JPS6292463A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6292463A
JPS6292463A JP60233823A JP23382385A JPS6292463A JP S6292463 A JPS6292463 A JP S6292463A JP 60233823 A JP60233823 A JP 60233823A JP 23382385 A JP23382385 A JP 23382385A JP S6292463 A JPS6292463 A JP S6292463A
Authority
JP
Japan
Prior art keywords
region
base
buried
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60233823A
Other languages
Japanese (ja)
Inventor
Toshiyuki Okoda
敏幸 大古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60233823A priority Critical patent/JPS6292463A/en
Publication of JPS6292463A publication Critical patent/JPS6292463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To make a linear transistor withstand (VCEO) high by increasing the thickness of an epitaxial layer without deepening the diffusing depth of a base region of the transistor. CONSTITUTION:An N<-> type epitaxial layer 22 is formed on the entire substrate 21, a P<+> type separating region 24 is formed, the first-fourth doped layers 34-37 doped by heat treating at this time are diffused in the substrate 21, upward diffused to the layer 22 to form the first, second buried layers 23a, 23b, a lower base leading region 33a and a buried base region 29. The P-type impurity is selectively diffused to form a base region 26 on the first insulator region 25a, and an injector region 30 and an upper base contacting region 33b on the second insular region 25b, the N-type impurity is selectively diffused to form emitter region 27 and collector contacting region 28 on the region 25a, a collector contacting region 31 and an emitter contacting region 32 on the region 25b, and electrodes are arranged on the regions.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は実質的なベース領域を埋込んだ構造の埋込ベー
ス型IILとバイポーラトランジスタとを共存させた半
導体集積回路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an improvement in a semiconductor integrated circuit in which a buried base type IIL having a structure in which a substantial base region is buried and a bipolar transistor coexist.

(ロ)従来の技術 IILは注入側をラテラルPNP )ランジスタ、出力
側を逆方向縦型NPN )ランジスタとする論理回路素
子であり、高速、低消費電力動作が可能でしかも通常の
バイポーラトランジスタと共存できるという特徴を有す
る。しかしながら、逆方向縦型NPN )ランジスタは
その構造上高い逆β(逆方向電流増幅率)が得られない
ので、実質的なベース領域を埋込んだ構造の埋込みベー
ス型IILが例えば特願昭59−84876号に記載さ
れている。
(b) Conventional technology IIL is a logic circuit element with a lateral PNP transistor on the injection side and a reverse vertical NPN transistor on the output side, and is capable of high-speed, low power consumption operation, and can coexist with normal bipolar transistors. It has the characteristic of being able to However, since a reverse vertical NPN) transistor cannot obtain a high reverse β (reverse current amplification factor) due to its structure, a buried base type IIL with a structure in which the substantial base region is buried is used, for example in Japanese Patent Application No. 1983 -84876.

第3図はこのような埋込みベース型IILと通常のバイ
ポーラトランジスタとを共存させた半導体集積回路装置
を示し、(1)はP型半導体基板、(2)はN−型エピ
タキシャル層、(3a) (3b) ハ基板(1)表面
に形成したN 型第1、第2の埋込層、(4)は第1、
第2の埋込層(3a)(3b)をそれぞれ取り囲むよう
にエピタキシャル層(2)を貫通したP+型分離領域、
(5a)(5b)は分離領域(4)により島状に分離さ
れた第1、第2の島領域である。第1の島領域(5a)
にはP型ベース領域(6)、N+型エミッタ領域(7)
及びN 型コレクタコンタクト領域(8)とが形成され
、第1の島領域(5a)をコレクタとしてバイポーラN
PN )ランジスタを構成している。
FIG. 3 shows a semiconductor integrated circuit device in which such a buried base type IIL and a normal bipolar transistor coexist, in which (1) is a P-type semiconductor substrate, (2) is an N-type epitaxial layer, and (3a) is a P-type semiconductor substrate. (3b) (c) N-type first and second buried layers formed on the surface of the substrate (1); (4) the first and second buried layers;
P+ type isolation regions penetrating the epitaxial layer (2) so as to surround the second buried layers (3a) and (3b), respectively;
(5a) and (5b) are first and second island regions separated into island shapes by the separation region (4). First island area (5a)
has a P type base region (6) and an N+ type emitter region (7).
and an N-type collector contact region (8), and a bipolar N-type collector contact region (8) is formed with the first island region (5a) as a collector.
PN) constitutes a transistor.

一方策2の島領域(5b)には、第2の埋込層(3b)
上に埋込まれたP型埋込みベース領域(9)と、第2の
島領域(5b)表面に形成したP型インジェクタ領域α
Q、  N+型コレクタコンタクト領域α℃及びN+型
エミッタコンタクト領域(2)と、コレクタコンタクト
領域(ロ)を取り囲むように第2の島領域(5b)表面
から埋込みベース領域(9)に達するP型ベース導出領
域(至)とが形成され、インジェクタ領域α1を・ エ
ミッタ、第2の島領域(5b)をベース、ベース導出領
域(ハ)をコレクタとするラテラルPNP )ランジス
タと、第2の島領域(5b)及び第2の埋込層(3b)
をエミッタ、埋込みベース領域(9)をベース、ベース
導出領域(2)で区画された第2の島領域(5b)をコ
レクタとする逆方向縦型NPN)ランジスタとで埋込ベ
ース型IILを構成している。
On the other hand, the island region (5b) of plan 2 has a second buried layer (3b).
P-type embedded base region (9) embedded above and P-type injector region α formed on the surface of the second island region (5b)
Q, N+ type collector contact region α°C, N+ type emitter contact region (2), and P type that reaches from the surface of the second island region (5b) to the buried base region (9) so as to surround the collector contact region (b). A lateral PNP transistor is formed in which the injector region α1 is the emitter, the second island region (5b) is the base, and the base derivation region (c) is the collector. (5b) and second buried layer (3b)
An embedded base type IIL is configured with an inverse vertical NPN) transistor whose emitter is the embedded base region (9), and whose collector is the second island region (5b) partitioned by the base derivation region (2). are doing.

コレクタとなる前記区画された第2の島領域(5b)は
コレクタコンタクト領域(ロ)により導出され、エミッ
タとなる第2の島領域(5b)にはエミッタコンタクト
領域(6)を介して接地電位(GND)が印加されてい
る。
The divided second island region (5b) which becomes a collector is led out by a collector contact region (b), and the second island region (5b) which becomes an emitter is connected to a ground potential via an emitter contact region (6). (GND) is applied.

而して、IILのインジェクタ領域<10及びベース導
出領域(へ)はバイポーラトランジスタのベース領域(
6)と同時に拡散形成し、且つIILのコレクタコンタ
クト領域(6)及びエミッタコンタクト領域@はバイポ
ーラトランジスタのエミッタ領域(7)及びコレクタコ
ンタクト領域(8)と同時に拡散形成する。
Therefore, the injector region < 10 and the base lead-out region (to) of IIL are the base region (to) of the bipolar transistor.
6) At the same time, the collector contact region (6) and the emitter contact region @ of the IIL are diffused and formed at the same time as the emitter region (7) and the collector contact region (8) of the bipolar transistor.

(ハ) 発明が解決しようとする問題点しかしながら、
IILにおいては埋込みベース領域(3b)のはい上り
を大きくすると逆βが低下するため、ベース導出領域(
ハ)が第2の島領域(5b)表面から埋込みベース領域
(9)に達する構造とするためにはエピタキシャル層(
2)を厚くすることができない。従ってバイポーラトラ
ンジスタのベース領域(6)底部と第1の埋込層(3a
)との離間距離が不足し、耐圧(Vcwo)を高くでき
ないという欠点があった。
(c) Problems that the invention seeks to solveHowever,
In IIL, increasing the crawling of the buried base region (3b) reduces the inverse β, so the base derivation region (3b)
In order to have a structure where c) reaches from the surface of the second island region (5b) to the buried base region (9), the epitaxial layer (
2) cannot be made thicker. Therefore, the bottom of the base region (6) of the bipolar transistor and the first buried layer (3a
), and the breakdown voltage (Vcwo) could not be increased.

に)問題点を解決するための手段 今拡散による下側ベース領域(33a)と第2の島領域
(25b)表面からの選択拡散による上側ベース導出領
域(33b)とで構成し、且つ上側ベース導出領域(3
3b)とバイポーラトランジスタのベース領域−とを同
時に形成することによりバイポーラトランジスタの耐圧
(Vc−o)を高めた半導体集積回路を提供するもので
ある。
2) Means for solving the problem The method consists of a lower base region (33a) by diffusion and an upper base derivation region (33b) by selective diffusion from the surface of the second island region (25b), and the upper base Derived area (3
3b) and the base region of the bipolar transistor are formed simultaneously to provide a semiconductor integrated circuit in which the withstand voltage (Vco) of the bipolar transistor is increased.

(ホ)作用 本発明によれば、基板(1)表面からの上方向拡散によ
る下側ベース導出領域と第2の島領域(25b)表面か
ら形成する上側ベース導出領域とで埋込みベース領域−
を導出し、且つ上側ベース導出領域(33b)とバイポ
ーラトランジスタのベース領域(ホ)とを同時に形成す
るので、ベース領域(イ)底部と第1の埋込層(23a
)との離間距離を十分にとることができ、高い耐圧fv
c、。)を得ることができる。
(E) Function According to the present invention, the buried base region -
Since the upper base leading region (33b) and the base region (e) of the bipolar transistor are formed at the same time, the bottom of the base region (a) and the first buried layer (23a) are formed simultaneously.
) and high voltage resistance fv.
c. ) can be obtained.

(へ)実施例 以下本発明の一実施例を図面を参照しながら詳細に説明
する。
(F) EXAMPLE An example of the present invention will be described below in detail with reference to the drawings.

第1図は本発明による半導体集積回路を示し、e])は
P型半導体基板、@はN−型エピタキシャル層、(23
a)(23b)は基板en表面に形成した第1、第2の
埋込層、(ハ)は第1.第2の埋込層(23a)(23
b)をそれぞれ取り囲むようにエピタキシャル層(イ)
を貫通したP 型分離領域、(25a)(25b)は分
離領域(ハ)により島状に分離した第1、第20島領域
である。第1の島領域(25a)にはP型ベース領域(
ホ)、N 型エミッタ領域翰及びN 型コレクタコンタ
クト領域(ハ)とが形成され、第1の島領域(25a)
をコレクタとしてバイポーラNPN)ランジスタを構成
している。一方策2の島領域(25b)には、第2の埋
込層(23b)上に埋込まれたP型埋込みベース領域−
と、第2の島領域(25a)表面に形成したP型インジ
ェクタ領域翰、N 型コレクタコンタクト領域(ロ)及
びN 型コレクタコンタクト領域(至)と、コレクタコ
ンタクト領域C(1)を取り囲むように形成した埋込み
ベース領域−を導出するためのP型ベース導出領域曽と
が形成され、このベース導出領域(至)は埋込みベース
領域−に重畳して基板(1)表面からの五屯甑噂拡散に
より形成した下側ベース導出領域(33a)と第2の島
領域(25b)表面から下側ベース導出領域(33a)
に達する上側ベース導出領域(33b)とから成ってい
る。そして第2の島領域(25b)にはインジェクタ領
域(7)をエミッタ、島領域(25b)をベース、ベー
ス導出領域(至)をコレクタとするラテラ#PNP)ラ
ンジスタと、第2の島領域(25b)及び第2の埋込層
(23b)をエミッタ、埋込みベース領域−をベース1
.<−ス導出領域(ハ)で区画された第2の島領域(2
5b)をコレクタとする逆方向縦型NPNトランジスタ
とで埋込ベース型IILを構成している。コレクタとな
る前記区画された第2の島領域(25b)はコレクタコ
ンタクト領域6Dにより導出され、エミッタとなる第2
の島領域(25b)にはエミッタコンタクト領域(2)
を介して接地電位(GND)が印加されている。
FIG. 1 shows a semiconductor integrated circuit according to the present invention, where e]) is a P-type semiconductor substrate, @ is an N-type epitaxial layer, and (23
a) (23b) are the first and second buried layers formed on the surface of the substrate en; (c) is the first. Second buried layer (23a) (23
An epitaxial layer (a) surrounds each of b).
The P-type isolation regions (25a) and (25b) passing through are the first and 20th island regions separated into islands by the isolation region (c). The first island region (25a) has a P-type base region (
E), an N type emitter region and an N type collector contact region (C) are formed, and a first island region (25a) is formed.
A bipolar NPN) transistor is configured with the collector as the collector. On the other hand, the island region (25b) of plan 2 includes a P-type buried base region buried on the second buried layer (23b).
and a P-type injector region (1) formed on the surface of the second island region (25a), an N-type collector contact region (2), an N-type collector contact region (2), and a collector contact region C (1). A P-type base derivation region (Zeng) for deriving the formed buried base region is formed, and this base derivation region overlaps with the buried base region and spreads rumors from the surface of the substrate (1). Lower base derived region (33a) from the surface of the lower base derived region (33a) and second island region (25b) formed by
and an upper base derivation region (33b) reaching . The second island region (25b) includes a latera #PNP transistor having the injector region (7) as the emitter, the island region (25b) as the base, and the base derivation region (to) as the collector, and the second island region ( 25b) and the second buried layer (23b) as the emitter, and the buried base region as the base 1.
.. The second island area (2
5b) constitutes a buried base type IIL with a reverse vertical NPN transistor having a collector. The divided second island region (25b) which becomes the collector is led out by the collector contact region 6D, and the second island region (25b) which becomes the emitter is led out by the collector contact region 6D.
The emitter contact region (2) is located in the island region (25b) of
A ground potential (GND) is applied through the terminal.

而して、IILのインジェクタ領域(至)及び上側ベー
ス導出領域(33b)はバイポーラトランジスタのベー
ス領域(イ)と同時に拡散形成し、且つIILのコレク
タコンタクト領域a力及びエミッタコンタクト領域(イ
)はバイポーラトランジスタのエミッタ領域−と同時に
拡散形成している。
Therefore, the injector region (to) and the upper base lead-out region (33b) of the IIL are formed by diffusion at the same time as the base region (a) of the bipolar transistor, and the collector contact region a and the emitter contact region (a) of the IIL are formed by diffusion. It is also diffused at the same time as the emitter region of the bipolar transistor.

本発明の最も特徴とする点は、ベース導出領域(ハ)を
下側ベース導出領域(33a)と上側ベース導出領域(
33b)とで構成し、且つ上側ベース導出領域(33b
)とバイポーラトランジスタのベース領域(ホ)とを同
時形成した点にある。ベース導出領域(至)は埋込ベー
ス領域翰を導出するためとコレクタとなる第2の島領域
(25b)を区画するために第2の島領域(25b)表
面から埋込みベース領域−に達する構造としなければな
らないが、本発明将では上下に分割した構造にしたので
上側ベース導出領域(33b)はそれ程深く形成せずに
済む。従ってバイポーラトランジスタにおいては、上側
ベース領域(33b)と同時形成するベース領域(ホ)
底部と第1の埋込層(23a)との離間距離を十分にと
れることになるので、高い耐圧(′vc、。)を得るこ
とができる。
The most distinctive feature of the present invention is that the base derivation region (c) is divided into a lower base derivation region (33a) and an upper base derivation region (33a).
33b), and an upper base derivation region (33b
) and the base region (e) of the bipolar transistor are simultaneously formed. The base derivation region (to) has a structure that reaches from the surface of the second island region (25b) to the buried base region in order to derive the buried base region and to partition the second island region (25b) which becomes the collector. However, in the present invention, since the structure is divided into upper and lower parts, the upper base lead-out region (33b) does not need to be formed so deeply. Therefore, in a bipolar transistor, the base region (h) is formed simultaneously with the upper base region (33b).
Since a sufficient distance can be maintained between the bottom and the first buried layer (23a), a high breakdown voltage ('vc,.) can be obtained.

しかもベース領域(ホ)の拡散深さを浅くして高周波特
性のよいトランジスタを形成することも可能である。一
方、IILにおいては、埋込みベース領域−のはい上り
を大きくせずにこれを導出することができるので、逆β
を高くしてIILの高速化を図ることができる。
Moreover, it is also possible to form a transistor with good high frequency characteristics by reducing the diffusion depth of the base region (e). On the other hand, in IIL, this can be derived without increasing the creep of the buried base region, so the inverse β
It is possible to increase the speed of IIL by increasing .

以下本発明による半導体集積回路の製造方法を第2図(
イ)乃至に)を用いて説明する。
The method for manufacturing a semiconductor integrated circuit according to the present invention will be described below as shown in FIG.
This will be explained using (a) to (a).

先ず第2図何)に示す如く、P型半導体基板シυ表面の
第1、第2埋込層(23a)(23b)となるべき領域
にN型不純物、例えばアンチモン(Sb)を選択的にテ
ポジションして第1、第2のドープ層(ロ)(至)を形
成した後、第2のドープ層(至)に重畳して下側ベース
導出領域(33a)となるべき領域にP型不純物、例え
ばボロン(B )をイオン注入して第3のドープ層に)
を形成する。
First, as shown in FIG. 2, N-type impurities, such as antimony (Sb), are selectively added to the regions that will become the first and second buried layers (23a) and (23b) on the surface of the P-type semiconductor substrate υ. After forming the first and second doped layers (2) and (2) by telepositioning, a P-type layer is superimposed on the second doped layer (2) and formed in the region to become the lower base derivation region (33a). ion implantation of impurities, such as boron (B) into the third doped layer)
form.

次に第2図(ロ)に示す如く、再び第2のドープ層(至
)に重畳して埋込みベース領域−となるべき領域にP型
不純物をイオン注入し、第3のドープ層(ト)    
 :より低濃度の第40ドープ層(ロ)を形成する。
Next, as shown in FIG. 2(B), P-type impurity ions are again implanted into the region that is to become the buried base region, superimposing on the second doped layer (T), and then the third doped layer (T) is formed.
: Form a 40th doped layer (b) with a lower concentration.

さらに第2図(ハ)に示す如く、基板Q1)全面に気相
成長法にてN−型エピタキシャル層翰を形成し、選択拡
散法にてP 型分離領域(ハ)を形成し、この時の熱処
理により先にドープしておいた第11第2、第3、第4
のドープ層(財)(至)(至)(ロ)が基板Qηに拡散
されると共にエピタキシャル層(イ)へも上方向拡散し
、それぞれ第11第2の埋込層(23a)(23b)、
下側ベース導出領域(33a)、埋込みベース領域−を
形成する。
Furthermore, as shown in FIG. 2(c), an N-type epitaxial layer is formed on the entire surface of the substrate Q1) by vapor phase growth, and a P-type isolation region (c) is formed by selective diffusion. The 11th, 2nd, 3rd, and 4th elements were doped in advance by heat treatment.
The doped layers (23a) (23b) are diffused into the substrate Qη and also diffused upward into the epitaxial layer (a), forming the 11th and 2nd buried layers (23a) and (23b), respectively. ,
A lower base lead-out region (33a) and a buried base region are formed.

そして第2図(ロ)に示す如く、P型不純物を選択拡散
して第1の島領域(25a)にはベース領域(ホ)を、
第2の島領域(25b)にはインジェクタ領域(至)及
び上側ベースコンタクト領域(33b)をそれぞれ形成
し、続いてN型不純物を選択拡散して第1の島領域(2
5a)Kはエミッタ領域−及びコレクタコンタクト領域
翰を、第2の島領域(25b)にはコレクタコンタクト
領域0乃及びエミッタコンタクト領域(イ)をそれぞれ
形成し、最後に各領域上に電極(図示せず)を配設して
終了する。
Then, as shown in FIG. 2(b), P-type impurities are selectively diffused to form a base region (e) in the first island region (25a).
An injector region (to) and an upper base contact region (33b) are respectively formed in the second island region (25b), and then N-type impurities are selectively diffused to form the first island region (25b).
5a) In K, an emitter region and a collector contact region (1) are formed, and in the second island region (25b), a collector contact region 0 and an emitter contact region (A) are formed, respectively.Finally, electrodes are formed on each region (Fig. (not shown) and finish.

(ト)発明の詳細 な説明した如く5本発明によればリニアトランジスタの
ベース領域(ホ)の拡散深さを深くせずにエピタキシャ
ル層翰を厚くできるので、リニアトランジスタの耐圧f
f、、、)を高くできるという利点を有する。またII
Lにおいては、ベース導出領域(至)を上下に分割した
ので拡散時間が短くて済み、横方向拡散を抑えて微細化
が図れ、且つ微細化することにより逆方向縦型NPN)
ランジスタのベース・エミッタ間容量を減じてIILの
高速化が図れるという利点を有する。さらにリニアトラ
ンジスタのベース領域(イ)を浅く設計してもIILに
おいては下側ベース導出領域(33a)のはい上りを犬
とすれば埋込みベース領域翰を導出することが可能なの
で、高f、型のリニアトランジスタでも容易に共存でき
るという利点をも有する。
(G) As described in detail, according to the present invention, the epitaxial layer thickness can be increased without increasing the diffusion depth of the base region (E) of the linear transistor, so that the breakdown voltage f of the linear transistor can be increased.
It has the advantage that f, , , ) can be made high. Also II
In L, the base derivation region (to) is divided into upper and lower parts, so the diffusion time is shortened, horizontal diffusion is suppressed and miniaturization is achieved, and by miniaturization, reverse vertical NPN)
This has the advantage that the IIL speed can be increased by reducing the capacitance between the base and emitter of the transistor. Furthermore, even if the base region (a) of the linear transistor is designed to be shallow, it is possible to derive the buried base region in IIL by using the upward slope of the lower base derivation region (33a) as a dog, so it is possible to derive the buried base region. It also has the advantage that it can easily coexist with other linear transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための断面図、第2図(イ)
乃至に)は本発明による半導体集積回路の製造プロセス
を説明するための工程断面図、第3図は従来例を説明す
るための断面図である。 主な図番の説明 (1)@1)はP型半導体基板、(6)(ハ)はリニア
トランジスタのベース領域、(7)@ %’Lリニアト
ランジスタのエミッタ領域、(9)翰はIILの埋込み
ベース領域、(10(1)はIILのインジェクタ領域
、(2)GカはIILのコレクタコンタクト領域、a3
(至)はIILのベース導出領域であり、(33a)は
下側ベース導出領域、(33b)は上側ベース導出領域
である。
Figure 1 is a sectional view for explaining the present invention, Figure 2 (a)
3 to 3) are process cross-sectional views for explaining the manufacturing process of a semiconductor integrated circuit according to the present invention, and FIG. 3 is a cross-sectional view for explaining a conventional example. Explanation of the main drawing numbers (1) @ 1) is the P-type semiconductor substrate, (6) (c) is the base region of the linear transistor, (7) @ is the emitter region of the %'L linear transistor, (9) is the IIL embedded base area, (10(1) is the injector area of IIL, (2) G is the collector contact area of IIL, a3
(to) is the base derivation area of IIL, (33a) is the lower base derivation area, and (33b) is the upper base derivation area.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板と該基板上に形成した逆導電
型のエピタキシャル層と前記基板表面に埋込まれた逆導
電型の第1、第2の埋込層と該第1、第2の埋込層をそ
れぞれ取り囲むように前記エピタキシャル層を貫通した
一導電型の分離領域により島状に分離した第1、第2の
島領域と前記第1の島領域に形成したベース、エミッタ
、コレクタより成るバイポーラトランジスタと前記第2
の埋込層の上に埋込まれた一導電型の埋込みベース領域
と該埋込みベース領域に重畳して前記基板表面からの上
方向拡散によって形成した一導電型の下側ベース導出領
域と前記第2の島領域表面に形成した一導電型のインジ
ェクタ領域及び逆導電型のコレクタコンタクト領域と該
コレクタコンタクト領域を取り囲むように前記第2の島
領域表面から前記下側ベース導出領域に達する一導電型
の上側ベース導出領域とを備え、前記インジェクタ領域
及び上側ベースコンタクト領域は前記バイポーラトラン
ジスタのベースと同一工程にて形成し且つ前記コレクタ
コンタクト領域は前記バイポーラトランジスタのエミッ
タと同一工程にて形成したことを特徴とする半導体集積
回路。
(1) A semiconductor substrate of one conductivity type, an epitaxial layer of an opposite conductivity type formed on the substrate, first and second buried layers of opposite conductivity type buried in the surface of the substrate, and the first and second buried layers of the opposite conductivity type buried in the surface of the substrate. first and second island regions separated into islands by isolation regions of one conductivity type penetrating the epitaxial layer so as to respectively surround the buried layer; and a base, an emitter, and a collector formed in the first island region. a bipolar transistor comprising a bipolar transistor;
a buried base region of one conductivity type buried on the buried layer; a lower base lead-out region of one conductivity type formed by upward diffusion from the substrate surface overlapping the buried base region; an injector region of one conductivity type formed on the surface of the second island region and a collector contact region of the opposite conductivity type; and an injector region of one conductivity type that extends from the surface of the second island region to the lower base lead-out region so as to surround the collector contact region. an upper base lead-out region, the injector region and the upper base contact region are formed in the same process as the base of the bipolar transistor, and the collector contact region is formed in the same process as the emitter of the bipolar transistor. Features of semiconductor integrated circuits.
JP60233823A 1985-10-18 1985-10-18 Semiconductor integrated circuit Pending JPS6292463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233823A JPS6292463A (en) 1985-10-18 1985-10-18 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233823A JPS6292463A (en) 1985-10-18 1985-10-18 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6292463A true JPS6292463A (en) 1987-04-27

Family

ID=16961120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233823A Pending JPS6292463A (en) 1985-10-18 1985-10-18 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6292463A (en)

Similar Documents

Publication Publication Date Title
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
US3595713A (en) Method of manufacturing a semiconductor device comprising complementary transistors
US4005453A (en) Semiconductor device with isolated circuit elements and method of making
JPS6292463A (en) Semiconductor integrated circuit
KR19990063457A (en) Semiconductor device and manufacturing method thereof
US3959812A (en) High-voltage semiconductor integrated circuit
KR900000826B1 (en) Semiconductor ic manufacturing method
US3676755A (en) Semiconductor device and method of manufacturing said device
JPS6058633A (en) Semiconductor integrated circuit device
JP2604793B2 (en) Semiconductor device
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
KR19990052536A (en) Power semiconductor device and manufacturing method thereof
JP2538384B2 (en) Semiconductor integrated circuit
JPS6267855A (en) Semiconductor integrated injection logic circuit device
JPS6347965A (en) Semiconductor integrated circuit
JPH0834244B2 (en) Semiconductor integrated circuit device
JP2845469B2 (en) Semiconductor device
JPH0235470B2 (en)
JPS63136660A (en) Semiconductor device and manufacture thereof
JPS6292462A (en) Semiconductor injected integrated logic circuit device
JPS60180138A (en) Semiconductor device
JPH0222545B2 (en)
JPH02285655A (en) Junction isolated structure of integrated circuit device
JPS6327051A (en) Semiconductor integrated circuit