JPS628876B2 - - Google Patents

Info

Publication number
JPS628876B2
JPS628876B2 JP14394780A JP14394780A JPS628876B2 JP S628876 B2 JPS628876 B2 JP S628876B2 JP 14394780 A JP14394780 A JP 14394780A JP 14394780 A JP14394780 A JP 14394780A JP S628876 B2 JPS628876 B2 JP S628876B2
Authority
JP
Japan
Prior art keywords
memory cell
blocks
data
memory
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14394780A
Other languages
Japanese (ja)
Other versions
JPS5769583A (en
Inventor
Hiroshi Iwahashi
Masamichi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14394780A priority Critical patent/JPS5769583A/en
Priority to EP81304660A priority patent/EP0050005B1/en
Priority to DE8181304660T priority patent/DE3176751D1/en
Priority to EP19860201618 priority patent/EP0214705B1/en
Priority to DE8686201618T priority patent/DE3177270D1/en
Priority to US06/310,822 priority patent/US4477884A/en
Publication of JPS5769583A publication Critical patent/JPS5769583A/en
Publication of JPS628876B2 publication Critical patent/JPS628876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C29/34Accessing multiple bits simultaneously
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はデータ書き込み時間の短縮化をはかつ
た不揮発性半導体メモリーに関する。 一般に、電荷補獲手段をゲート絶縁膜内にもつ
たIG−FET(絶縁ゲート型電界効果トランジス
タ)をメモリーセルとしたPROM
(Programmable Read Only Memory)におい
て、電荷捕獲手段としてのフローテイング・ゲー
トに電子を注入するつまりプログラムを行なう
時、メモリーセルのゲートとドレインにプログラ
ム電圧Vp(例えば25V)を印加するが、1つの
メモリーセルをプログラムするには通常50ミリ秒
程度の時間が必要である。ところで従来は、1ビ
ツトのデータを得るためのメモリー領域で、1つ
の番地毎にプログラムを行なつていたため4096ワ
ード×8ピツトのメモリーの場合、4096×50〔m
s〕=204800≒3.4分となり、プログラムに多くの
時間を要した。 本発明は上記実情に鑑みてなされたもので、1
ビツトのデータを得るためのメモリー領域の2つ
以上の番地に同時にデータ書き込みが行なえるよ
うにすることにより、プログラム時間の短縮化を
はかつた不揮発性半導体メモリーを提供しようと
するものある。 以下図面を参照して本発明の一実施例を説明す
る。第1図において1はメモリーセル・アレイで
あり、このセル・アレイ1には行線2,……、
列線310,……,31l,32l,……32l、メモリー
セル410,……41l,420,……42l等が設けられ
ている。行線2,……の一端は行デコーダ5に
接続される。ブロツクAの列線310,……31l
一端はIG−FET610,……61lを介して端子7A
に接続され、この端子7AはIG−FET(負荷トラ
ンジスタ)8Aを介してプログラム電源Vp(例え
ば25V)に接続される。ブロツクBの列線320
……32lの一端はIG−FET620,……62lを介し
て端子7Bに接続され、この端子7BはIG−FET
B(負荷トランジスタ)を介してプログラム電
源Vpに接続される。上記IG−FET610,620
……61l,62lは列デコーダ14の出力線1510
……151lで選択される。上記IG−FET8Aはブ
ロツクAで指定されたメモリーセル(番地)にデ
ータ“1”を書き込むか“0”を書き込むかを決
めるためのものであり、IG−FET8Bはブロツク
Bで指定されたメモリーセル(番地)に“1”を
書き込むか“0”を書き込むかを決めるためのも
のである。即ち電位検出回路9は、供給される書
き込みデータの電位レベルに応じてIG−FET8
A,8Bのオン、オフ状態を決定する。また上記端
子7A,7Bは、データ読み出し時のみ使用される
IG−FET10A,10Bを介して端子11に接続
される。IG−FET10A,10Bはアドレス入力
A0で制御される。上記端子11に読み出
された1ビツトのデータは、IG−FET12を介
してセンスアンプ及び出力バツフア回路13に供
給される。上記IG−FET12はデータ読み出し
信号R/で制御される。 上記第1図は、1ビツトのデータを得るメモリ
ー領域の2つの番地のデータを、同時にプログラ
ムする際の構成例である。このメモリーににおい
て通常のデータ読み出し時、ブロツクAの列線
は、アドレス入力A0=“1”の時列デコーダ14
によつて1本が選択され、ブロツクBの列線は、
アドレス入力A0=“0”つまり=“1”の時
列デコーダ14によつて1本が選択される。 一方本実施例の主旨は、A0=“0”(
“1”)及びA0=“1”の2つの状態つまりブロツ
クA及びBの2つの番地を同時にプログラムする
もので、ブロツクA,Bのそれぞれ1本、つまり
2本の列線が同時に選択され、その時選択された
行線との交点のメモリーセル2個が同時にプログ
ラムされる。具体的には、下記の第1表に示すよ
うに電位検出回路9への書き込みデータを、例え
ば0〔V〕、5〔V〕、10〔V〕、15〔V〕の4種
の電位に区別することにより、A0=“0”(
=“1”)、A0=“1”の2つの番地のデータを、
電位検出回路9の出力s,tの電位で、IG−
FET8A,8Bをオン/オフすることで、その時
列デコーダ14、行デコーダ5で選択された2つ
のメモリーセル(番地)を同時にプログラムす
る。ただし、ここではフローテイングゲートをゲ
ート絶縁膜内にもつIG−FETをメモリーセルと
するPROMを例にとつているから、このPROMの
何もしない状態つまりフローテイングゲートが中
性の時を“0”の状態、フローテイングゲートに
電子が注入された状態を“1”とする。そしてフ
ローテイングゲートに電子を注入することは、メ
モリーセルのゲート及びドレインにプログラム電
圧VP(例えば25V)を印加することにより行な
う。
The present invention relates to a nonvolatile semiconductor memory that reduces data writing time. Generally, PROM uses an IG-FET (insulated gate field effect transistor) as a memory cell, which has a charge capture means in the gate insulating film.
(Programmable Read Only Memory), when injecting electrons into the floating gate as a charge trapping means, i.e., performing programming, a programming voltage V p (for example, 25 V) is applied to the gate and drain of the memory cell. Programming a memory cell typically takes about 50 milliseconds. By the way, in the past, programming was performed for each address in the memory area for obtaining 1 bit of data, so in the case of a memory of 4096 words x 8 pits, the memory area was 4096 x 50 m.
s]=204800≒3.4 minutes, and the program required a lot of time. The present invention has been made in view of the above circumstances, and includes:
Some attempts have been made to provide a nonvolatile semiconductor memory in which programming time can be shortened by allowing data to be simultaneously written to two or more addresses in a memory area for obtaining bit data. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a memory cell array, and this cell array 1 has row lines 2 0 , . . .
Column lines 310 ,..., 31l , 32l,... 32l , memory cells 410 ,... 41l , 420 ,... 42l, etc. are provided. One end of the row lines 2 0 , . . . is connected to the row decoder 5 . One end of column line 310 ,... 31l of block A is connected to terminal 7A via IG- FET610 ,... 61l .
This terminal 7A is connected to a program power supply Vp (for example, 25V) via an IG-FET (load transistor) 8A . Block B column line 3 20 ,
...3 2l one end is connected to terminal 7 B via IG-FET6 20 , ...6 2l , and this terminal 7 B is connected to IG-FET6 20 , ...6 2l
8 B (load transistor) to the program power supply V p . The above IG-FET6 10 , 6 20 ,
...6 1l and 6 2l are the output lines 15 10 of the column decoder 14,
...15 Selected by 1l . The above IG- FET8A is used to decide whether to write data "1" or "0" to the memory cell (address) specified by block A, and IG- FET8B is used to decide whether to write data "1" or "0" to the memory cell (address) specified by block B. This is to decide whether to write "1" or "0" to the memory cell (address). That is, the potential detection circuit 9 detects the IG-FET 8 according to the potential level of the supplied write data.
Determine the on/off state of A and 8 B. Also, the above terminals 7 A and 7 B are used only when reading data.
It is connected to the terminal 11 via IG- FET10A and 10B . IG- FET10A , 10B is address input
Controlled by A 0,0 . The 1-bit data read to the terminal 11 is supplied to the sense amplifier and output buffer circuit 13 via the IG-FET 12. The IG-FET 12 is controlled by a data read signal R/. The above-mentioned FIG. 1 shows an example of a configuration in which data at two addresses in a memory area from which 1-bit data is obtained is simultaneously programmed. When reading data normally in this memory, the column line of block A is connected to the time column decoder 14 with address input A 0 = “1”.
One line is selected by , and the column line of block B is
One line is selected by the time sequence decoder 14 with address input A 0 =“0”, that is, 0 =“1”. On the other hand, the gist of this embodiment is that A 0 = “0” ( 0 =
This program simultaneously programs the two states of ``1'' and A 0 = ``1'', that is, the two addresses of blocks A and B, and one column line each of blocks A and B, that is, two column lines, are selected at the same time. , two memory cells at the intersection with the row line selected at that time are simultaneously programmed. Specifically, as shown in Table 1 below, the data written to the potential detection circuit 9 is set to four potentials, for example, 0 [V], 5 [V], 10 [V], and 15 [V]. By distinguishing, A 0 = “0” ( 0
= “1”) and A 0 = “1”,
At the potentials of the outputs s and t of the potential detection circuit 9, IG-
By turning on/off FETs 8 A and 8 B , two memory cells (addresses) selected by the column decoder 14 and row decoder 5 are simultaneously programmed. However, since we are taking as an example a PROM whose memory cell is an IG-FET with a floating gate in the gate insulating film, the state where this PROM does nothing, that is, when the floating gate is neutral, is "0". ” state, in which electrons are injected into the floating gate, is defined as “1”. Injecting electrons into the floating gate is performed by applying a programming voltage V P (for example, 25 V) to the gate and drain of the memory cell.

【表】 第1図において、書き込みデータの電位レベル
が0Vの時、s=“0”、t=“0”を電位検出回路
9の出力とする。この時IG−FET8A,8Bはオ
フのままであるから、列線にはプログラム電圧V
pが印加されず、従つて書き込みは行なわれず、
メモリーセルは“0”のままである。このこと
は、ブロツクA,Bで指定されたメモリーセル
(番地)に“0”が書き込まれたことと等価であ
る。書き込みデータが5Vになつた場合は、s=
“1”、t=“0”となつてIG−FET8Bのみがオ
ンし、いま列デコーダ14の出力線15108行デ
コーダ5の行線2が選択されていれば、メモリ
ーセル420のゲート及びドレインにプログラム電
圧Vpが印加され、プログラムが行なわれてメモ
リーセル420は“1”の状態になる。この時IG−
FET8Aはオフで、メモリーセル410は“0”の
ままだから、該セルに“0”書き込みが高なわれ
たことと等価である。以下同様に書き込みデータ
が10Vの時、s=“0”、t=“1”となつてIG−
FET8Aのみがオンし、この時行線2、出力線
1510が選択されていれば、メモリーセル410
“1”が書き込まれる。書き込みデータが15V
の場合は、IG−FET8A,8Bが共にオンし、出
力線1510、行線2が選択されればメモリーセ
ル410,420に“1”が書き込まれるものであ
る。 第2図は電位検出回路9の一例を示し、下記の
第2表にこの回路の各点の電位レベルを示す。但
しこの第2表で、“0”はすべて0〔V〕を示す
が、“1”は端子x〜zについては電源Vc(例え
ば5V)レベル、端子s,tについてはVp(例え
ば25V)レベルに対応する。
[Table] In FIG. 1, when the potential level of the write data is 0V, s=“0” and t=“0” are the outputs of the potential detection circuit 9. At this time, IG-FETs 8 A and 8 B remain off, so the program voltage V is applied to the column line.
p is not applied, so no writing takes place,
The memory cell remains at "0". This is equivalent to writing "0" into the memory cells (addresses) designated by blocks A and B. If the write data becomes 5V, s=
“1”, t=“0”, and only IG-FET 8 B is turned on, and if the output line 15 of the column decoder 14 and the row line 20 of the row decoder 5 are currently selected, then the memory cell 4 20 A programming voltage V p is applied to the gate and drain, programming is performed, and the memory cell 420 becomes a "1" state. At this time IG-
Since FET 8A is off and memory cell 410 remains at "0", this is equivalent to writing "0" to that cell. Similarly, when the write data is 10V, s = "0", t = "1", and IG-
If only FET 8 A is turned on and row line 2 0 and output line 15 10 are selected at this time, “1” is written in memory cell 4 10 . Write data is 15V
In this case, if both IG-FETs 8A and 8B are turned on and the output line 1510 and row line 20 are selected, "1" is written into the memory cells 410 and 420 . FIG. 2 shows an example of the potential detection circuit 9, and Table 2 below shows potential levels at each point of this circuit. However, in this Table 2, all "0" indicate 0 [V], but "1" indicates the power supply V c (for example, 5V) level for terminals x to z, and V p (for example, 25V) for terminals s and t. ) corresponding to the level.

【表】 第2図の電位検出回路において21〜23は基
準電圧発生部であり、例えばその出力端O1には
2Vが、O2には7Vが、O3には12Vが得られ
る。24〜26は電位検出部、27〜30はゲー
ト回路である。電位検出部24〜26は、基準電
位発生部の出力電圧と書き込みデータの電位レベ
ルを比較し、その結果でゲート回路を制御し、出
力s,tのレベルを決める。例えば書き込みデー
タがOVの時、デプレツシヨン型トランジスタ3
1の抵抗値はトランジスタ32のそれと比較して
大であり、エンハンスメント型トランジスタ33
はオン方向、トランジスタ34はオフ方向にあ
る。書き込み信号/Wの供給でトランジスタ3
5がオン状態になると出力端O4,O5のレベルが
決まり、この場合O4は“0”、O5が“1”とな
る。この“1”でゲート回路27のトランジスタ
36と、ゲート回路28のトランジスタ37がオ
ンし、出力s,tは共に“0”となり、第2表の
結果と一致する。書き込みデータの電位レベルが
他の値をとつた時の動作も第2表の結果と一致す
る。 第3図は電位検出回路の他の例を示すもので、
この場合は基準電圧発生部41から、電位検出部
42に例えば7V、電位検出部43に12V、検出
部44に18V、検出部45に21Vの基準電圧
を与え、書き込みデータの電位レベルとの比較を
行なうようにしている。この回路は、書き込みデ
ータが0〜5Vの間に従来通り、入力アドレスに
より指定された1つのメモリーセルをプログラム
するが、書き込みデータが10V,15V,20
V,25Vの4つの状態になると、2つの番地を
同時にプログラムするものである。この時の回路
動作は下記の第3表に示される。
[Table] In the potential detection circuit of FIG. 2, 21 to 23 are reference voltage generating sections, and for example, 2V is obtained at the output terminal O1 , 7V at O2 , and 12V at O3 . Reference numerals 24 to 26 are potential detection sections, and 27 to 30 are gate circuits. The potential detection units 24 to 26 compare the output voltage of the reference potential generation unit and the potential level of the write data, control the gate circuit based on the result, and determine the levels of the outputs s and t. For example, when the write data is OV, the depletion type transistor 3
The resistance value of the transistor 1 is larger than that of the transistor 32, and the resistance value of the enhancement type transistor 33 is larger than that of the transistor 32.
is in the on direction, and transistor 34 is in the off direction. Transistor 3 by supplying write signal /W
5 is turned on, the levels of output terminals O 4 and O 5 are determined, and in this case, O 4 becomes "0" and O 5 becomes "1". This "1" turns on the transistor 36 of the gate circuit 27 and the transistor 37 of the gate circuit 28, and the outputs s and t both become "0", which agrees with the results in Table 2. The operation when the potential level of the write data takes other values also matches the results in Table 2. Figure 3 shows another example of the potential detection circuit.
In this case, the reference voltage generation section 41 applies a reference voltage of, for example, 7V to the potential detection section 42, 12V to the potential detection section 43, 18V to the detection section 44, and 21V to the detection section 45, and compares it with the potential level of the written data. I try to do this. This circuit programs one memory cell designated by an input address as before when write data is 0 to 5V, but when write data is 10V, 15V, 20V,
When the four states of V and 25V are reached, two addresses are programmed at the same time. The circuit operation at this time is shown in Table 3 below.

【表】 なお上記実施例では、メモリー領域を2つのブ
ロツクに分割してプログラムに要する時間を従来
の1/2としたが、メモリー領域をn個に分割すれ
ば、プログラム所要時間を1/nにできる等、本
発明は実施例に限られず種々の応用が可能であ
る。 以上説明した如く本発明によれば、複数の番地
を同時にプログラムできるため、プログラム時間
が短縮される不揮発性半導体メモリーが提供でき
るものである。
[Table] In the above embodiment, the memory area is divided into two blocks to reduce the time required for programming to 1/2 of the conventional time. However, if the memory area is divided into n blocks, the time required for programming is reduced to 1/n. The present invention is not limited to the embodiments and can be applied in various ways. As described above, according to the present invention, it is possible to provide a non-volatile semiconductor memory in which a plurality of addresses can be programmed simultaneously, thereby reducing the programming time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図は同回路の一部詳細回路図、第3図は同回路の
他の例を示す回路図である。 1……メモリーセル・アレイ、2……行線、
10〜32l……列線、410〜42l……メモリーセ
ル、5……行デコーダ、610〜62l……列選択ゲ
ート、8A,8B……ブロツク選択ゲート、9……
電位検出回路、14……列デコーダ、A,B……
ブロツク。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a partial detailed circuit diagram of the same circuit, and FIG. 3 is a circuit diagram showing another example of the same circuit. 1...Memory cell array, 2 0 ...Row line,
3 10 - 3 2l ... Column line, 4 10 - 4 2l ... Memory cell, 5 ... Row decoder, 6 10 - 6 2l ... Column selection gate, 8 A , 8 B ... Block selection gate, 9... …
Potential detection circuit, 14... Column decoder, A, B...
Block.

Claims (1)

【特許請求の範囲】 1 Mワード×Nビツト(M、Nは自然数)構成
の出力がN個のビツトである不揮発性半導体メモ
リーにおいて、前記出力1ビツトを得るための構
成は、電荷捕獲手段をゲート絶縁膜内にもつた
IG−FETをメモリーセルとして出力1ビツトの
データを得るメモリー領域の列線を複数のブロツ
クに分割し、各ブロツク内の1つのメモリーセル
にそれぞれデータを書き込むために前記各ブロツ
ク内で同時に選択されたメモリーセルのゲートと
ドレインに、論理データ“1”を書き込むか論理
データ“0”を書き込むかに応じて、各ブロツク
に対応して設けられ書き込みデータに応じてスイ
ツチング制御される負荷トランジスタをそれぞれ
制御することによつてプログラム電圧を選択印加
する電圧印加手段を具備したことを特徴とする不
揮発性半導体メモリー。 2 前記ブロツクの数はn個であり、前記電圧印
加手段は、前記各ブロツクにそれぞれプログラム
電源電圧を与えるn個のスイツチ素子を有し、か
つ2n個の電位レベルをもつ入力信号のレベルに
応じて前記各スイツチ素子を制御する電位検出回
路を有することを特徴とする特許請求の範囲第1
項に記載の不揮発性半導体メモリー。
[Claims] In a nonvolatile semiconductor memory having a configuration of 1 M words x N bits (M and N are natural numbers), the output is N bits, and the configuration for obtaining the 1 bit output includes charge trapping means. If there is a problem in the gate insulating film,
The column lines in the memory area are divided into multiple blocks to obtain output 1-bit data using the IG-FET as a memory cell, and in order to write data to one memory cell in each block, the lines are selected simultaneously in each block. Depending on whether logic data "1" or logic data "0" is written to the gate and drain of the memory cell, a load transistor is provided corresponding to each block and is switched and controlled according to the write data. 1. A nonvolatile semiconductor memory characterized by comprising voltage application means for selectively applying a program voltage through control. 2. The number of the blocks is n, and the voltage application means has n switch elements that respectively apply a program power supply voltage to each of the blocks, and the voltage application means applies a program power supply voltage to each of the blocks according to the level of an input signal having 2n potential levels. Claim 1 further comprises a potential detection circuit for controlling each of the switch elements.
Non-volatile semiconductor memory as described in .
JP14394780A 1980-10-15 1980-10-15 Non_volatile semiconductor memory Granted JPS5769583A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14394780A JPS5769583A (en) 1980-10-15 1980-10-15 Non_volatile semiconductor memory
EP81304660A EP0050005B1 (en) 1980-10-15 1981-10-07 Semiconductor memory with improved data programming time
DE8181304660T DE3176751D1 (en) 1980-10-15 1981-10-07 Semiconductor memory with improved data programming time
EP19860201618 EP0214705B1 (en) 1980-10-15 1981-10-07 Semiconductor memory with improvend data programming time
DE8686201618T DE3177270D1 (en) 1980-10-15 1981-10-07 SEMICONDUCTOR MEMORY WITH DATA PROGRAMMING TIME.
US06/310,822 US4477884A (en) 1980-10-15 1981-10-13 Semiconductor memory with improved data programming time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14394780A JPS5769583A (en) 1980-10-15 1980-10-15 Non_volatile semiconductor memory

Publications (2)

Publication Number Publication Date
JPS5769583A JPS5769583A (en) 1982-04-28
JPS628876B2 true JPS628876B2 (en) 1987-02-25

Family

ID=15350745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14394780A Granted JPS5769583A (en) 1980-10-15 1980-10-15 Non_volatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPS5769583A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136546A (en) * 1984-09-26 1992-08-04 Hitachi, Ltd. Semiconductor memory
JPS6180597A (en) * 1984-09-26 1986-04-24 Hitachi Ltd Semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107638A (en) * 1978-02-10 1979-08-23 Sanyo Electric Co Ltd Memory data readout circuit in semiconductor memory unit
JPS54110742A (en) * 1978-02-17 1979-08-30 Sanyo Electric Co Ltd Nonvolatile semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107638A (en) * 1978-02-10 1979-08-23 Sanyo Electric Co Ltd Memory data readout circuit in semiconductor memory unit
JPS54110742A (en) * 1978-02-17 1979-08-30 Sanyo Electric Co Ltd Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
JPS5769583A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
US4958317A (en) Nonvolatile semiconductor memory device and a writing method using electron tunneling
US5337281A (en) Non-volatile semiconductor memory device in which data can be erased on a block basis and method of erasing data on a block basis in non-volatile semiconductor memory device
US5097152A (en) Buffer circuit used in a semiconductor device operating by different supply potentials and method of operating the same
US5917753A (en) Sensing circuitry for reading and verifying the contents of electrically programmable/erasable non-volatile memory cells
US7355903B2 (en) Semiconductor device including memory cells and current limiter
JPH08279297A (en) Nonvolatile semiconductor memory of nand structure and its programming method
US4543647A (en) Electrically programmable non-volatile semiconductor memory device
US5544117A (en) Non-volatile semiconductor memory device with improved collective erasing operation
US4805151A (en) Nonvolatile semiconductor memory device
US6160738A (en) Nonvolatile semiconductor memory system
JPS62120700A (en) Semiconductor memory device
US4870618A (en) Semiconductor memory equipped with test circuit for testing data holding characteristic during data programming period
KR900013522A (en) Semiconductor nonvolatile memory and information processing system using the same
JP2591740B2 (en) Nonvolatile programmable semiconductor memory
JP3693504B2 (en) Memory device
JP3998908B2 (en) Nonvolatile memory device
US5278786A (en) Non-volatile semiconductor memory device having an area responsive to writing allowance signal
US4751678A (en) Erase circuit for CMOS EEPROM
JP2725564B2 (en) Semiconductor memory device and data writing method thereof
JPS628877B2 (en)
JPS628876B2 (en)
US4827451A (en) Safety device for the programming of an electrically programmable non-volatile memory
JPH05128877A (en) Nonvolatile semiconductor memory device
JP3307299B2 (en) Flash memory device
KR970051328A (en) Nonvolatile Memory with Separate Source Lines