitts oberhalb des Messraumes (4a) ist ei Lichtquelle (13), eine elektronische Zentralsteuerung (18), sowie elektronische Modu des Videosensors (17) und Tracergebereinheit (19) untergebracht. Das von d Lichtquelle (13) emmitierte monochromatische Licht wird mittels einer Lichtleite faser (13a) in den Messraum zum Lichtquellenaustritt (8) geleitet, von wo der vo Videosensormodul (1) betrachtete Bildebenenauschnitt (2) während der Messu beleuchet wird. Das nach oben abschließende Ende der Sonde wird von ein Halterungsvorrichtung (14) zur Führung der Sonde im Bohrloch, sowie Durchführung (15) für Versorgungs- und Datenleitungen gebildet.Figures 1 and 2 schematically represent an embodiment: The device for video recording, consisting of a CCD video sensor module (1). Emission filter (10) and optics (10). forms together with the tracer transmitter unit (and device for releasing the tracer substance (3a) and the lighting device (13a, 8) a unit which is arranged in a borehole section forming the measuring space between two packers (4a, b). The entire device is as Specially designed with which an uncased borehole or lined with filter pipes can be loaded. Depending on the design of the packer devices (4a, b), the method can be used for all borehole diameters larger than 2 ". Upper and lower packer section (4a, b) is suitable rigidly connected by at least three thin pipes (5a, b, c which are led past the edge of the measuring space. They also serve to receive electrical lines for the compass (12) and pressure line (16) for inflating the packers (4a, b), and as a bypass (5a) for vertical flow in the borehole (4a.b) prevented. In the measuring section, especially at the level of the image plane (2), the groundwater can flow freely through the borehole. The measuring room can be protected by a circumferential sealing shield during the sinking of the probe. In the measuring room, the video sensor module (1) with optics (7) and emission filter (10) as well as light source outlet (8) and tracer transmitter device (3,3a) are arranged at certain intervals and rigidly connected to each other by means of three thin struts (5d, e) The unit is suspended free-cardanically (9), so that the image plane (2) under consideration is basically aligned horizontally.This is important because boreholes in larger depths usually show deviations from the vertical, but groundwater flows horizontally through the borehole in the measuring section. D Tracer is centered at height of the viewed image plane section (2) by means of a thin device (3a) protruding from the tracer transmitter unit (3) into the image plane. This embodiment largely prevents a disturbance of the free flow on the image plane (2). The bottom end of the probe has a device ( 11) for receiving a component (1) aligned with the probe, by means of which the registered str direction of the magnetic north can be determined. A light source (13), an electronic central control (18), and electronic module of the video sensor (17) and tracer transmitter unit (19) are accommodated within the packer section above the measuring space (4a). The monochromatic light emitted by the light source (13) is guided by means of an optical fiber (13a) into the measuring room to the light source outlet (8), from where the image plane section (2) viewed by the video sensor module (1) is illuminated during the measurement. The end of the probe, which ends at the top, is formed by a holding device (14) for guiding the probe in the borehole, as well as feedthrough (15) for supply and data lines.
Nach Absenkung der Sonde in die gewünschte Solltiefe wird diese durch Aufpump der Packervorrichtung (I6,4a,b) im Bohrloch fixiert. Nach einer Zeit zur Ausdämpfu der verursachten Turbolenzen wird der Messvorgang durch Beleuchtung u videotechnische Erfassung des Bildebene nauschnitts (2) eingeleitet. Unmittelb darauffolgend wird der Tracer mittig in Höhe des betrachteten Bildebene ausschnitts (2) aus der Tracergebervorrichtung (3,3a) freigesetzt. D vom Tracer absorbierte, monochromatische Anregungslicht bedingt die Reemittieru von monochromatischem Licht abweichender Wellenlänge. Der Stand des so leuchtenden Tracerpartikels wird mittels einer Optik (7) und eines Emission filters (10), der lediglich den Wellenlängenbereich des vom Tracer reemitierten Licht passieren läßt, auf die CCD-Videosensorfläche (1) fokussiert. Durch Strömungstransp bedingte Standortabweichungen des Tracerpartikels auf dem erfassten Bildebene ausschnitt (2) werden als Wanderung der virtuellen Lichtquelle oder Lichtquellenwol auf der CCD-Videosensorfläche (1) fortlaufend registriert. Die virtuelle Bildgröße ste dabei zur realen Bildgröße idealerweise im Verhältnis 1:1 . Die Verwendung ein Emissionsfilters (10) bewirkt die Eiiminierung von Streulichteffekten und eine hell/dunk Kontrastierung, was eine gute optisch-videotechnische Erfassung der Tracerparti gewährleistet . Bei vertikalem Drift der Tracer aus der Bildebene heraus kann Bildebenenhöhe optisch nachgeführt bzw. neu fokussiert werden. Mittels d registrierten Bewegungskennwerte wird sofort Strömungsgeschwindigkeit und -richtu ermittelt. Bei Konstanz der Datenwerte ist die Messung beendet. Die Lichtquelle (1 wird abgestellt. Bei vertikaler Bewegung der Sonde im Bohrloch wird die Tracersubsta durch Wasseraustausch und Verwirbelung aus der betrachteten Bildebene (2) entfer Sie kann aber auch mittels einer geeigneten Vorrichtung abgesaugt werde Anschließend kann ein neuer Messvorgang eingeleitet werden. Abbildung 2 zei einen horizontalen Schnitt (A-A') durch die Sonde in Höhe der fokussierten BildebenAfter lowering the probe to the desired target depth, it is fixed in the borehole by inflating the packer device (I6, 4a, b). After a time to dampen the turbulence caused, the measuring process is initiated by lighting and video-technical recording of the image plane section (2). Immediately afterwards, the tracer is released from the center of the tracer device (3, 3a) at the level of the image plane section (2) under consideration. D Monochromatic excitation light absorbed by the tracer causes the re-emission of monochromatic light of a different wavelength. The level of the tracer particle shining in this way is checked by means of an optical system (7) and an emission filters (10), which only allows the wavelength range of the light re-emitted by the tracer to pass through, is focused on the CCD video sensor surface (1). Location deviations of the tracer particle on the captured image plane section (2) caused by flow trans are continuously recorded as a migration of the virtual light source or light source cloud on the CCD video sensor surface (1). The virtual image size is ideally in a ratio of 1: 1 to the real image size. The use of an emission filter (10) eliminates stray light effects and a light / dark contrast, which ensures good optical-video detection of the tracer parts. If the tracer drifts vertically out of the image plane, the image plane height can be optically adjusted or refocused. The flow velocity and direction are immediately determined by means of the registered movement parameters. If the data values remain constant, the measurement is ended. The light source (1 is switched off. When the probe is moved vertically in the borehole, the tracer substance is removed from the image plane (2) under consideration by water exchange and swirling. However, it can also be suctioned off using a suitable device. A new measuring process can then be initiated a horizontal section (A-A ') through the probe at the level of the focused image plane
Außer den angeführten Patentschriften in Betracht gezogene Druckschriften:In addition to the patent specifications cited:
1. Drost, W. (1984):" Einbohrlochmethoden zur Bestimmung der Filtergeschwindigk und der Fließrichtung des Grundwassers" Institut für Radiohydrometrie, GSF-Beric R 369, München .1. Drost, W. (1984): "Single-hole methods for determining the filter speed and the direction of flow of the groundwater" Institute for Radiohydrometry, GSF-Beric R 369, Munich.
2. Barczewski, B. (1988): "Entwicklung eines Lichtleiterfluorometers zur Untersuchu von Transport- und Vermischungsvorgängen in Strömungen" , Seminarband des A Seminars "Faser- und Integriert-optische Sensoren", Heidelberg 1988. 2. Barczewski, B. (1988): "Development of an optical fiber fluorometer for the investigation of transport and mixing processes in flows", seminar volume of the A seminar "Fiber and Integrated Optical Sensors", Heidelberg 1988.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung zur gleichzeitigen Feststellung de Grundwasser-Strömungsrichtung und -geschwindigkeit, weiche mittels videotechnische Registrierung von Standortveränderungen eines oder mehrerer optisch erfassbare Tracermedien , die innerhalb des Bohrlochs im Bereich der betrachteten Bildebene mi der zu vermessenden Wasserströmung frei transportiert werden, ermittelt wird dadurch gekennzeichnet, daß der etwa parallel zur Strömung verlaufende Bildebenen ausschnitt stationär bezüglich der Bohrwandung ist und mittels einer entsprechende optischen Vorrichtung die auf eine CCD-Matrixsensorfläche fokussierte virtuelle Bildgröß zu der realen Bildgröße des betrachteten Bildebenenauschnitts idealerweise i Verhältnis 1 :1 steht, jedoch zwischen 1 :100 und 100:1 variieren kann, d.h. die hoh videotechnische Bildauflösung wird auf den betrachteten Bildebenenauschnitt idealer weise im Verhältnis 1:1 übertragen, kann aber zwischen 1:100 und 100 :1 variieren.1. Single-borehole method or device for the simultaneous determination of the groundwater flow direction and speed, which by means of video-technical registration of changes in location of one or more optically detectable tracer media, free of the water flow to be measured within the borehole in the area of the image plane under consideration is determined, characterized in that the image plane running approximately parallel to the flow is stationary with respect to the drilling wall and, by means of an appropriate optical device, the virtual image size focused on a CCD matrix sensor surface to the real image size of the viewed image plane section ideally in a ratio of 1: 1 stands, but can vary between 1: 100 and 100: 1, ie The high video-technical image resolution is ideally transferred to the observed image plane section in a ratio of 1: 1, but can vary between 1: 100 and 100: 1.
2. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach Anspruch 1 dadurch gekennzeichnet daß der videotechnisch betrachtete Bildebenenauschnitt im Bereich der freien Grund wasser-Durchströmung innerhalb des Messraumes liegt.2. Single borehole method or device according to claim 1, characterized in that the image plane section viewed in terms of video technology lies in the region of the free ground water flow within the measuring space.
3. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangene Ansprüche dadurch gekennzeichnet, daß das oder die beobachteten Medien ein ode mehrere Partikel von kolloidaler bis makroskopischer Größe sind, die im Messrau auf Höhe der Bildebene der Strömung zugesetzt werden und vorzugsweise ein annähernde Dichte der umgebenden Flüssigkeit besitzen.3. Single borehole method or device according to one of the preceding claims, characterized in that the media or media observed are one or more particles of colloidal to macroscopic size, which are added in the measuring area at the level of the image plane of the flow and preferably one have an approximate density of the surrounding liquid.
4. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangene Ansprüche dadurch gekennzeichnet, daß das oder die beobachteten Medien bereit im Bohrloch vorhandene, in Suspension befindliche Partikel sind.4. Single borehole method or device according to one of the preceding claims, characterized in that the media or media observed are ready in the borehole, particles in suspension.
5. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangene Ansprüche dadurch gekennzeichnet, daß das beobachtete Medium ein Farbstoff ode ein bzw. mehrere mit Farbstoff versehene Partikel sind , der oder die mit der Strömun mitgeführt werden und mit dem oder denen die Strömungsrichtung und -geschwindig keit optisch bzw. videotechnisch mittels Auflicht, Durchlicht oder Eigenlichtemissio registrierbar wird. 5. Single borehole method or device according to one of the preceding claims, characterized in that the medium observed is a dye or one or more particles provided with dye, which are carried along with the flow and with which the Flow direction and speed can be registered optically or video-technically by means of incident light, transmitted light or natural light emission.
6. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen Ansprüche dadurch gekennzeichnet, daß mittels einer den betrachteten Bildebene auschnitt beleuchtenden Lichtquelle der oder die Tracer aufgrund von Lichtreflektio Lichtabsorption und Anregung zur Eigenlichtemission optisch erkennbar und so6. Single borehole method or device according to one of the preceding claims, characterized in that optically recognizable by means of a light source which illuminates the viewed image plane section or the tracer due to light reflection, light absorption and excitation for natural light emission and so on
5 videotechnisch registrierbar werden.5 can be registered by video.
7. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen Ansprüche dadurch gekennzeichnet, daß die optische Erfassung des oder der Trace medien auf deren remanente oder induzierte Eigenlichtemission in Form v7. Single borehole method or device according to one of the preceding claims, characterized in that the optical detection of the trace or trace media on their remanent or induced inherent light emission in the form of
Phosphorezieren oder Fluoreszieren basiert , d.h. das Medium oder die Medien könn 10 phosphorezierende oder fluoreszierende Eigenschaften aufweisen.Based on phosphor or fluorescence, i.e. the medium or media can have 10 phosphorescent or fluorescent properties.
8. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen Ansprüche dadurch gekennzeichnet, daß die Bewegungsabläufe in Richtung u Geschwindigkeit eines oder mehrerer Medien fortlaufend oder in Intervallen vide technisch registriert und in Datensignale umgewandelt werden, die mittels Hard- u8. Single borehole method or device according to one of the preceding claims, characterized in that the movement sequences in the direction u speed of one or more media continuously or at intervals vide technically recorded and converted into data signals that by means of hardware u
15 Software unter Einbeziehung manuell eingegebener Daten ausgewertet, und auf eine geeigneten Ausgabegerät angezeigt werden.15 Software evaluated using manually entered data, and displayed on a suitable output device.
9. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen Ansprüche dadurch gekennzeichnet, daß die Strömungsrichtung mittels eines an d Sonde ausgerichteten Kompanden bezüglich magnetisch Nord ermittelt wird.9. Single borehole method or device according to one of the preceding claims, characterized in that the direction of flow is determined by means of a compand aligned with the probe with respect to magnetic north.
20 10. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen Ansprüche dadurch gekennzeichnet, daß das Sensormodul, Optik und Tracergebe Vorrichtung als Einheit freikardanisch im Messabschnitt des Bohrlochs aufgehang sind.20 10. Single borehole method or device according to one of the preceding claims, characterized in that the sensor module, optics and tracer device are hung as a unit in the gimbal in the measuring section of the borehole.
11. Einzel-Bohrloch-Verfahren bzw. -Vorrichtung nach einem der vorangegangen 25 Ansprüche dadurch gekennzeichnet, daß Teile der Tracergeber-Vorrichtung als ras auswechselbare Einsätze ausgeführt sind. 11. Single-hole method or device according to one of the preceding 25 claims, characterized in that parts of the tracer transmitter device are designed as ras interchangeable inserts.
PCT/DE1993/000856 1992-09-16 1993-09-14 Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow WO1994007147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49441/93A AU4944193A (en) 1992-09-16 1993-09-14 Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4230919A DE4230919A1 (en) 1992-09-16 1992-09-16 Single borehole method and device for simultaneous determination of the direction and speed of groundwater flow
DEP4230919.0 1992-09-16

Publications (1)

Publication Number Publication Date
WO1994007147A1 true WO1994007147A1 (en) 1994-03-31

Family

ID=6468051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000856 WO1994007147A1 (en) 1992-09-16 1993-09-14 Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow

Country Status (3)

Country Link
AU (1) AU4944193A (en)
DE (1) DE4230919A1 (en)
WO (1) WO1994007147A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305240B (en) * 1995-09-15 1999-03-10 Aea Technology Plc Monitoring liquid flow
DE102004026702B3 (en) * 2004-05-28 2006-02-09 Deutsche Montan Technologie Gmbh Apparatus for testing anchor holes
US8113279B2 (en) 2009-02-13 2012-02-14 Korea Institute Of Geoscience And Mineral Resources Apparatus and method for instantaneously injecting tracer for groundwater well
CN103556986A (en) * 2013-11-11 2014-02-05 中国石油化工股份有限公司 Measuring method for displacement efficiency of simulated well cementation cementing
CN106771345A (en) * 2017-01-04 2017-05-31 中国地质大学(武汉) Water flow velocity flow direction measuring device and method
US10208585B2 (en) 2015-08-11 2019-02-19 Intrasen, LLC Groundwater monitoring system and method
CN111879965A (en) * 2020-08-06 2020-11-03 中国石油化工股份有限公司 Underground water measuring equipment and method
CN115684642A (en) * 2023-01-04 2023-02-03 河海大学 Water tank test surface flow field measurement method and system based on fluorescent tracer particles
US20230279770A1 (en) * 2022-03-07 2023-09-07 Talgat Shokanov Method of using an ultrahigh resolution nanoparticle tracer additive in a wellbore, hydraulic fractures and subsurface reservoir

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408072C2 (en) * 1994-02-01 1997-11-20 Deutsche Forsch Luft Raumfahrt Use of an electronic high-speed camera in a method for determining flow velocities in a flow
US6401547B1 (en) 1999-10-29 2002-06-11 The University Of Florida Device and method for measuring fluid and solute fluxes in flow systems
US7284448B2 (en) 2004-11-16 2007-10-23 University Of Florida Research Foundation, Inc. Device and method for passively measuring fluid and target chemical mass fluxes in natural and constructed non-porous fluid flow system
EP1867833B1 (en) * 2006-06-15 2009-04-29 Services Pétroliers Schlumberger Apparatus and method for obtaining images of a borehole
DE102008029700A1 (en) * 2008-06-24 2010-01-14 Palas Gmbh Partikel- Und Lasermesstechnik Method for determining the penetration of test particles into a measuring range
CZ302927B6 (en) * 2008-07-23 2012-01-18 Isatech, S. R. O. Device for detection and measurement of concentration of fluorescent tracing substance, measuring method and use of such device
CZ2010331A3 (en) * 2010-04-29 2011-07-20 Aquatest A.S. Method for determining direction of underground water horizontal flow in individual boreholes
WO2014173442A1 (en) 2013-04-24 2014-10-30 Schöttler Markus Apparatus and method for optically detecting flow movements in liquid and/or gaseous media
WO2015058110A2 (en) * 2013-10-17 2015-04-23 Weatherford/Lamb, Inc. Apparatus and method of monitoring a fluid
CN113739844B (en) * 2021-08-02 2024-04-16 重庆交通大学 Underground water layering monitoring device and method based on dilution method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1245629B (en) * 1964-08-18 1967-07-27 Bundesversuchs Und Forschungsa Process and device for determining the flow velocity of the groundwater by means of radioactive isotopes
DE2831215A1 (en) * 1978-07-15 1980-01-24 Bergwerksverband Gmbh Borehole surveying probe - includes TV camera, inclinometer and gyrocompass
US4396943A (en) * 1981-06-10 1983-08-02 Lord David E Video flowmeter
JPS63106589A (en) * 1986-10-23 1988-05-11 Oyo Chishitsu Kk Method and apparatus for measuring flow of underground water
US4783314A (en) * 1987-02-26 1988-11-08 Nalco Chemical Company Fluorescent tracers - chemical treatment monitors
EP0311176A1 (en) * 1987-09-28 1989-04-12 Shell Internationale Researchmaatschappij B.V. Optical flow meter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE159950C (en) *
US2553900A (en) * 1947-12-29 1951-05-22 Phillips Petroleum Co Method of tracing the underground flow of water
US3003856A (en) * 1958-06-30 1961-10-10 Sinclair Oil & Gas Company Method for tracing the flow of h2o
US3338095A (en) * 1964-08-19 1967-08-29 Exxon Production Research Co Method for tracing the movement of fluid interfaces
DE2722151A1 (en) * 1977-05-16 1978-11-23 Max Planck Gesellschaft FOAMED PLASTIC BODY AND ITS USE
US4151413A (en) * 1977-06-29 1979-04-24 Texaco Inc. Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy
US4429995A (en) * 1980-07-21 1984-02-07 National Research Development Corporation Two dimensinal flow analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1245629B (en) * 1964-08-18 1967-07-27 Bundesversuchs Und Forschungsa Process and device for determining the flow velocity of the groundwater by means of radioactive isotopes
DE2831215A1 (en) * 1978-07-15 1980-01-24 Bergwerksverband Gmbh Borehole surveying probe - includes TV camera, inclinometer and gyrocompass
US4396943A (en) * 1981-06-10 1983-08-02 Lord David E Video flowmeter
JPS63106589A (en) * 1986-10-23 1988-05-11 Oyo Chishitsu Kk Method and apparatus for measuring flow of underground water
US4783314A (en) * 1987-02-26 1988-11-08 Nalco Chemical Company Fluorescent tracers - chemical treatment monitors
EP0311176A1 (en) * 1987-09-28 1989-04-12 Shell Internationale Researchmaatschappij B.V. Optical flow meter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 350 (P - 760) 20 September 1988 (1988-09-20) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305240B (en) * 1995-09-15 1999-03-10 Aea Technology Plc Monitoring liquid flow
DE102004026702B3 (en) * 2004-05-28 2006-02-09 Deutsche Montan Technologie Gmbh Apparatus for testing anchor holes
US8113279B2 (en) 2009-02-13 2012-02-14 Korea Institute Of Geoscience And Mineral Resources Apparatus and method for instantaneously injecting tracer for groundwater well
CN103556986A (en) * 2013-11-11 2014-02-05 中国石油化工股份有限公司 Measuring method for displacement efficiency of simulated well cementation cementing
CN103556986B (en) * 2013-11-11 2016-04-06 中国石油化工股份有限公司 Simulation cementing displacement efficiency measuring method
US10208585B2 (en) 2015-08-11 2019-02-19 Intrasen, LLC Groundwater monitoring system and method
CN106771345A (en) * 2017-01-04 2017-05-31 中国地质大学(武汉) Water flow velocity flow direction measuring device and method
CN111879965A (en) * 2020-08-06 2020-11-03 中国石油化工股份有限公司 Underground water measuring equipment and method
CN111879965B (en) * 2020-08-06 2022-03-22 中国石油化工股份有限公司 Underground water measuring equipment and method
US20230279770A1 (en) * 2022-03-07 2023-09-07 Talgat Shokanov Method of using an ultrahigh resolution nanoparticle tracer additive in a wellbore, hydraulic fractures and subsurface reservoir
CN115684642A (en) * 2023-01-04 2023-02-03 河海大学 Water tank test surface flow field measurement method and system based on fluorescent tracer particles

Also Published As

Publication number Publication date
DE4230919A1 (en) 1994-03-17
AU4944193A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
WO1994007147A1 (en) Single bore hole process and device allowing simultaneous videotechnical detection of groundwater direction and speed of flow
US4415805A (en) Method and apparatus for evaluating multiple stage fracturing or earth formations surrounding a borehole
DE3879129T2 (en) METHOD FOR DRILL HOLE MEASUREMENT USING RADIOACTIVE TRACER ELEMENTS.
Drost et al. Point dilution methods of investigating ground water flow by means of radioisotopes
CA2667643C (en) Borehole measurements using a fast and high energy resolution gamma ray detector assembly
DE68904803T2 (en) RADIOACTIVE DRILLING MEASUREMENT METHOD.
US5001342A (en) Radioactive tracer cement thickness measurement
US3002091A (en) Method of tracing the flow of liquids by use of post radioactivation of tracer substances
US4169979A (en) Method and apparatus for measuring azimuth and speed of horizontal fluid flow by a borehole
CA1099033A (en) Method of measuring horizontal fluid flow behind casing with sequential logging
US4051368A (en) Method of measuring horizontal flow speed of fluids in earth formations penetrated by a wellborehole
US4187908A (en) Method for ascertaining optimum location for well stimulation and/or perforation
WO2014174014A1 (en) Apparatus and method for optically detecting flow movements in liquid and/or gaseous media
US4137452A (en) Method of measuring horizontal fluid flow in cased off subsurface formations with manganese compensation
DE2924638A1 (en) METHOD FOR CREATING A LIQUID INJECTION PROFILE
Baker Neutron capture gamma-ray spectra of earth formations
DE1922458C3 (en) Method for determining the characteristics of an earth formation
DE10034810A1 (en) Borehole geophysical density measurement involves using unit with gamma source in lead screen with outlet window and gamma detector in lead screen with radiation backscatter inlet window
US2910587A (en) Well logging process
US3021426A (en) Subsurface surveying
US4746801A (en) Method and apparatus for differentiating low porosity limestones from high porosity gas sands
US2409436A (en) Method and apparatus for direct recording of borehole radioactivity
CA1106079A (en) Method of measuring horizontal fluid flow in cased off subsurface formations with manganese compensation
GB2036957A (en) Method of measuring horizontal fluid flow in cased off subsurface formations
Klotz et al. Model tests to study groundwater flows using radioisotopes and dye tracers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA