JP3210105B2 - Measuring device for groundwater flow - Google Patents

Measuring device for groundwater flow

Info

Publication number
JP3210105B2
JP3210105B2 JP31921592A JP31921592A JP3210105B2 JP 3210105 B2 JP3210105 B2 JP 3210105B2 JP 31921592 A JP31921592 A JP 31921592A JP 31921592 A JP31921592 A JP 31921592A JP 3210105 B2 JP3210105 B2 JP 3210105B2
Authority
JP
Japan
Prior art keywords
groundwater
light
measurement
azimuth
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31921592A
Other languages
Japanese (ja)
Other versions
JPH06148217A (en
Inventor
秀文 坂本
Original Assignee
大洋開発建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大洋開発建設株式会社 filed Critical 大洋開発建設株式会社
Priority to JP31921592A priority Critical patent/JP3210105B2/en
Publication of JPH06148217A publication Critical patent/JPH06148217A/en
Application granted granted Critical
Publication of JP3210105B2 publication Critical patent/JP3210105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ボーリング孔等の孔井
内に埋設して地下水の流れ方向や流速、さらに水質等を
測定する地下水流の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a groundwater flow measuring device which is buried in a borehole such as a borehole and measures the flow direction, flow velocity, and water quality of groundwater.

【0002】[0002]

【従来の技術】最近、地下水の保全、環境公害の影響調
査、建設工事における地下水の処理対策等の分野におい
て、地下水の状態を的確に把握する必要が生じ各種の地
下水流の測定装置が開発されて提案されている。例え
ば、ボーリング孔内に設置した地下水センサーに地下水
が周囲から流通する地下水流通部を設け、その地下水流
通部に蒸留水の注入機構を連設するとともに特殊電極や
多数の電極を配設して、地下水流通部内の流通地下水に
一定量の蒸留水を同圧で注入し、各電極間の電位差を検
出して地下水の流れ方向、流速を測定する地下水流の測
定装置(特開昭62−147342号公報)や、透明板
とその周囲を取り囲み下向きに突設したカラーで形成し
た観測部をボーリング孔内に設置して、その観測部内に
加圧ガスを充満してその下端部に地下水の水面を形成
し、その水面にプラスチツク粒子等のトレーサを放出し
て、観測部の上部に配置したテレビカメラでトレーサの
移動状態を観察して地下水の流れ方向、流速を測定する
地下水流の測定装置(特開昭63−106589号公
報)が開発されて提案されている。
2. Description of the Related Art Recently, in the fields of groundwater preservation, environmental pollution impact investigation, groundwater treatment measures in construction work, etc., it has become necessary to accurately grasp the state of groundwater, and various groundwater flow measuring devices have been developed. It has been proposed. For example, a groundwater sensor installed in a borehole is provided with a groundwater circulation section through which groundwater flows from the surroundings, and a special electrode and a large number of electrodes are arranged with a distilled water injection mechanism connected to the groundwater circulation section, A groundwater flow measuring device that injects a fixed amount of distilled water into the flowing groundwater in the groundwater flowing section at the same pressure, detects the potential difference between the electrodes, and measures the flowing direction and flow velocity of the groundwater (Japanese Patent Laid-Open No. 62-147342). Official Gazette) and a transparent plate and an observation part formed by a collar surrounding the periphery and protruding downward are installed in the borehole, and the observation part is filled with pressurized gas and the bottom surface is filled with groundwater. Forming, discharging tracer such as plastic particles on the water surface, observing the moving state of the tracer with a TV camera placed above the observation section, measuring the direction of flow of groundwater, and measuring the flow of groundwater Location (JP 63-106589 JP) have been proposed have been developed.

【0003】[0003]

【発明が解決しようとする課題】従来の地下水流の測定
装置において、前記のように地下水センサーに設けた地
下水流通部の流通地下水中に蒸留水を注入して、その地
下水流通部内に配設した各電極間の電位差を検出する測
定機構は、蒸留水の一定量を同圧にして流通地下水に注
入する複雑な注入機構が必要となり、その測定には熟練
を要し、各電極間の電位差検出による測定精度、信頼性
には自から限界があり、また、地下水流を目視して観察
できないなどの課題がある。
In the conventional apparatus for measuring the flow of groundwater, distilled water is injected into the groundwater flowing through the groundwater flow section provided in the groundwater sensor as described above, and disposed in the groundwater flow section. The measurement mechanism that detects the potential difference between the electrodes requires a complicated injection mechanism that injects a certain amount of distilled water into the flowing groundwater at the same pressure, and the measurement requires skill and the potential difference between the electrodes is detected. The measurement accuracy and reliability of the system have their own limits, and there is a problem that the groundwater flow cannot be observed visually.

【0004】また、観測部内に加圧ガスを充満してその
下端部に地下水の水面を形成し、その水面に放出したト
レーサの移動をテレビカメラで観察する測定機構は、地
下水流を目視して観測できるが、加圧ガスによる地下水
の水面形成、その水面内へのトレーサの配置等に面倒な
操作及び熟練を要し、また、その水面部の土壌状態によ
つてトレーサの移動が著しく異なりその測定精度、信頼
性には自から限界があるなどの課題がある。
A measuring mechanism that fills the observing section with a pressurized gas to form a groundwater surface at the lower end thereof and observes the movement of the tracer discharged to the water surface with a television camera is to visually check the groundwater flow. Although observable, the formation of the water surface of groundwater by pressurized gas, the arrangement of the tracer in the water surface, etc. require troublesome operation and skill, and the movement of the tracer varies significantly depending on the soil condition of the water surface. There are issues such as limitations on measurement accuracy and reliability.

【0005】本発明は、上記のような課題に対処するた
めに開発されたものであつて、その目的とする処は、地
下水流通部の流通地下水への着色剤の注入、光フアイバ
による流通地下水と方位の測定光の送信、受光画像処理
装置による画像処理、地下水流通部内の洗浄により、地
下水流の測定性能、信頼性を向上するとともに、機構を
簡素化しコスト節減した地下水流の測定装置を提供する
にある。
The present invention has been developed in order to solve the above-mentioned problems, and the object thereof is to inject a coloring agent into the flowing groundwater in the groundwater flowing section, and to distribute the flowing groundwater using an optical fiber. Providing a groundwater flow measurement device that improves measurement performance and reliability of groundwater flow by simplifying the mechanism and reduces costs by transmitting measurement light in the direction of the azimuth, image processing by the light-receiving image processing device, and cleaning the groundwater circulation unit. To be.

【0006】[0006]

【課題を解決するための手段】本発明は、孔井内に埋設
される地下水センサーに地下水が周囲から流通する地下
水流通部を設け、地下水流通部の中央部に流通地下水を
着色する着色剤注入機構を連設して、地下水流通部に測
定用光源を設けるとともに流通地下水の着色及び明暗の
測定光を送信する多数の水検出用光フアイバを全域に連
設し、各水検出用光フアイバを流通地下水の受光画像処
理装置に連結したことにより、その着色剤注入機構によ
る流通地下水の着色、各水検出用光フアイバによる地下
水流通部中の流通地下水の測定光(着色及び明暗)送
信、及び受光画像処理装置による画像処理によつて、そ
の流通地下水の目視、観測を可能とし地下水流の測定性
能、信頼性を高めている。
SUMMARY OF THE INVENTION The present invention provides a groundwater sensor buried in a borehole provided with a groundwater circulation section through which groundwater flows from the surroundings, and a coloring agent injection mechanism for coloring the flowing groundwater at the center of the groundwater circulation section. A light source for measurement is provided in the groundwater circulation section, and a large number of water detection optical fibers that transmit colored groundwater and light / dark measurement light are continuously installed in the entire area to distribute each water detection optical fiber. By connecting to the groundwater light receiving image processing device, the coloring groundwater is colored by its colorant injection mechanism, the measuring light (coloring and light / dark) of the flowing groundwater in the groundwater flowing part is transmitted by the optical fiber for each water detection, and the light receiving image The image processing by the processing unit enables visual observation and observation of the flowing groundwater, thereby improving the measurement performance and reliability of the groundwater flow.

【0007】また、地下水センサーに方位検出器を設け
て、方位検出器に測定用光源を設けるとともに方位の測
定光を送信する複数の方位検出用光フアイバを連設し、
各方位検出用光フアイバを受光画像処理装置を連結した
ことにより、その各方位検出用光フアイバによる地下水
センサーの測定光(方位)送信、及び受光画像処理装置
による画像処理によつて、地下水センサーの方位の目
視、観測を可能とし、流通地下水の流れ方向の測定精度
をさらに高めている。さらに、地下水流通部に洗浄水供
給機構を連設したことにより、地下水流通部の洗浄を随
時に可能とし、その測定精度をさらに高めるとともに、
繰り返し測定を容易にして測定能率、性能をさらに高め
ている。
[0007] Further, an orientation detector is provided in the groundwater sensor, a measurement light source is provided in the orientation detector, and a plurality of orientation detection optical fibers for transmitting measurement light in the orientation are connected in series.
By connecting each direction detecting optical fiber to the light receiving image processing device, the measurement light (direction) of the groundwater sensor is transmitted by each direction detecting optical fiber and the ground light sensor is processed by the image processing by the light receiving image processing device. Visualization and observation of the azimuth are possible, and the measurement accuracy of the flowing direction of the flowing groundwater is further improved. In addition, by connecting the washing water supply mechanism to the groundwater circulation section, it is possible to wash the groundwater circulation section at any time, and further improve the measurement accuracy,
The measurement efficiency and performance are further enhanced by facilitating repeated measurement.

【0008】[0008]

【作用】孔井内に地下水センサーを埋設して、その地下
水センサーの地下水流通部に地下水を周囲から流通せし
め、着色剤注入機構により地下水流通部の中央部内に着
色剤を注入すると、多数の水検出用光フアイバにより地
下水流通部の全域から流通地下水の着色及び明暗の測定
光が送信され、受光画像処理装置により各測定光は流通
地下水の着色及び明暗の光データとして画像処理されて
映像され、その映像により流通地下水の流れ方向、流速
さらに水質等を目視して観測でき、優れた地下水流の測
定性能、信頼性が得られる。
[Function] A groundwater sensor is buried in a borehole, groundwater is circulated from the surroundings to the groundwater circulation part of the groundwater sensor, and a colorant is injected into the central part of the groundwater circulation part by a colorant injection mechanism, thereby detecting a large amount of water. The measuring fiber of distribution groundwater and light / dark measurement light are transmitted from the whole area of the groundwater circulation part by the optical fiber, and each measurement light is image-processed and imaged as coloration and light / dark light data of distribution groundwater by the light receiving image processing device. The flow direction, flow velocity, water quality, etc. of the flowing groundwater can be visually observed with the video, and excellent measurement performance and reliability of the groundwater flow can be obtained.

【0009】また、複数の方位検出用光フアイバにより
地下水センサーに設けた方位検出器の方位の測定光が送
信されて、受光画像処理装置により各測定光は地下水セ
ンサーの方位の光データとして画像処理されて映像さ
れ、地下水センサーの方位、即ち流通地下水の流れ方向
の測定精度がさらに高められている。さらに、洗浄水供
給機構により地下水流通部を随時に洗浄でき、測定精度
がさらに高められるとともに、繰り返し測定、長期測定
でき測定能率、性能がさらに高められている。
Also, a plurality of azimuth detecting optical fibers transmit azimuth measurement light of an azimuth detector provided in the groundwater sensor, and each of the measurement lights is subjected to image processing as light data of the azimuth of the groundwater sensor by a light receiving image processing device. The orientation of the groundwater sensor, that is, the flow direction of the flowing groundwater, is further improved in measurement accuracy. Further, the groundwater circulation section can be washed at any time by the washing water supply mechanism, and the measurement accuracy can be further improved, and the measurement efficiency and performance can be further improved by performing repeated measurement and long-term measurement.

【0010】[0010]

【実施例】図1及び図2に本発明の地下水流の測定装置
の一実施例、図3に同地下水流測定装置による地下水流
測定方法の一実施例を示す。図中1はボーリング孔等の
孔井31内に埋設される地下水センサー、2は地下水セ
ンサーに設けた地下水流通部、6,7は着色剤注入パイ
プ6と地上側の着色剤供給部7からなる着色剤注入機
構、8は地下水流通部2の測定用光源、9は地下水流通
部の全域に連設した水検出用光フアイバ、10は地下水
センサーに配設した方位検出器(方位磁石)、11は方
位検出器10の測定用光源、12は方位検出器10に設
けた方位検出用光フアイバ、13,14は洗浄水注入パ
イプ13と地上側の洗浄水供給部14からなる洗浄水供
給機構、15,16は測定用光源8,11のコード、1
7はコード15,16に連結される地上側の電源、18
は各水検出用光フアイバ9及び各方位検出用光フアイバ
12に連結される地上側の受光画像処理装置であつて、
図示の実施例は、孔井31内に埋設される地下水センサ
ー1に地下水が周囲から流通する地下水流通部2を設
け、地下水流通部2の中央部に流通地下水を着色する着
色剤注入機構6,7を連設して、地下水流通部2に測定
用光源8を設けるとともに流通地下水の着色及び明暗の
測定光を送信する多数の水検出用光フアイバ9を全域に
連設し、各水検出用光フアイバ9を受光画像処理装置1
8に連結した地下水流の測定装置になつている。
1 and 2 show an embodiment of a groundwater flow measuring apparatus according to the present invention, and FIG. 3 shows an embodiment of a groundwater flow measuring method using the same. In the figure, 1 is a groundwater sensor buried in a well 31 such as a borehole, 2 is a groundwater circulation section provided in the groundwater sensor, and 6 and 7 are a colorant injection pipe 6 and a colorant supply section 7 on the ground side. A colorant injection mechanism, 8 is a light source for measurement of the groundwater flow section 2, 9 is a water detection optical fiber connected to the whole area of the groundwater flow section, 10 is a direction detector (direction magnet) disposed in the groundwater sensor, 11 Is a measuring light source of the azimuth detector 10, 12 is an azimuth detecting optical fiber provided in the azimuth detector 10, 13 and 14 are cleaning water supply mechanisms including a cleaning water injection pipe 13 and a ground-side cleaning water supply unit 14, 15 and 16 are the codes of the measurement light sources 8 and 11, 1
7 is a ground-side power supply connected to cords 15 and 16;
Is a light receiving image processing apparatus on the ground side connected to each of the optical fibers 9 for detecting water and the optical fibers 12 for detecting azimuth;
In the illustrated embodiment, a groundwater sensor 1 buried in a borehole 31 is provided with a groundwater circulation unit 2 through which groundwater flows from the surroundings, and a coloring agent injection mechanism 6 for coloring the distribution groundwater in the center of the groundwater circulation unit 2. 7, a light source 8 for measurement is provided in the underground water circulation section 2, and a number of water detection optical fibers 9 for transmitting measurement light for coloring and light and dark of the distribution groundwater are continuously provided in the whole area. Optical fiber 9 is used for light receiving image processing device 1
8 is connected to a groundwater flow measuring device.

【0011】また、前記地下水流の測定装置において、
地下水センサー1に方位検出器10を設けて、方位検出
器10に測定用光源11を設けるとともに方位の測定光
を送信する複数の方位検出用光フアイバ12を連設し、
各方位検出用光フアイバ12を受光画像処理装置18に
連結した地下水流の測定装置になつている。さらに、前
記地下水流の測定装置において、地下水流通部2に洗浄
水供給機構13,14を連結した地下水流の測定装置に
なつている。
[0011] In the groundwater flow measuring device,
The groundwater sensor 1 is provided with an azimuth detector 10, the azimuth detector 10 is provided with a measurement light source 11, and a plurality of azimuth detection optical fibers 12 for transmitting azimuth measurement light are connected in series,
The azimuth detecting optical fiber 12 is connected to a light receiving image processing device 18 to form a groundwater flow measuring device. Furthermore, in the underground water flow measuring device, the underground water flow measuring device in which the washing water supply mechanisms 13 and 14 are connected to the underground water circulation unit 2 is provided.

【0012】さらに詳述すると、地下水センサー1は、
内部に配設した方位検出器(方位磁石)10の機能を阻
害しないようにプラスチツクやステンレス材によつて形
成され、その地下水センサー1の下部に形成された地下
水流通部2は、その内部に多数の測光用スペーサ(コイ
ルスプリング)3を配設し、空隙充填材(ガラス球や砂
利等)4を充填し、その周囲に網メツシュ5を配設し
て、地下水が全周から自在に流入しかつ各方向に自在に
流出する機構になつている。また、着色剤注入機構6,
7は、地下水流通部2の上面側の中央部に連設された電
磁開閉弁(図示省略)付き着色剤注入パイプ6と地上側
の着色剤注入部7からなり、その電磁開閉弁の開閉制御
及び着色剤注入部7のポンプ機能によつて所定量の着色
剤(例えば墨汁等)を地下水流通部2の中央部内に注入
し、その内部の流通地下水に混入する機構になつてい
る。さらに、地下水流通部2の下面側に配設した多数の
測定用光源8は、地下水流通部2内の流通地下水の全域
にわたつて投光し(例えば赤色光)、地下水流通部2の
上面側に連設した多数の水検出用光フアイバ9は、地下
水流通部2内を流通する流通地下水の全域におけるその
着色及び明暗の測定光を送信する機構になつている。
More specifically, the groundwater sensor 1 comprises:
The groundwater sensor 2 is formed of plastic or stainless steel so as not to impair the function of the direction detector (direction magnet) 10 disposed therein. , A space filling material (glass ball, gravel, etc.) 4 is filled, and a mesh mesh 5 is provided around the spacer, so that groundwater can freely flow from the entire circumference. In addition, a mechanism for freely flowing in each direction is provided. The colorant injection mechanism 6,
Reference numeral 7 denotes a colorant injection pipe 6 with an electromagnetic on-off valve (not shown) and a colorant injection section 7 on the ground side, which are connected to the central portion on the upper surface side of the groundwater flow section 2 and controls opening and closing of the electromagnetic on-off valve. A predetermined amount of a colorant (for example, ink) is injected into the central part of the groundwater circulation part 2 by the pump function of the colorant injection part 7 and mixed into the groundwater flowing therethrough. Further, a large number of measurement light sources 8 arranged on the lower surface side of the groundwater circulation unit 2 emit light (for example, red light) over the entire area of the circulation groundwater in the groundwater circulation unit 2, and the upper surface side of the groundwater circulation unit 2. A large number of optical fibers 9 for water detection are connected to each other and serve as a mechanism for transmitting the measurement light of the coloring and lightness / darkness of the whole groundwater flowing in the groundwater flowing part 2.

【0013】また、方位検出器10は、好ましくは図示
のような方位磁石等を地下水センサー1内に配設して構
成され、その方位検出器10の下側に複数の測定用光源
11を配設するとともに、その上側に複数の方位検出用
光フアイバ12を連設して、各方位検出用光フアイバ1
2は地下水センサー1の方位の測定光を送信する。洗浄
水供給機構13,14は、地下水流通部2の上面側に連
設された複数の電磁開閉弁(図示省略)付き洗浄水注入
パイプ13と地上側の洗浄水供給部14からなり、その
電磁開閉弁の遠隔制御及び洗浄水供給部7のポンプ機能
により所定量の洗浄水を地下水流通部2内に注入してそ
の内部を随時に洗浄し、繰り返し測定を可能にしてい
る。
The azimuth detector 10 is preferably constructed by arranging an azimuth magnet or the like as shown in the groundwater sensor 1, and a plurality of measurement light sources 11 are arranged below the azimuth detector 10. A plurality of azimuth detecting optical fibers 12 are connected to each other above the azimuth detecting optical fibers 1.
2 transmits the measurement light of the direction of the groundwater sensor 1. The washing water supply mechanisms 13 and 14 are composed of a washing water injection pipe 13 with a plurality of electromagnetic opening / closing valves (not shown) and a washing water supply unit 14 on the ground side, which are connected to the upper surface of the groundwater circulation unit 2. A predetermined amount of washing water is injected into the groundwater circulation unit 2 by remote control of the on-off valve and the pump function of the washing water supply unit 7 to wash the interior as needed, thereby enabling repeated measurement.

【0014】さらに、受光画像処理装置18は、各水検
出用光フアイバ9及び各方位検出用光フアイバ12に連
結され、前記の各光フアイバ9,12によつて送信され
る流通地下水の着色及び明暗の各測定光及び地下水セン
サー1の方位の各測定光を受け、その各測定光の変化を
デジタル化して演算、画像処理し、図2に示すような地
下水センサー1の方位画像20及び流通地下水の多数の
着色及び明暗の各測定画像21a,21b,21cを映
像するとともに、その演算により地下水流通部2内の流
通地下水、即ち地層中の地下水の流れ方向、流速、さら
にまた水質等を演算して記録する記録器としての機能も
備えた機構(デイスプレイ,記録器)になつている。
Further, a light receiving image processing device 18 is connected to each of the optical fibers 9 for detecting water and each of the optical fibers 12 for detecting azimuth, and is used for coloring and transmitting underground water transmitted by the optical fibers 9 and 12. Receiving each measurement light of dark and light and each measurement light of the azimuth of the groundwater sensor 1, digitizing the change of each measurement light, calculating and processing the image, the azimuth image 20 of the groundwater sensor 1 as shown in FIG. Of the measurement images 21a, 21b, and 21c of the colored and light and dark areas, and the flow direction, the flow velocity, and the water quality of the groundwater in the groundwater flow section 2, that is, the groundwater in the stratum are calculated by the calculation. It has a mechanism (display, recorder) that also has the function of a recorder that records data.

【0015】前記の地下水流の測定装置は、例えば、図
3(A)に示すようにボーリング機30により掘削した
ボウリング孔31内に埋設して使用される。即ち図3
(B)のようにボウリング孔31内に地下水センサー1
を挿入して、その地下水流通部2を測定する地層Gの部
分に配置し、必要に応じその地下水センサー1の周囲に
フイルター(砂または砂利等,図示省略)やパツカー
(ゴムシール,エアパツカー等,図示省略)を充填し
て、図3(C)のようにボーリング孔31のケーシング
パイプ32を引き抜き撤去して地下水センサー1を埋設
し、図3(D)に示すように着色剤注入用パイプ6に着
色剤供給部7を連結、コード15,16に電源17を連
結、各洗浄水供給パイプ13に洗浄水供給部14を連
結、さらに、各水検出用光フアイバ9及び各方位検出用
光フアイバ12に受光画像処理装置18を連結して、図
1(A)のようにセツトし地層Gの地下水を測定する。
The underground water flow measuring device is used, for example, by burying it in a bowling hole 31 excavated by a boring machine 30 as shown in FIG. That is, FIG.
As shown in (B), the groundwater sensor 1 is placed in the bowling hole 31.
And place the groundwater flow section 2 in the portion of the stratum G to be measured, and place a filter (sand or gravel, etc., not shown) or a packer (rubber seal, air packer, etc.) around the groundwater sensor 1 as necessary. 3), the casing pipe 32 of the borehole 31 is pulled out and removed as shown in FIG. 3 (C), and the groundwater sensor 1 is buried, and as shown in FIG. The coloring agent supply unit 7 is connected, the power supply 17 is connected to the cords 15 and 16, the washing water supply unit 14 is connected to each washing water supply pipe 13, and further, each water detection optical fiber 9 and each direction detection optical fiber 12 are connected. The light receiving image processing apparatus 18 is connected to the apparatus, and the groundwater in the formation G is set as shown in FIG.

【0016】図1(A)に示すようにセツトすると、先
ず洗浄水供給部14及び複数の洗浄水注入パイプ13に
より地下水流通部2内に洗浄水を注入して洗浄し、初期
の測定を試みた後、地下水流通部2内を流通する流通地
下水の乱れがなくなるまで適宜時間放置しその流れを正
常化し、次に、電源17及びコード15,16により測
定用光源8,11を点灯(例えば赤色光等)して地下水
流通部2内の流通地下水及び方位検出器10に投光する
とともに、着色剤供給部7及び着色剤注入パイプ6によ
り地下水流通部2の中央部内に所定量の着色剤を注入す
る。その着色剤には、沈殿しないで地下水に混合して前
記の投光を適度に遮断しその通過光の変色や明暗が付き
易い墨汁等が好適に使用され、また必要に応じ水質等を
検出可能な各種の着色薬液が適用される。
When set as shown in FIG. 1 (A), first, washing water is injected into the groundwater flow section 2 through the washing water supply section 14 and the plurality of washing water injection pipes 13 to perform washing, and an initial measurement is attempted. After that, the flow of the groundwater flowing through the groundwater flow section 2 is left for a suitable period of time until there is no disturbance, and the flow is normalized, and then the light sources 8 and 11 for measurement are turned on by the power supply 17 and the cords 15 and 16 (for example, red). And the like, and emits light to the distribution groundwater in the groundwater distribution unit 2 and the direction detector 10, and at the same time, a predetermined amount of colorant is supplied into the central part of the groundwater distribution unit 2 by the colorant supply unit 7 and the colorant injection pipe 6. inject. As the colorant, ink that mixes with the groundwater without settling, appropriately blocks the above-mentioned light emission, and easily changes color or darkness of the passing light, etc. is preferably used, and water quality can be detected as necessary. Various coloring chemicals are applied.

【0017】地下水流通部2に連設された多数の水検出
用光フアイバ9は、地下水流通部2内で流通している流
通地下水の全域からその着色及び明暗の測定光を送信
し、また、方位検出器10に連設された複数の方位検出
用光フアイバ12は、地下水センサーに設けた方位検出
器の方位の測定光を送信し、受光画像処理装置18は、
前記の各測定光を入力してその各測定光の変化をデジタ
ル化、演算し画像処理して、図2に示すような地下水セ
ンサー1の方位画像20及び流通地下水の各部の着色及
び明暗の各測定画像21a,21b,21cとして映像
するとともに、地下水流通部2内の流通地下水、即ち地
層G中の地下水の流れ方向、流速、さらにその水質等を
演算して記録する。各測定画像21a,21b,21c
において、着色剤の影響がない場合は、測定用光源8の
光源色つまり赤色の映像となり、流通地下水の下流側で
は着色剤の混入により測定画像21a、21b及び21
cの順序で明暗の映像変化をもたらし、その受光画像処
理装置18の画像を目視して観察しながら、その映像変
化の方向及びその計測によつて地下水流通部2内の流通
地下水の流れ方向、流速が正確に把握され、また、着色
剤の選択によりその変色等により水質の検査も可能とな
る。
A large number of water detecting optical fibers 9 connected to the groundwater circulation unit 2 transmit the measurement light of the coloring and light / dark from the entire area of the groundwater flowing in the groundwater circulation unit 2. The plurality of azimuth detecting optical fibers 12 connected to the azimuth detector 10 transmit measurement light of the azimuth of the azimuth detector provided in the groundwater sensor, and the light reception image processing device 18
Each measurement light is input, the change of each measurement light is digitized, calculated and image-processed, and the azimuth image 20 of the groundwater sensor 1 as shown in FIG. In addition to displaying the images as the measurement images 21a, 21b, and 21c, the flow direction and flow velocity of the groundwater flowing in the groundwater flowing unit 2, that is, the groundwater in the stratum G, and the water quality are calculated and recorded. Each measurement image 21a, 21b, 21c
In the case where there is no influence of the colorant, the light source color of the measurement light source 8, that is, a red image is obtained, and the measurement images 21 a, 21 b, and 21 are formed on the downstream side of the distribution groundwater due to the mixing of the colorant.
In the order of c, light and dark image changes are caused, and while visually observing the image of the light receiving image processing device 18, the direction of the image change and the flow direction of the flowing groundwater in the groundwater flowing unit 2 are determined by the measurement. The flow velocity can be accurately grasped, and the quality of the water can be inspected by selecting the colorant and changing its color.

【0018】前記の測定が終了すると、必要に応じ洗浄
水を注入して地下水流通部2内を洗浄し、地下水流通部
2内の流通地下水の安定後に測定を繰り返し、また、地
下水センサー1を上昇させて次の測定地層に配置し、再
び測定を繰り返し行うことができ、優れた測定性能、信
頼性が得られる。
When the above measurement is completed, the inside of the underground water circulation unit 2 is washed by pouring washing water as required, and the measurement is repeated after the underground water in the underground water circulation unit 2 is stabilized, and the groundwater sensor 1 is raised. Then, the measurement can be repeated on the next formation layer, and the measurement can be repeated again, so that excellent measurement performance and reliability can be obtained.

【0019】前記の測定において、測定する地層が浅い
場合は、地上にて地下水センサー1の方位を定めて埋設
でき方位の測定は不必要となる。また、洗浄機構の配設
により地下水センサーを埋設したまま長期にわたり定期
的に測定できる。
In the above measurement, when the geological layer to be measured is shallow, the direction of the groundwater sensor 1 can be determined and buried on the ground, and the measurement of the direction is unnecessary. In addition, by installing a washing mechanism, it is possible to measure regularly over a long period with the groundwater sensor buried.

【0020】[0020]

【発明の効果】本発明は、前述のように構成され孔井内
に地下水センサーを埋設して、その地下水センサーに設
けた地下水流通部に地下水を周囲から流通せしめ、着色
剤注入機構により地下水流通部の中央部内に着色剤を注
入すると、多数の水検出用光フアイバにより地下水流通
部の全域から流通地下水の着色及び明暗の測定光が送信
され、受光画像処理装置により各測定光は流通地下水の
着色及び明暗の光データとして画像処理されて、流通地
下水の流れ方向、流速、さらに水質等を目視して観測で
き地下水測定性能、信頼性を著しく向上している。
According to the present invention, a groundwater sensor is buried in a wellbore constructed as described above, and groundwater is circulated from the surroundings to a groundwater circulating section provided in the groundwater sensor. When the colorant is injected into the central part of the groundwater, a large number of optical fibers for water detection transmit colored groundwater and light / dark measurement light from the whole area of the groundwater circulation section. The image data is processed as light and dark light data, and the flow direction, flow velocity, and water quality of the flowing groundwater can be visually observed to greatly improve the groundwater measurement performance and reliability.

【0021】また、多数の方位検出用光フアイバにより
地下水センサーに設けた方位検出器の方位の測定光が送
信され、受光画像処理装置により各測定光は地下水セン
サーの方位の光データとして画像されて、地下水センサ
ーの方位、即ち流通地下水の流れ方向の測定精度がさら
に高められている。また、洗浄水供給機構により地下水
流通部内の洗浄が随時に行われ、測定精度がさらに高め
られるとともに、繰り返し測定及び長期の測定を可能と
し測定能率、性能がさらに高められている。
Also, measurement light of the direction of the direction detector provided in the groundwater sensor is transmitted by a large number of direction detection optical fibers, and each measurement light is imaged as light data of the direction of the groundwater sensor by the light receiving image processing device. The accuracy of measurement of the direction of the groundwater sensor, that is, the flow direction of flowing groundwater, has been further improved. Further, the inside of the groundwater circulation unit is washed at any time by the washing water supply mechanism, so that the measurement accuracy is further improved, and the measurement efficiency and performance are further improved by enabling repeated measurement and long-term measurement.

【0022】さらに、本発明の装置は機構が著しく簡素
化、コンパクト化されて、低コストで提供されるなどの
特長を有する。
Further, the device of the present invention has such features that the mechanism is remarkably simplified, compact, and provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す一部縦断機構図(A)
とX部分の拡大断面図(B)
FIG. 1 is a partial longitudinal sectional view showing an embodiment of the present invention (A).
(B)

【図2】受光画像処理装置の画像正面図FIG. 2 is an image front view of the light receiving image processing apparatus.

【図3】地下水流の一測定方法を示す各工程の側視機構
図(A)〜(D)である。
FIG. 3 is a side view mechanism diagram (A) to (D) of each step showing a method of measuring a groundwater flow.

【符号の説明】[Explanation of symbols]

1 地下水センサー 2 地下水流通部 6,7 着色剤注入機構 8,11 測定用光源 9 水検出用光フアイバ 10 方位検出器 12 方位検出用光フアイバ12 13,14 洗浄水供給機構 18 受光画像処理装置 31 孔井 REFERENCE SIGNS LIST 1 groundwater sensor 2 groundwater circulation unit 6, 7 colorant injection mechanism 8, 11 light source for measurement 9 optical fiber for water detection 10 azimuth detector 12 optical fiber for azimuth detection 12 13, 14 washing water supply mechanism 18 light receiving image processing device 31 Well

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 孔井内に埋設される地下水センサーに地
下水が周囲から流通する地下水流通部を設け、地下水流
通部の中央部に流通地下水を着色する着色剤注入機構を
連設して、地下水流通部に測定用光源を設けるとともに
流通地下水の着色及び明暗の測定光を送信する多数の水
検出用光フアイバを全域に連設し、各水検出用光フアイ
バを受光画像処理装置に連結したことを特徴とする地下
水流の測定装置。
An underground water sensor buried in a borehole is provided with a groundwater circulation section through which groundwater flows from the surroundings, and a coloring agent injection mechanism for coloring the flowing groundwater is provided at the center of the groundwater circulation section so as to be connected to the groundwater circulation section. A light source for measurement is provided in the section, and a large number of water detection optical fibers that transmit colored groundwater and light / dark measurement light are connected to the whole area, and each water detection optical fiber is connected to the light receiving image processing device. Characteristic groundwater flow measuring device.
【請求項2】 請求項1記載の地下水流の測定装置にお
いて、地下水センサーに方位検出器を設けて、方位検出
器に測定用光源を設けるとともに方位の測定光を送信す
る複数の方位検出用光フアイバを連設し、各方位検出用
光フアイバを受光画像処理装置に連結したことを特徴と
する地下水流の測定装置。
2. The groundwater flow measuring device according to claim 1, wherein the groundwater sensor is provided with an azimuth detector, the azimuth detector is provided with a measuring light source, and a plurality of azimuth detecting lights for transmitting azimuth measuring light. An underground water flow measuring device, comprising a plurality of fibers connected to each other, and each direction detecting optical fiber connected to a light receiving image processing device.
【請求項3】 請求項1記載の地下水流の測定装置にお
いて、地下水流通部に洗浄水供給機構を連設したことを
特徴とする地下水流の測定装置。
3. The underground water flow measuring device according to claim 1, wherein a washing water supply mechanism is connected to the underground water flowing part.
JP31921592A 1992-11-05 1992-11-05 Measuring device for groundwater flow Expired - Fee Related JP3210105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31921592A JP3210105B2 (en) 1992-11-05 1992-11-05 Measuring device for groundwater flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31921592A JP3210105B2 (en) 1992-11-05 1992-11-05 Measuring device for groundwater flow

Publications (2)

Publication Number Publication Date
JPH06148217A JPH06148217A (en) 1994-05-27
JP3210105B2 true JP3210105B2 (en) 2001-09-17

Family

ID=18107701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31921592A Expired - Fee Related JP3210105B2 (en) 1992-11-05 1992-11-05 Measuring device for groundwater flow

Country Status (1)

Country Link
JP (1) JP3210105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003275942A1 (en) * 2002-11-01 2004-05-25 Technical University Of Denmark A microfluidic system and a microdevice for velocity measurement, a method of performing measurements and use hereof
JP5137065B2 (en) * 2007-08-30 2013-02-06 一般財団法人電力中央研究所 In-crack fluid testing device

Also Published As

Publication number Publication date
JPH06148217A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
CN106088174B (en) A kind of soft clay area diaphram wall seepage detection system
JP4542137B2 (en) Equipment for investigating anchor boreholes
US10060252B1 (en) Method for mapping of flow arrivals and other conditions at sealed boreholes
US5739420A (en) Ground water infiltration detection system
CN105823715A (en) Rock mass seepage path observation device based on isotopic tracing technology and application method thereof
CN205719868U (en) Contaminated soil and subsoil water inject in situ repairs the pilot system that dilation angle determines
US4861986A (en) Tracer injection method
US4696903A (en) Method and apparatus for examining earth formations
JP3210105B2 (en) Measuring device for groundwater flow
KR102119363B1 (en) Nondestructive test system for underground water well
JPH03152420A (en) Method and apparatus for measuring movement of ground
US5372038A (en) Probe to specifically determine the injectivity or productivity of a petroleum well and measuring method implementing said probe
CN114136558A (en) Sonar seepage detection method for underground diaphragm wall of deep foundation pit near subway
CN109356207A (en) Multifunctional high pressure jet grouting pile construction monitoring device
JP2721314B2 (en) A traveling vehicle that inspects for abnormalities such as cavities and cracks in tunnel structures
US11714029B2 (en) Core holder for real-time measurement and visualization
CN111141928B (en) Tracer agent feeding device and using method thereof
CN113091826B (en) Multifunctional device for monitoring geological environment of coal mining subsidence area
JP2602818B2 (en) Inspection method for abnormalities such as cavities and cracks in tunnel structures
CN211505606U (en) Tracer agent feeding device
KR102237268B1 (en) Detecting system of flow variation
CN108204939A (en) A kind of water penetration analysis survey meter for evaluating pollutant diffusion and method of work
CN107355685A (en) A kind of accurate device for determining underground utilities internal flaw position
TWM586745U (en) Separate sealing hydraulic test and measurement system
KR101729900B1 (en) System and method for tracing groundwater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees