JPS628940B2 - - Google Patents

Info

Publication number
JPS628940B2
JPS628940B2 JP329780A JP329780A JPS628940B2 JP S628940 B2 JPS628940 B2 JP S628940B2 JP 329780 A JP329780 A JP 329780A JP 329780 A JP329780 A JP 329780A JP S628940 B2 JPS628940 B2 JP S628940B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
semiconductor
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP329780A
Other languages
Japanese (ja)
Other versions
JPS56100442A (en
Inventor
Takehide Shirato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP329780A priority Critical patent/JPS56100442A/en
Publication of JPS56100442A publication Critical patent/JPS56100442A/en
Publication of JPS628940B2 publication Critical patent/JPS628940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、高耐圧保護素子を備えて高耐圧素子
の保護をさせている半導体集積回路装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a semiconductor integrated circuit device that is equipped with a high voltage protection element to protect the high voltage element.

一般に、半導体集積回路装置では、チツプ周辺
部分に入出力用高耐圧素子群が形成され、それ等
の内側に標準耐圧素子群が形成されている。入出
力用の素子として高耐圧のものを用いるのは外部
接続される装置からの影響や静電気に依る影響に
対処させることが理由の一つになつているが、そ
れでも破壊される場合があるので、入出力ライン
と接地間に保護素子(回路)を挿入し、ラインに
異常高電圧が印加されたときに該保護素子がブレ
イク・ダウンしてラインを接地することが行なわ
れている。
Generally, in a semiconductor integrated circuit device, a group of input/output high-voltage elements is formed around a chip, and a standard-voltage element group is formed inside these elements. One of the reasons why high-voltage elements are used as input/output elements is to counteract the effects of externally connected devices and static electricity, but they can still be destroyed. A protection element (circuit) is inserted between an input/output line and ground, and when an abnormally high voltage is applied to the line, the protection element breaks down and grounds the line.

ところで、前記のような入出力用高耐圧素子を
保護する為の素子はそれ自体の耐圧も域る程度高
くなければならない。その保護素子の耐圧を向上
するには、例えば集積回路装置がnチヤネルMIS
(Metal Insulator Semiconductor)素子を主体と
するものであれば、保護素子をn+型不純物拡散
領域の周囲にn-型不純物領域を形成することが
行なわれている。しかしながら、そのようにする
と保護素子の耐圧が保護されるべき高耐圧素子の
それに比較して著しく高くなる傾向に在り、従つ
て、保護素子がブレイク・ダウンする前に保護さ
れるべき高耐圧素子が先に破壊されてしまう事故
がしばしば発生している。このような事故を生じ
ないようにする為にはn-型不純物領域の不純物
濃度を適当に選択すれば良いと考えられるであろ
うが、その制御は甚だ困難である。
By the way, an element for protecting the high voltage input/output element as described above must also have a high voltage resistance. In order to improve the withstand voltage of the protection element, for example, if the integrated circuit device is an n-channel MIS
(Metal Insulator Semiconductor) element, the protection element is formed by forming an n - type impurity region around an n + type impurity diffusion region. However, in this case, the withstand voltage of the protection element tends to be significantly higher than that of the high-voltage element to be protected, and therefore the high-voltage element to be protected before the protection element breaks down. Accidents often occur where the vehicle is destroyed first. In order to prevent such accidents from occurring, it may be considered that the impurity concentration of the n - type impurity region should be appropriately selected, but it is extremely difficult to control this.

また他の従来例として第1図の断面図に示すラ
テラル型nPnトランジスタがある。このトランジ
スタはP型半導体基板中に反対導電型領域である
n型領域3D,3Sが形成されていて、それらは
Alの電極4D,4Sが接触している。そして半
導体基板表面にはフイールド用酸化膜2が形成さ
れ、その直下にはP型のチヤネルカツト領域CC
が埋置されている。なお5はPSG膜である。
Another conventional example is a lateral type nPn transistor shown in the cross-sectional view of FIG. This transistor has n-type regions 3D and 3S, which are opposite conductivity type regions, formed in a P-type semiconductor substrate.
Al electrodes 4D and 4S are in contact with each other. Then, a field oxide film 2 is formed on the surface of the semiconductor substrate, and a P-type channel cut region CC is formed immediately below the field oxide film 2.
is buried. Note that 5 is a PSG film.

このラテラル型nPnトランジスタは電極4Dに
高電圧が印加されると、基板1とn型領域3Dと
のPn接合のうち特にPn接合端部10の部分に電
界が集中してその部分から先にブレイク・ダウン
を起こす。従つてこのトランジスタを高耐圧にす
るためには、Pn接合端部10に接触して埋置さ
れているP型のチヤネルカツト領域CCのドーズ
量を減少させてやればよい。ところがこの保護素
子であるトランジスタは標準高耐圧素子群と共に
製造されるため、チヤネルカツト領域CCのドー
ズ量は標準耐圧素子群のフイールド・トランジス
タの特性の必要上あまり少なくできない。そのた
めそれほど高耐圧にすることができないのであ
る。
In this lateral type nPn transistor, when a high voltage is applied to the electrode 4D, the electric field is concentrated particularly at the Pn junction end 10 of the Pn junction between the substrate 1 and the n-type region 3D, and breaks from that part first.・Causes down. Therefore, in order to make this transistor have a high breakdown voltage, it is sufficient to reduce the dose of the P-type channel cut region CC buried in contact with the Pn junction end 10. However, since the transistor serving as the protection element is manufactured together with the standard high-voltage element group, the dose amount of the channel cut region CC cannot be reduced very much due to the characteristics of the field transistor of the standard high-voltage element group. Therefore, it is not possible to make the breakdown voltage that high.

本発明は、保護素子の高圧を前記のようなn-
型不純物領域を持たないものや第1図で示した構
造のトランジスタよりも高く、またその保護素子
が他の素子を製造する工程を利用して同時に形成
できるようにしたものである。
The present invention reduces the high voltage of the protection element to the above-mentioned n -
It is higher than a transistor having no type impurity region or a transistor having the structure shown in FIG. 1, and its protective element can be formed at the same time using the process of manufacturing other elements.

そしてそれは半導体素子及び該素子を保護する
半導体保護素子を有する半導体集積回路装置に於
いて、前記半導体保護素子は、装置の他の素子部
分と共通である一導電型の半導体基板中に形成さ
れその半導体基板との間にPn接合を形成する反
対導電型領域と、前記Pn接合端を囲み且つ電圧
が印加された際にその影響を該Pn接合端近傍に
及ぼし得る程度に薄い膜厚のフイールド部分を有
して半導体基板表面に形成された絶縁膜と、該絶
縁膜の下に埋置され且つ前記反対導電型領域と離
れて形成された半導体基板と同一導電型のチヤネ
ルカツト領域と、前記反対導電型領域に接触し且
つエツジが前記絶縁膜の薄く形成されたフイール
ド部分にまで延在する電極と、前記反対導電型領
域に近接し且つ電極と接触した反対導電型領域と
を有することを特徴とする半導体集積回路装置を
提供することにより達成される。
In a semiconductor integrated circuit device having a semiconductor element and a semiconductor protection element for protecting the element, the semiconductor protection element is formed in a semiconductor substrate of one conductivity type that is common to other element parts of the device. an opposite conductivity type region that forms a Pn junction with the semiconductor substrate; and a field portion that is thin enough to surround the Pn junction end and exert its influence on the vicinity of the Pn junction end when a voltage is applied. an insulating film formed on the surface of the semiconductor substrate with a channel cut region buried under the insulating film and formed apart from the opposite conductivity type region and having the same conductivity type as the semiconductor substrate; and the opposite conductivity type region. It is characterized by having an electrode that is in contact with the mold region and whose edge extends to a thin field portion of the insulating film, and an opposite conductivity type region that is close to and in contact with the opposite conductivity type region. This is achieved by providing a semiconductor integrated circuit device that achieves this goal.

以下本発明の一実施例を図面に従つて詳細に説
明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例である保護素子のラ
テラル型nPnトランジスタの断面図である。本実
施例は、P型半導体基板1中に反対導電型領域で
あるn型領域3Dが形成され、それによりPn接
合が形成されている。そしてこのPn接合端を囲
むように絶縁膜であるフイールド用酸化膜2が形
成され、さらにそのフイールド用酸化膜2の直下
には、n型領域3Dと離れてP型のチヤネルカツ
ト領域CCが埋置され、n型領域3Dに接触して
例えばポリシリコンの電極7が形成され、その電
極7のエツジ7aはフイールド酸化膜2の上に延
在していて、電極7に電圧が印加された際にその
影響をPn接合に及ぼし得るようになつている。
さらに電極7にはAlの電極4Dが接触してい
る。そして前述のn型領域3Dに近傍してAlの
電極4Sと接触した反対導電型領域であるn型領
域3Sが設けられている。なおn型領域3Dとチ
ヤネルカツト領域CCとは酸化膜6を形成してお
くことにより図中10の如く分離される。また図
中5はPSG膜である。
FIG. 2 is a cross-sectional view of a lateral nPn transistor of a protection element according to an embodiment of the present invention. In this embodiment, an n-type region 3D, which is an opposite conductivity type region, is formed in a P-type semiconductor substrate 1, thereby forming a Pn junction. A field oxide film 2, which is an insulating film, is formed to surround this Pn junction end, and a P-type channel cut region CC is buried directly under the field oxide film 2, apart from the n-type region 3D. An electrode 7 made of, for example, polysilicon is formed in contact with the n-type region 3D, and an edge 7a of the electrode 7 extends over the field oxide film 2, and when a voltage is applied to the electrode 7, It is now possible to have this effect on the Pn junction.
Furthermore, an Al electrode 4D is in contact with the electrode 7. An n-type region 3S, which is a region of the opposite conductivity type, is provided in the vicinity of the aforementioned n-type region 3D and in contact with the Al electrode 4S. Note that the n-type region 3D and channel cut region CC are separated as shown at 10 in the figure by forming an oxide film 6 in advance. Further, 5 in the figure is a PSG film.

この様なラテラル型nPnトランジスタが高耐圧
で、しかもその耐圧上昇を容易に制御できること
を説明する。
It will be explained that such a lateral type nPn transistor has a high breakdown voltage and that the increase in breakdown voltage can be easily controlled.

先ずAlの電極4Dに高電圧が印加されて、基
板1とn型領域3Dとで形成されるPn接合に逆
バイアスが加わると、ポリシリコンの電極7のエ
ツジ7aのクーロンカにより、図中10の部分及
びチヤネルカツト領域CCのn型領域3D側の部
分には、基板1中及びチヤネルカツト領域CC中
の少数キヤリアである電子が引き寄せられ逆に正
孔に追い払われるので、そこにn型反転層が形成
される。それによりPn接合の図中10a部分へ
の電界の集中が緩和され、ブレイク・ダウンしに
くくなりその結果高耐圧になるわけである。
First, when a high voltage is applied to the Al electrode 4D and a reverse bias is applied to the Pn junction formed between the substrate 1 and the n-type region 3D, the Coulomb force on the edge 7a of the polysilicon electrode 7 causes the Electrons, which are minority carriers in the substrate 1 and in the channel cut region CC, are attracted to the portion of the n-type region 3D side of the channel cut region CC and are repelled by holes, so that an n-type inversion layer is formed there. be done. This alleviates the concentration of electric field on the Pn junction at the portion 10a in the figure, making it difficult to break down and resulting in a high withstand voltage.

そしてその耐圧は前述したn-型不純物領域を
形成したものほど著しく高くなることはない。
Moreover, its breakdown voltage will not be significantly higher than that of the structure in which the above-mentioned n - type impurity region is formed.

次に第2図の実施例の製造工程を第3図及び第
4図の断面図により説明する。
Next, the manufacturing process of the embodiment shown in FIG. 2 will be explained with reference to the sectional views shown in FIGS. 3 and 4.

第3図参照 P型半導体基板1の表面に窒化膜をマスクとし
て例えばB+のイオン注入によりP型のチヤネル
カツト領域CCを、さらに通常の選択酸化法によ
りフイールド用酸化膜2をそれぞれ形成する。こ
れらの工程は標準耐圧素子群の例えばMOS型ト
ランジスタの工程と同時に行なうことができる。
そしてそのMOS型トランジスタのゲート酸化膜
の形成と同時に酸化膜6を形成する。
Refer to FIG. 3. Using a nitride film as a mask, a P-type channel cut region CC is formed by, for example, B + ion implantation on the surface of a P-type semiconductor substrate 1, and a field oxide film 2 is formed by a conventional selective oxidation method. These steps can be carried out simultaneously with the steps for standard breakdown voltage elements, such as MOS type transistors.
At the same time as the gate oxide film of the MOS transistor is formed, an oxide film 6 is formed.

第4図参照 次に標準のMOS型トランジスタのノン・バツ
テイング・コンタクトのためのゲート酸化膜の窓
開け工程と同時に、n型領域3Dの上の酸化膜6
を第4図aの如く窓開きする。そしてポリシリコ
ンのゲート電極形成の工程と同時に、電極7を形
成する。この電極7のエツジ7aがフイールド用
酸化膜2の上に延在している。またこの工程でn
型領域3Sの上の酸化膜6は除去される。
Refer to Figure 4 Next, at the same time as the step of opening a window in the gate oxide film for a non-battery contact of a standard MOS transistor, the oxide film 6 on the n-type region 3D is opened.
Open the window as shown in Figure 4a. Then, at the same time as the step of forming the polysilicon gate electrode, the electrode 7 is formed. An edge 7a of this electrode 7 extends over the field oxide film 2. Also in this process n
The oxide film 6 on the mold region 3S is removed.

そして例えばP+のイオン注入によりn型領域
3D及び3Sが形成される。この工程は標準の
MOS型トランジスタのソース、ドレイン領域形
成の工程と同時に行なえる。そしてこのn型領域
3Dは、酸化膜6の存在により図中10の如くチ
ヤネルカツト領域CCとは離れて形成される。(約
2〜3μ程度である) その後は、PSG膜5を形成し、ソース、ドレイ
ン電極の窓開け工程と同時に窓開けを行ない、
Alの電極4D,4Sが、それぞれポリシリコン
の電極7、n型領域3Sに接触して形成される。
以上で第2図のラテラル型nPnトランジスタが形
成される。
Then, n-type regions 3D and 3S are formed by, for example, P + ion implantation. This process is standard
This process can be performed simultaneously with the process of forming the source and drain regions of a MOS transistor. Due to the presence of the oxide film 6, this n-type region 3D is formed apart from the channel cut region CC as shown at 10 in the figure. (approximately 2 to 3μ) After that, a PSG film 5 is formed, and windows are opened at the same time as the window opening process for the source and drain electrodes.
Al electrodes 4D and 4S are formed in contact with polysilicon electrode 7 and n-type region 3S, respectively.
With the above steps, the lateral type nPn transistor shown in FIG. 2 is formed.

以上説明した様に、第2図の本実施例は、標準
耐圧素子群の製造工程に何ら新たな工程を加える
ことなく同時に形成することができる。
As explained above, the present embodiment shown in FIG. 2 can be formed simultaneously with the manufacturing process of the standard breakdown voltage element group without adding any new process.

次に本発明の他の実施例を第5図の断面図によ
り説明する。このラテラル型nPnトランジスタの
第2図の場合と異なる点は、n型領域3Dに接触
する電極の構造である。具体的には、ポリシリコ
ン7の中央部がエツチング除去されそのエツジ7
aの部分だけが残されていて、そのエツジ7aと
その下の酸化膜6とをアスクにしたイオン注入に
よりn型領域3Dを形成した後、形成されたPSG
膜5を第5図の如くn型領域3Dより大きく窓開
けして、Alの電極4Dがフイールド用酸化膜2
上に延在するように形成されている。
Next, another embodiment of the present invention will be described with reference to the sectional view of FIG. The difference between this lateral type nPn transistor and the case shown in FIG. 2 is the structure of the electrode in contact with the n-type region 3D. Specifically, the central portion of polysilicon 7 is etched away and the edges 7 are etched away.
Only the part a remains, and after forming the n-type region 3D by ion implantation using the edge 7a and the oxide film 6 below as a mask, the PSG formed
As shown in FIG. 5, the film 5 is opened larger than the n-type region 3D, and the Al electrode 4D is connected to the field oxide film 2.
It is formed to extend upward.

そしてこの様な構造の場合も高耐圧になる理由
は第2図の実施例の場合とまつたく同じである。
The reason why such a structure has a high breakdown voltage is exactly the same as that of the embodiment shown in FIG.

以上説明してきた様に本発明によれば、高耐圧
半導体素子を保護する高耐圧半導体保護素子とし
て上記説明したラテラル型nPnトランジスタを用
い、そのトランジスタの反対導電型領域に電圧が
印加されるとそのPn接合端部に基板の導電型の
反転層が形成される。しかも前記反対導電型領域
とチヤネルカツト領域とが離れて形成されている
ため、上記の反転層は基板表面とチヤネルカツト
領域とに形成され、そのキヤリア濃度は基板表面
のほうがより濃く、チヤネルカツト領域のほうが
うすくなる。このような反転層の作用により、前
記の反対導電型領域の耐圧が高まる。また本発明
の保護素子は標準耐圧素子群と同じ製造工程によ
り形成することができる。
As explained above, according to the present invention, the above-described lateral nPn transistor is used as a high-voltage semiconductor protection element that protects a high-voltage semiconductor element, and when a voltage is applied to the opposite conductivity type region of the transistor, the A conductivity type inversion layer of the substrate is formed at the Pn junction end. Furthermore, since the opposite conductivity type region and the channel cut region are formed apart from each other, the above-mentioned inversion layer is formed on the substrate surface and the channel cut region, and the carrier concentration is higher on the substrate surface and thinner on the channel cut region. Become. The effect of such an inversion layer increases the withstand voltage of the opposite conductivity type region. Further, the protection element of the present invention can be formed by the same manufacturing process as the standard voltage resistance element group.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のラテラル型nPnトランジスタの
断面図。第2図は本発明の一実施例を説明するた
めの断面図で、第3図及び第4図はその製造工程
中の断面図。第5図は本発明の他の実施例を説明
するための断面図。 図中、1:半導体基板、2:フイールド用絶縁
膜(酸化膜)3D,3S:反対導電型領域(n型
領域)、4D,4S:電極(Al)、7:電極(ポ
リシリコン)、7a:電極のエツジ、CC:チヤネ
ルカツト領域。
Figure 1 is a cross-sectional view of a conventional lateral nPn transistor. FIG. 2 is a cross-sectional view for explaining one embodiment of the present invention, and FIGS. 3 and 4 are cross-sectional views during the manufacturing process. FIG. 5 is a sectional view for explaining another embodiment of the present invention. In the figure, 1: semiconductor substrate, 2: field insulating film (oxide film) 3D, 3S: opposite conductivity type region (n-type region), 4D, 4S: electrode (Al), 7: electrode (polysilicon), 7a : Edge of electrode, CC: Channel cut area.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子及び該素子を保護する半導体保護
素子を有する半導体集積回路装置に於いて、前記
半導体保護素子は、装置の他の素子部分と共通で
ある一導電型の半導体基板中に形成されその半導
体基板との間にPn接合を形成する反対導電型領
域と、前記Pn接合端を囲み且つ電圧が印加され
た際にその影響を該Pn接合端近傍に及ぼし得る
程度に薄い膜厚のフイールド部分を有して半導体
基板表面に形成された絶縁膜と、該絶縁の下に埋
置され且つ前記反対導電型領域と離れて形成され
た半導体基板と同一導電型のチヤネルカツト領域
と、前記反対導電型領域に接触し且つエツジが前
記絶縁膜の薄く形成されたフイールド部分にまで
延在する電極と、前記反対導電型領域に近傍し且
つ電極と接触した反対導電型領域とを有すること
を特徴とする半導体集積回路装置。
1. In a semiconductor integrated circuit device having a semiconductor element and a semiconductor protection element that protects the element, the semiconductor protection element is formed in a semiconductor substrate of one conductivity type that is common to other element parts of the device, and the semiconductor a region of an opposite conductivity type that forms a P n junction with the substrate; and a film having a thin enough thickness to surround the P n junction end and exert its influence on the vicinity of the P n junction end when a voltage is applied. an insulating film formed on the surface of the semiconductor substrate having a field portion; a channel cut region of the same conductivity type as the semiconductor substrate buried under the insulating film and formed apart from the region of the opposite conductivity type; It is characterized by having an electrode that is in contact with the conductivity type region and whose edge extends to a thin field portion of the insulating film, and an opposite conductivity type region that is close to the opposite conductivity type region and in contact with the electrode. Semiconductor integrated circuit device.
JP329780A 1980-01-16 1980-01-16 Semiconductor ic device Granted JPS56100442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP329780A JPS56100442A (en) 1980-01-16 1980-01-16 Semiconductor ic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP329780A JPS56100442A (en) 1980-01-16 1980-01-16 Semiconductor ic device

Publications (2)

Publication Number Publication Date
JPS56100442A JPS56100442A (en) 1981-08-12
JPS628940B2 true JPS628940B2 (en) 1987-02-25

Family

ID=11553433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP329780A Granted JPS56100442A (en) 1980-01-16 1980-01-16 Semiconductor ic device

Country Status (1)

Country Link
JP (1) JPS56100442A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263254A (en) * 1985-05-17 1986-11-21 Nec Corp Input protecting device

Also Published As

Publication number Publication date
JPS56100442A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5420061A (en) Method for improving latchup immunity in a dual-polysilicon gate process
US4853340A (en) Semiconductor device isolated by a pair of field oxide regions
JPH0770685B2 (en) Complementary MIS semiconductor integrated circuit
US5242849A (en) Method for the fabrication of MOS devices
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
JPH04241452A (en) Semiconductor integrated circuit device
US6207996B1 (en) Semiconductor device and method for manufacturing the same
JPH07321327A (en) Semiconductor device and its manufacturing method
JP3057792B2 (en) Method for manufacturing thin film transistor
JPH11307651A (en) Semiconductor integrated circuit
JPS63244874A (en) Input protective circuit
US3936862A (en) MISFET and method of manufacture
JPH01194349A (en) Semiconductor device
JPH08195443A (en) Semiconductor device and its manufacture
JP2001077356A (en) Vertical mos semiconductor device
JPS628940B2 (en)
JPS6359258B2 (en)
JP2888857B2 (en) Semiconductor device
US5962898A (en) Field-effect transistor
JPH0475387A (en) Mis-type semiconductor device
JP2948256B2 (en) Method for manufacturing semiconductor memory device
JPH0430194B2 (en)
JPS627710B2 (en)
JP3089720B2 (en) NMOS transistor