JPS6036968A - Method for measuring flow rate - Google Patents

Method for measuring flow rate

Info

Publication number
JPS6036968A
JPS6036968A JP14495483A JP14495483A JPS6036968A JP S6036968 A JPS6036968 A JP S6036968A JP 14495483 A JP14495483 A JP 14495483A JP 14495483 A JP14495483 A JP 14495483A JP S6036968 A JPS6036968 A JP S6036968A
Authority
JP
Japan
Prior art keywords
image
positive
negative
signal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14495483A
Other languages
Japanese (ja)
Inventor
Fumio Takahashi
文夫 高橋
Ryuhei Kawabe
隆平 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14495483A priority Critical patent/JPS6036968A/en
Publication of JPS6036968A publication Critical patent/JPS6036968A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable determination of a two-dimensional flow rate distribution at a high speed with simple software by storing periodically the information on particle groups into a sheet of an image memory and subjecting the same to Fourier transform. CONSTITUTION:A fluid contg. particles is contained in a water tank 1 and the image thereof is picked up by a television camera 2. Positive and negative pulse trains are generated by a predetermined number from a clock pulse generator 8 according to the signal from a controller. An A/D converter 3 digitized the image for one image plane when the positive or negative pulse is generated. The digitized image data is added and stored successively in an picture memory 5. A coder 4 gives positive and negative codes to the image data according to the positive and negative of the pulse. Therefore the image of the water tank contg. the particles is written into the picture memory by the certain positive pulse and the image of that time is subtracted by the succeeding negative pulse. The image of a static object such as the water tank or the like is canceled and only the images 10 of the moving particles is given the positive or negative code and line up at intervals along the track.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は粒子混入法による流速測定法に係り、特に、流
体内の2次元流速分布をめるのに好適な流速測定方法お
よび装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a flow velocity measurement method using a particle mixing method, and particularly to a flow velocity measurement method and apparatus suitable for determining a two-dimensional flow velocity distribution in a fluid.

〔発明の背景〕[Background of the invention]

従来の粒子混入法による2次元流速分布測定法では、透
明な流体に、比重が流体と同じで、光学的性質の異なる
数μm〜数10μmの小さな粒子を混入し、その写真影
像から流体の速度をめていた。この方法は、ある程度の
時間、フィルムを露光させて粒子の飛跡の像を作り、こ
の飛跡の長さから流体の速度を計算していた。この方法
では、個々の粒子の飛跡を測定せねばならず膨大な手間
を要した。また流れの方向が既知でない場合は、照明の
明るさ全時間的に変化させて、飛跡に方向性を持たせる
などの工夫が必要であった。
In the conventional two-dimensional flow velocity distribution measurement method using the particle mixing method, small particles of several micrometers to several tens of micrometers with the same specific gravity as the fluid but different optical properties are mixed into a transparent fluid, and the velocity of the fluid is determined from the photographic image. I was watching. This method involved exposing a film to light for a certain amount of time to create an image of the trajectory of the particles, and calculating the velocity of the fluid from the length of this trajectory. In this method, the trajectory of each individual particle had to be measured, which required a huge amount of effort. Furthermore, if the direction of the flow was not known, it was necessary to devise measures such as changing the brightness of the lighting over time to give the trajectory directionality.

膨大な手間を省くために、写真撮影の代わシにテレビカ
メラと画像メモリーを使用する方法が開発されている。
In order to save a huge amount of effort, methods have been developed that use a television camera and image memory instead of taking photographs.

これは2つの異なる時間の粒子の画像を2つの画像メモ
リに記録し、計算機処理により、2つの時間の間の粒子
の移動距離をめ、これから流速をめるものである。この
方法では、多数の粒子ii個1個認識し、且つ2つの画
像間の対応をも認識する必要がある。また画像には粒子
の影像だけでなく、流路の構造の影像も含まれている。
In this method, images of particles at two different times are recorded in two image memories, and through computer processing, the distance traveled by the particles between the two times is calculated, and the flow velocity is determined from this. In this method, it is necessary to recognize a large number of particles ii one by one, and also to recognize the correspondence between two images. Furthermore, the image includes not only images of the particles but also images of the structure of the flow path.

これらの影像から粒子金よりわけて認識し、2つの画像
間での移動を追跡するために、計算機のプログラムは非
常に複雑なものと、なり、且つ処理時間が長くなってい
た。
In order to separate the gold particles from these images and track their movement between the two images, the computer program becomes extremely complex and requires a long processing time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、1つの画像メモリだけを使用し、且つ
簡単なソフトウェアで、短時間で2次元流速分布をめる
手段を提供するにある。
An object of the present invention is to provide a means for determining a two-dimensional flow velocity distribution in a short time using only one image memory and using simple software.

〔発明の概要〕[Summary of the invention]

本発明は、テレビカメラの粒子群の画像データを、周期
的に1枚の画像メモリーに蓄積する。その際、データの
符号を交互に反転させることにより一静止物、すなわち
構造物の影像を取り除き、さらに得られた粒子群の飛跡
にフーリエ変換をほどこすことにより、流体2次元流速
分布金求めるものである。
The present invention periodically stores image data of a particle group from a television camera in one image memory. At this time, by alternately inverting the sign of the data, images of stationary objects, that is, structures, are removed, and by applying Fourier transformation to the tracks of the obtained particle groups, the two-dimensional flow velocity distribution of the fluid is obtained. It is.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1〜5図を用いて説明する。本実
施例は第1図に示すように、流速分布をめる対象の水槽
lおよび水槽中の粒子群の動きをとらえるテレビカメ2
2、テレビカメラの出力信号をディジタル化するA/D
変換器3、A/D変換器の出力に符号を付ける符号器4
、符号器から出た画像信号をだくわえる画像メモリー5
、画像メモリーに記録された画像データを高速フーリエ
変換す、るフーリエ変換器6、変換された結果を表示す
るCRT7、およびこれらの機器の同期をとるクロック
パルス発生器8、全体の動作を制御する制御器9から成
る。
An embodiment of the present invention will be described using FIGS. 1 to 5. As shown in Fig. 1, this embodiment includes a water tank l in which the flow velocity distribution is to be measured, and a television camera 2 that captures the movement of particle groups in the tank.
2. A/D that digitizes the output signal of the TV camera
Converter 3, encoder 4 that signs the output of the A/D converter
, an image memory 5 that stores the image signal output from the encoder.
, a Fourier transformer 6 that performs high-speed Fourier transform on the image data recorded in the image memory, a CRT 7 that displays the transformed results, and a clock pulse generator 8 that synchronizes these devices, controlling the overall operation. It consists of a controller 9.

本実施例は次のように作動する。水槽lの中には一粒子
を混入した流体が入っており、その影隊をテレビカメ2
2が撮映している。制御器からの信号に応じてクロック
パルス発生器8からは第2図に示すような正負のパルス
列があらかじめ定められた数だけ発生する。正寸たけ負
のパルスが発生した時にA/D変換器3は、1画面分の
影像をディジタル化する。このディジタル化された影像
データは画像メモリー5に次々に加算う蓄積されている
が、この時符号器4がパルスの正負に応じて影像データ
に正負の符号をつける。したがって、ある正パルスによ
り粒子を含んだ水槽の影像が画像メモリに書き込まれ、
次の負パルスにより、その時刻の影像を引き算すること
になる。正のパルス数と負のパルス数は等しいので水槽
等静止物体の像はキャンセルされ、移動してbる粒子の
影像lOだけが、第3図に示すように交互に正負の符号
をつけて、とびとびに飛跡にそって並んだ形となってい
る。パルス発生器から発生するパルス列は、正負のパル
スの間隔がT+ / To = l / 4となるよう
にしであるため、飛跡も正負の点の間隔力1 / 4と
なり、方向性を持っている。パルス発生周期は既知であ
るので、この飛跡の点の距離をめれば流速がわかる。
This embodiment operates as follows. There is a fluid mixed with a single particle in the water tank l, and the shadow team is seen by a TV camera 2.
2 is filming. In response to signals from the controller, the clock pulse generator 8 generates a predetermined number of positive and negative pulse trains as shown in FIG. When a pulse with a positive magnitude or a negative value is generated, the A/D converter 3 digitizes the image for one screen. This digitized image data is stored in the image memory 5 by being added one after another, and at this time, the encoder 4 assigns a positive or negative sign to the image data according to the positive or negative sign of the pulse. Therefore, a certain positive pulse writes an image of the aquarium containing particles into the image memory;
The next negative pulse will subtract the image at that time. Since the number of positive pulses and the number of negative pulses are equal, the image of a stationary object such as a water tank is canceled, and only the image lO of the moving particle is given alternating positive and negative signs as shown in Figure 3. They are arranged in a row along the trajectory. The pulse train generated from the pulse generator is arranged so that the interval between positive and negative pulses is T+ / To = l / 4, so the track also has an interval force of 1 / 4 between positive and negative points, and has directionality. Since the pulse generation period is known, the flow velocity can be determined by calculating the distance between the points of this track.

1つの画面にはこれらの粒子の飛跡を示す点列が多数あ
る。これを簡単に処理するため、次のような方法をとる
。画像メモリー内の画像を第4図、に示すように流れが
一様と見なせる小領域11に分割し、この小領域ごとに
流速をめる。それにはまず小領域の縦方向について、画
像データの和12をとる。次にこれをフーリエ変換する
。このとき振幅が最大となる周波数から流速がめられ、
この周波数と高調波の周波数の位相の関係から流れの方
向が定められる。すなわち、フーリエ級数の係数の絶対
値が最大となる周波数をfとし、水槽1と画像メモリー
内の画像との拡大率’rMとすれば、流速の画面横方向
成分は11、で計算できる。ここでT。は第2図に示し
たように、正のパルスから次の正のパルスまでの時間間
隔である。
One screen has many dot sequences showing the tracks of these particles. To easily handle this, the following method is used. The image in the image memory is divided into small regions 11 in which the flow can be considered uniform as shown in FIG. 4, and the flow velocity is determined for each small region. To do this, first calculate the sum of 12 image data in the vertical direction of the small area. Next, perform a Fourier transform on this. At this time, the flow velocity is determined from the frequency where the amplitude is maximum,
The direction of flow is determined from the phase relationship between this frequency and the harmonic frequency. That is, if f is the frequency at which the absolute value of the coefficient of the Fourier series is maximum, and the magnification ratio of the aquarium 1 and the image in the image memory is 'rM, then the horizontal component of the flow velocity can be calculated as 11. T here. is the time interval from one positive pulse to the next positive pulse, as shown in FIG.

一方流れの方向については、位相関係からめる。振幅最
大周波数のフーリエ係数をa、−1−b、iとし、その
2倍の周波数における係数ka2+b2”とする。基本
波の位相α、は a 、 = tan” l) H/ ” +であり、高
調波の位相α2は a2=tan−′b2/ a2 である。パルスの間隔が正−負より負〜正の方が大きく
えらんでろるので、第5図に示すように、速度が正の場
合(流れが右方向)、高調波の位相は、基本波と180
°ずれるが、速度が負の場合は同位相となる。すなわち であれば正方向 であれば負方向となる。
On the other hand, the direction of flow is determined from the phase relationship. Let the Fourier coefficients at the maximum amplitude frequency be a, -1-b,i, and the coefficient ka2+b2'' at twice that frequency.The phase α of the fundamental wave is a, = tan''l) H/''+, The phase α2 of the harmonic is a2 = tan-'b2/a2. Since the pulse interval is larger from negative to positive than between positive and negative, as shown in Figure 5, when the velocity is positive, (flow is to the right), the phase of the harmonics is 180 degrees from the fundamental wave.
They are shifted by 1°, but if the velocity is negative, they are in phase. That is, if it is a positive direction, it is a negative direction.

以上の方法を90°回転させて実施することにより、同
様に流速の画面縦方向の成分を決めることができる。1
つの小領域には複数の粒子像がある場合もあるが、小領
域は流れが一様と見なせる程度に小さくとっであるので
、小領域内の粒子は同じ速度・方向金持つ。フーリエ変
換は線型性をもつので、複数の粒子がるっても周波数、
位相関係は不変である。従って個々の粒子を認識するこ
とは必要ない。
By rotating the above method by 90 degrees, the component of the flow velocity in the vertical direction of the screen can be similarly determined. 1
Although there may be multiple particle images in one small region, the small region is kept small enough to be considered to have a uniform flow, so the particles within the small region have the same velocity and direction. Fourier transform has linearity, so even if there are multiple particles, the frequency,
The phase relationship remains unchanged. Therefore, it is not necessary to recognize individual particles.

このような操作奮各小領域にほどこすことにより全画面
の流速分布をめることができる。各小領域の流速は矢印
の大きさ・方向に変換されて、CRT7に表示される。
By applying such operations to each small area, the flow velocity distribution over the entire screen can be adjusted. The flow velocity in each small area is converted into the size and direction of the arrow and displayed on the CRT 7.

画面の7−υ工変換が終了すると制御器9は画像メモリ
ーの内容を消去し、次の測定にそなえる。
When the 7-υ engineering conversion of the screen is completed, the controller 9 erases the contents of the image memory and prepares for the next measurement.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1枚の画像メモリに周期的に粒子群の
情報を記憶させ、フーリエ変換することにより、2次元
流速分布を、簡単なソフトウェアで高速にめるととがで
きる効果がある。
According to the present invention, by periodically storing information on particle groups in one image memory and performing Fourier transformation, it is possible to quickly obtain a two-dimensional flow velocity distribution using simple software. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の機器構成図、第2図はデー
タ朋シ込みの周期ケ示す図、第3図は画像メモリーに記
憶される粒子の軌跡図、第4図は画像メモリーの分割図
、第5図は画像データの強度分布の略図である。 2・・・テレビカメラ、3・・・AD変換器、5・・・
画像メモ+7−15・・・フーリエ変換器、8・・・ク
ロックパルス発生器、9・・・制御器、11・・・画像
メモリーの小領域。 、 も3図 毛4図 1
Fig. 1 is a diagram of the equipment configuration of an embodiment of the present invention, Fig. 2 is a diagram showing the cycle of data recording, Fig. 3 is a trajectory diagram of particles stored in the image memory, and Fig. 4 is a diagram of the image memory. FIG. 5 is a schematic diagram of the intensity distribution of the image data. 2...TV camera, 3...AD converter, 5...
Image memo +7-15...Fourier transformer, 8...Clock pulse generator, 9...Controller, 11...Small area of image memory. , 3 fig. 4 fig. 1

Claims (1)

【特許請求の範囲】 1、流体にトレーサとして使用する粒子を混入させその
混入させた粒子の位Rt検知して映像信号とする手段と
その映像信号を記憶する映像情報記録媒体とを有し映像
情報記録媒体にだくわえられた映像情報を処理して流体
の流速をめる方法において、映像信号を周期的に且つ信
号の符号を交互に反転して1つの映像情報記録媒体に積
算し積算された映像情報をフーリエ変換することにより
流速をめることを特徴とする流速測定方法。 2、特許請求の範囲第1項において、映像信号を同期的
に信号の符号を交互に反転して1つの映像情報記録媒体
に積算する時の周期が信号の符号を正として積算してか
ら信号の符号を負として積算するまでの時間と信号の符
号金員として積算してから信号の符号を正として積算す
るまでの時間とが異なること全特徴とする流速測定方法
。 3、特許請求の範囲第2項において、粒子の位置を検知
して映像信号とする手段がテレビカメシでめシ映像信号
全記憶する映像情報記録媒体が画像メモリであることを
特徴とする流速測定方法。
[Scope of Claims] 1. A video recording medium comprising means for mixing particles to be used as a tracer into a fluid, detecting the position Rt of the mixed particles and generating a video signal, and a video information recording medium for storing the video signal. In a method of determining the fluid flow velocity by processing video information stored in an information recording medium, the video signals are periodically and the signs of the signals are alternately inverted and integrated onto one video information recording medium. A flow velocity measurement method characterized in that the flow velocity is determined by Fourier transforming the video information obtained. 2. In claim 1, it is provided that the cycle of synchronously inverting the sign of a video signal and integrating it on one video information recording medium is such that the signal is accumulated with the sign of the signal being positive, and then the signal is A flow velocity measurement method characterized in that the time taken to integrate the sign of the signal as negative and the time from the time of integration as the sign of the signal to the time of integration with the sign of the signal as positive are different. 3. A flow velocity measuring method according to claim 2, characterized in that the means for detecting the position of particles and generating a video signal is a television camera, and the video information recording medium for storing all the video signals is an image memory. .
JP14495483A 1983-08-10 1983-08-10 Method for measuring flow rate Pending JPS6036968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14495483A JPS6036968A (en) 1983-08-10 1983-08-10 Method for measuring flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14495483A JPS6036968A (en) 1983-08-10 1983-08-10 Method for measuring flow rate

Publications (1)

Publication Number Publication Date
JPS6036968A true JPS6036968A (en) 1985-02-26

Family

ID=15374052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14495483A Pending JPS6036968A (en) 1983-08-10 1983-08-10 Method for measuring flow rate

Country Status (1)

Country Link
JP (1) JPS6036968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293667A (en) * 1985-10-21 1987-04-30 Oyo Chishitsu Kk Apparatus for measuring flow of ground water
JPH04175658A (en) * 1990-11-07 1992-06-23 Kinki Univ Measuring device for flow velocity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293667A (en) * 1985-10-21 1987-04-30 Oyo Chishitsu Kk Apparatus for measuring flow of ground water
JPH0619366B2 (en) * 1985-10-21 1994-03-16 応用地質株式会社 Groundwater flow measuring device
JPH04175658A (en) * 1990-11-07 1992-06-23 Kinki Univ Measuring device for flow velocity
JPH0616054B2 (en) * 1990-11-07 1994-03-02 学校法人近畿大学 Flow velocity measuring device

Similar Documents

Publication Publication Date Title
Nishino et al. Three-dimensional particle tracking velocimetry based on automated digital image processing
Westerweel Digital particle image velocimetry: Theory and application.
Kasagi et al. Probing turbulence with three-dimensional particle-tracking velocimetry
CN107462741A (en) A kind of moving object speed and acceleration measurement device
CN105738648A (en) Method for on-line measuring particle speed in polyphase system
CN102331511B (en) PIV (Particle Image Velocimetry) image high-frequency acquisition method
GB1374085A (en) Method and apparatus for producing animated motion pictures
Soria et al. High resolution multigrid cross-correlation digital PIV measurements of a turbulent starting jet using half frame image shift film recording
JPS6036968A (en) Method for measuring flow rate
Davenport et al. The investigation of the behavior of microorganisms by computerized television
JP2681745B2 (en) A method for measuring the vertical and lateral movement of an object to be measured with a speckle pattern using laser light.
Towers et al. Application of particle image velocimetry to large-scale transonic wind tunnels
Dalziel Decay of rotating turbulence: some particle tracking experiments
Baecker et al. Towards a laboratory instrument for motion analysis
Jess et al. Twisting flux tubes as a cause of micro-flaring activity
Aleksandrova et al. Using video analysis to investigate conservation impulse and mechanical energy laws
Wernet et al. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique
JPS62237358A (en) Method for analyzing motion of fluid containing particles and moving in space
JPS5819236A (en) X-ray photographing apparatus
JPH0663905B2 (en) Method of grid point interpolation of flow field data
JPS60194302A (en) Measuring apparatus for object to be photographed
Liu Development and analysis of a low speed Particle Image Velocimetry system
CN118397034A (en) Event camera rotational motion description method based on variable speed model
Hopkins A quantitative image analysis system
CN114862917A (en) Large-field-of-view flow field rapid analysis method and system based on optical flow algorithm