JPS6288318A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6288318A
JPS6288318A JP60229382A JP22938285A JPS6288318A JP S6288318 A JPS6288318 A JP S6288318A JP 60229382 A JP60229382 A JP 60229382A JP 22938285 A JP22938285 A JP 22938285A JP S6288318 A JPS6288318 A JP S6288318A
Authority
JP
Japan
Prior art keywords
layer
growth
face
substrate
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60229382A
Other languages
Japanese (ja)
Other versions
JPH0473610B2 (en
Inventor
Toshiro Hayakawa
利郎 早川
Naohiro Suyama
尚宏 須山
Masafumi Kondo
雅文 近藤
Kousei Takahashi
向星 高橋
Saburo Yamamoto
三郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60229382A priority Critical patent/JPS6288318A/en
Priority to GB8706194A priority patent/GB2202371B/en
Priority to DE19873709134 priority patent/DE3709134A1/en
Publication of JPS6288318A publication Critical patent/JPS6288318A/en
Publication of JPH0473610B2 publication Critical patent/JPH0473610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02398Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To realize an epitaxial layer of higher quality, and obtain a semiconductor device having excellent characteristics such as small threshold current, etc. by inclining the face orientation of a single crystal substrate from the (111)B face. CONSTITUTION:The titled device of high quality is obtained, by using an MBE growth epitaxial layer on a substrate whose face orientation is inclined by 0.1-1 degree from the (111)B face. In the case where the inclination angle of face orientation of a GaAs substrate 31 from the (111)B face is in a range of 0.1-1 deg., the growth surface homology of a mirror surface is completely obtained. Outside this range, that is, in the larger angle side or the smaller angle side, a non-mirror surface only is obtained. In the region where the inclination angle is 0.1-1 deg., a luminous efficiency higher than one or more digits is obtained as compared with other regions.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、MBE(分子線エピタキシー)法により単結
晶基板上に高品質なエピタキシャル層を形成して成る半
導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor device in which a high quality epitaxial layer is formed on a single crystal substrate by the MBE (molecular beam epitaxy) method.

〈従来技術〉 近年、MBE成長技術の進歩は著しく、10Å以下の単
分子層オーダーまでの極めて薄いエピタキシャル層の制
御が可能となっている。このようなMBE成長技術の進
歩は半導体装置においても、従来の液相エピタキシャル
層長(LPE)法などでは製作が困難であった極めて薄
い層を有する素子構造に基づく新しい効果を利用した半
導体装置の製作を可能とした。その代表的なものとして
、GaAs/A1GaAs1子井戸(Quantum 
 Well;略してQW)レーザがある。このQWレー
ザは従来の二重へテロ接合(DI()レーザでは、数百
Å以上あった活性層厚を100人程度あるいはそれ以下
とすることによって、活性層中に量子化準位が形成され
ることを利用しており、従来のDHレーザに比べて閾値
電流が下がる、温度特性が良い、あるいは過渡特性に優
れている等の数々の利点を有している。これに関する参
考文献としては次のようなものがある。
<Prior Art> In recent years, MBE growth technology has made remarkable progress, and it has become possible to control extremely thin epitaxial layers down to the order of a monomolecular layer of 10 Å or less. Such advances in MBE growth technology have also led to the development of semiconductor devices that take advantage of new effects based on device structures with extremely thin layers, which are difficult to fabricate using conventional liquid phase epitaxial layer length (LPE) methods. production was possible. A typical example is the GaAs/A1GaAs single well (Quantum well).
Well (abbreviated as QW) is a laser. In this QW laser, a quantization level is formed in the active layer by reducing the active layer thickness from several hundred Å or more in conventional double heterojunction (DI) lasers to about 100 Å or less. It has many advantages over conventional DH lasers, such as lower threshold current, better temperature characteristics, and superior transient characteristics.References on this topic include: There is something like.

■ ダブリュー、ティ、ツアング、フィジックス レタ
ーズ、ボリューム39.ナンバー10.ページ786 
(1981) (W、 T、 Tsang、 Phys
ics Letters。
■ W, T. Tsuang, Physics Letters, Volume 39. Number 10. page 786
(1981) (W, T, Tsang, Phys.
ics Letters.

vol、 39. No、IO,pll、 786 (
1981))。
vol, 39. No, IO, pll, 786 (
1981)).

■ エヌ、ケイ、ドゥッタア、ジャーナル オヴ アプ
ライド フィジックス、ボリューム53゜ナンバー11
.ページ721.1. (1982XN、 K、 Du
tta。
■ N.K. Duttaa, Journal of Applied Physics, Volume 53° Number 11
.. Page 721.1. (1982XN, K, Du
tta.

Journal of Applied Physic
s、 vol、 53. No、lI。
Journal of Applied Physics
s, vol, 53. No, lI.

pp、 7211 (19g2))。pp, 7211 (19g2)).

■ エイチ、イワムラ、ティ、ザク、ティ、イシハシ、
ケイ、オオツ力、ワイ、ポリコシ、エレクトロニクス 
レターズ、ボリューム19.ナンバー5.ページ180
 (1983) (Hllwamura、 T、5ak
u。
■ H, Iwamura, T, Zaku, T, Ishihashi,
Kei, Ootsuriki, Y, Polikoshi, Electronics
Letters, Volume 19. Number 5. page 180
(1983) (Hllwamura, T, 5ak
u.

T、  l5hibashi、 K、 0tsuka、
 Y、 Horikoshi。
T, l5hibashi, K, 0tsuka,
Y, Horikoshi.

Electronics Letters、 vol、
 19. No、5. pp、 180(] 983)
)。
Electronics Letters, vol.
19. No, 5. pp, 180 (] 983)
).

また、MBE法により作製されたもう1つの代表的な半
導体装置として、GaAsとAjjGaAs界面に形成
された2次元電子ガスの高移動度特性を利用した電界効
果トランジスタ(FET)がある(ティ、ミムラ(’I
’、 Mimura)他 ジャパンジャーナル アプラ
イド フィジックス ポリコーム]  9 (Japn
、  、1   Δpp1.Phys、vo1. 19
)(1980)p、 L225)。 これらの半導体装
置をM B E法で製作する場合、成長層の結晶性が素
子特性に大きな影響を及ぼすことが知られている。特に
、GaAs基板、QGaAs系の素子では、Δ!を含む
A1GaAsの結晶性が成長条件に大きく依存するため
、A4GaAsの結晶性の向−にが重要である。(ダブ
リュ・ティ・ツアンク(W、 T、 Tsang)他 
アプライド フィジックス レター ポリコーム36(
1980)ページ118 (Appl、 Pbys、 
Lett、 vow、 36(1980) l)、11
8)。
Another typical semiconductor device fabricated by the MBE method is the field-effect transistor (FET), which utilizes the high mobility characteristics of the two-dimensional electron gas formed at the interface between GaAs and AjjGaAs (T., Mimura et al. ('I
', Mimura) and others Japan Journal Applied Physics Polycomb] 9 (Japan
, ,1 Δpp1. Phys, vol. 19
) (1980) p, L225). When manufacturing these semiconductor devices by the MBE method, it is known that the crystallinity of the grown layer has a large effect on device characteristics. In particular, in GaAs substrates and QGaAs-based devices, Δ! The direction of crystallinity of A4GaAs is important because the crystallinity of A1GaAs, which includes , greatly depends on the growth conditions. (W, T, Tsang et al.
Applied Physics Letter Polycomb 36 (
1980) page 118 (Appl, Pbys,
Lett, vow, 36 (1980) l), 11
8).

〈発明の目的〉 本発明は、以」二のにうな事情に鑑み、MBE法を用い
てエピタキシャル成長したエピタキシャル層の結晶性を
従来より向」ニさせることにより、閾値電流が小さく、
温度特性、過渡特性等に優れた半導体装置を提供するこ
とを目的とする。
<Object of the Invention> In view of the following two circumstances, the present invention improves the crystallinity of the epitaxial layer epitaxially grown using the MBE method compared to the conventional method, thereby reducing the threshold current.
The purpose is to provide a semiconductor device with excellent temperature characteristics, transient characteristics, etc.

〈発明の構成〉 3一 本発明者らは、MBE法により成長したエピタキシャル
層の結晶性を改善する目的で、面方位の異なるGaAs
基板」二にA、1xGa、−xAs (X=0.2〜0
.8)を成長して、エピタキシャル層の結晶性を評価し
た。この結果、従来から用いられている(001)面上
では基板温度720℃以上で表面が完全鏡面の良質なエ
ピタキシャル成長層が得られるが、(011)及び(I
N)B面」二では非鏡面の成長層しか得られないことが
判明した。更に、(Ill)B面の基板について、第1
図に示すように、成長前の硫酸・過酸化水素水・水の混
合液によるエツチングの際に基板周辺部にだれを生じせ
しめ、(Ill)B面より角度が連続して傾いたオフ面
を形成し、同様の成長を行った。この際、通常の(00
1,)面基板上にも同時に成長を行い、両者の比較を行
った。
<Structure of the Invention> 31 The present inventors developed GaAs with different plane orientations for the purpose of improving the crystallinity of an epitaxial layer grown by the MBE method.
Substrate"A, 1xGa, -xAs (X=0.2~0
.. 8) was grown and the crystallinity of the epitaxial layer was evaluated. As a result, on the conventionally used (001) plane, a high-quality epitaxial growth layer with a perfectly mirror surface can be obtained at a substrate temperature of 720°C or higher, but (011) and (I
It was found that only a non-specular growth layer could be obtained on the "N) B-plane"2. Furthermore, for the substrate on the (Ill)B side, the first
As shown in the figure, during etching with a mixture of sulfuric acid, hydrogen peroxide, and water before growth, sag is created around the substrate, resulting in an off-face that is continuously tilted from the (Ill)B surface. formed and underwent similar growth. At this time, the normal (00
At the same time, growth was also performed on a 1,) plane substrate, and the two were compared.

第2図に示すように、GaAs基板31」二に21zm
厚のA l o 、 ? G a o 、 3A 8層
32を成長し、その上に80人厚のGaAs量子井戸層
33を形成し、更に1000人のAI。、7Gao、s
AsAs層成4成長量子井戸層33の発光特性よりAI
−o 、 ? G a o 、 3 A 8層32の結
晶性を評価した。
As shown in FIG.
Thick Al o, ? G a o , 3A 8 layers 32 are grown, a GaAs quantum well layer 33 with a thickness of 80 layers is formed thereon, and an AI layer of 1000 layers is further formed. ,7Gao,s
AI
-o,? The crystallinity of the G ao, 3 A 8 layer 32 was evaluated.

GaAs基板31の面方位の(11,1)B面からの傾
き角度が0.1〜1度の範囲では完全に鏡面の成長表面
ポモロジ−が得られたが、この範囲をはずれると大小い
ずれ側にずれても非鏡面しか得られなかった。514.
5nmのArレーザ光で励起して量子井戸層33からの
室温におけろフォトルミネッセンスの効率を測定したと
ころ、第3図に示すように、傾き角度が01〜1度の範
囲ではそれ以外の部分に比べて1桁以上高い発光効率が
得られ、この部分の成長層が高い品質を有ずろことが確
認された。同時に(001,)面基板」二に成長を行い
、鏡面の成長が得られたが、量子井戸層33からの発光
強度は、(III)面上の非鏡面の成長層と同一オーダ
ーであり、(III)B面からの傾いた面」二の鏡面成
長部分の方が格段に優れていることがわかった。(11
,1)B面」―の非鏡面成長部の発光効率が比較的高く
、(001)面」二と同程度であるのは、非鏡面の原因
が局部的な表面欠陥の形成によるものであって、表面欠
陥以外の部分は完全鏡面であるため、この部分での発光
が強いことに起因している。
A completely mirror-like growth surface pomology was obtained when the plane orientation of the GaAs substrate 31 was tilted from the (11,1)B plane by 0.1 to 1 degree; Only a non-mirror surface could be obtained even if the surface was shifted. 514.
When the efficiency of photoluminescence from the quantum well layer 33 was measured at room temperature by excitation with a 5 nm Ar laser beam, as shown in Fig. 3, when the tilt angle was in the range of 01 to 1 degree, the photoluminescence in other parts was A luminous efficiency that was one order of magnitude higher than that of the previous one was obtained, and it was confirmed that the grown layer in this part was of high quality. At the same time, growth was performed on the (001,) plane substrate, and mirror growth was obtained, but the emission intensity from the quantum well layer 33 was on the same order as the non-specular growth layer on the (III) plane. It was found that the second mirror-like growth part of "(III) Plane tilted from plane B" was much better. (11
The reason why the luminous efficiency of the non-specular growth part of the (001) plane "2" is relatively high is that the non-specular growth is due to the formation of local surface defects. This is due to the fact that the part other than the surface defect is a completely mirrored surface, so the light emission is strong in this part.

以」二のように、(III)8面から0.1〜1度傾い
た而」二に高品質の成長が可能であることを見出したが
、1=れを形成したJli板の周辺部にはその方向に依
存せず、高品質のエビタギンヤル成長が可能であった。
As shown in Figure 2, we found that high-quality growth was possible on planes tilted 0.1 to 1 degree from the 8-plane (III). It was possible to grow high-quality Evitaginyal without depending on its direction.

このことから傾むかせる方向にはよらないことがわかっ
た。
This shows that it does not depend on the direction in which it is tilted.

本発明は、」−記の発見に基づき、面方位が(III)
8面から0.1〜1度傾いた基板」二にMBE成長した
エピタキシャル層を用いて、高性能のデバイスを得るも
のである。
The present invention is based on the discovery mentioned above, and the surface orientation is (III).
A high-performance device is obtained by using an epitaxial layer grown by MBE on a substrate tilted by 0.1 to 1 degree from the 8th plane.

〈実施例〉 以下、本発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

本発明の一実施例であるGRIN−SCI((Gr−a
ded Index 5eparate Confin
ement l1eterostruc−ture)型
半導体レーザの断面構成図を第4図に示す。(+11)
8面から(110)面に向かって0.5度傾むかせたn
−GaAs基板(Si:1018cm″−3ドープ)1
上に、n−GaAsバッファ層2(0,5μm)、n−
八!。7Gao、:+Asクラッド層3(1μm)、ア
ンドープΔ、9xGa+−xAs光ガイド層4(0,2
71m)、アンドープG aA sfi子井戸層5(7
0人)、アンドープAl1xGa+−xAsAsイガ1
1層6.2μm)、p−A ji:o、tG ao、s
Asクラッド層7 (I tt m)、p−GaAsキ
ャップ層8(0,5μm)、n−Al−o−5Gao、
5As電流閉じ込め層9を基板温度720℃において連
続的にMBE成長した。光ガイド層4及び6はクラッド
層3及び7から量子井戸層5の端に向かってへ!混晶比
が0.7−0.2と2乗分布をとるよに変化させている
。成長後、フッ化水素(HF)により電流閉じ込め層9
を5μm幅のストライプ状に選択的に除去し、電流スト
ライプ20を形成し、n側にAuGe−Ni層+1.p
側にAuZn層IOを蒸着・アロイしてオーミック電極
を形成した。このレーザは250μmキャビティ長の場
合、室温での閾値電流40mAで発振した。比較のため
同時に従来の(100) n−GaAs基板」−に同一
の素子構造を製作したところ、閾値電流【J6−7= OmAであり、本発明により半導体レーザの閾値電流が
大幅に低減できた。
GRIN-SCI ((Gr-a
ded Index 5 separate Confin
FIG. 4 shows a cross-sectional configuration diagram of a semiconductor laser of the element l1eterostruc-ture type. (+11)
n tilted 0.5 degrees from the 8th plane toward the (110) plane
-GaAs substrate (Si: 1018cm''-3 doped) 1
On top, n-GaAs buffer layer 2 (0.5 μm), n-
Eight! . 7Gao, :+As cladding layer 3 (1 μm), undoped Δ, 9xGa+-xAs optical guide layer 4 (0,2
71 m), undoped GaA SFI well layer 5 (71 m),
0 people), undoped Al1xGa+-xAsAsIga1
1 layer 6.2 μm), p-A ji:o, tG ao,s
As cladding layer 7 (I tt m), p-GaAs cap layer 8 (0.5 μm), n-Al-o-5Gao,
A 5As current confinement layer 9 was continuously grown by MBE at a substrate temperature of 720°C. The light guide layers 4 and 6 extend from the cladding layers 3 and 7 towards the edge of the quantum well layer 5! The mixed crystal ratio is changed so as to have a square distribution of 0.7-0.2. After growth, a current confinement layer 9 is formed using hydrogen fluoride (HF).
is selectively removed in a stripe shape with a width of 5 μm to form a current stripe 20, and an AuGe-Ni layer +1. p
An ohmic electrode was formed by depositing and alloying an AuZn layer IO on the side. This laser oscillated with a threshold current of 40 mA at room temperature with a cavity length of 250 μm. For comparison, an identical device structure was also fabricated on a conventional (100) n-GaAs substrate, and the threshold current was [J6-7 = OmA, indicating that the threshold current of the semiconductor laser could be significantly reduced by the present invention. .

以上、本発明の実施例としてAflGaAs系半導体レ
ーザを例にとって説明したが、本発明の基礎となる現象
はm−v族化合物半導体をMBE成長する際の本質的な
成長機構に基づいているので、MBE成長により作成し
た他のm−v族半導体デバイス全般に適用可能である。
The embodiments of the present invention have been described above using an AflGaAs semiconductor laser as an example, but the phenomenon underlying the present invention is based on the essential growth mechanism when growing an m-v group compound semiconductor by MBE. It is applicable to all other m-v group semiconductor devices produced by MBE growth.

例えば、GaAs基板上に作製したGaAs/A4Ga
As、2次元電子ガス電界効果トランジスタやInP基
板」二のInA4As/InGaAsレーザ等がある。
For example, GaAs/A4Ga fabricated on a GaAs substrate
There are two-dimensional electron gas field effect transistors, InP substrates, InA4As/InGaAs lasers, etc.

〈発明の効果〉 以」二より明らかなように、本発明によれば、エピタキ
シャル層を高品質化でき、閾値電流が小さい等の優れた
特性を有する半導体装置が得られる。
<Effects of the Invention> As is clear from the following, according to the present invention, it is possible to improve the quality of the epitaxial layer and to obtain a semiconductor device having excellent characteristics such as a low threshold current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエピタキシャル層の基板の面方位依存性を調べ
るために用いたGaAs基板の断面模式図である。第2
図はエピタキシャル層の品質を評価するために成長した
構造の断面模式図である。第3図は量子井戸層からのフ
ォトルミネッセンス発光効率の(III)B而からの傾
き角度の依存性を示す説明図である。第4図は本発明の
一実施例として製作した半導体レーザの断面模式図であ
る。 1 ・・ n−GaAs基板、2・−n−GaAsバッ
ファ層、3”’ n  AJLo7Gao、3Asクラ
ッド層、4・・・A 、exG al −XA S光ガ
イド層、5−GaA5i子井戸層、6−A fly、G
a、−xΔS光ガイガ11層、、、p4Z+1−7Ga
o、3Asクラッド層、8・・p−GaASキャップ層
、9・=n−Al。5Gao、sAS電流閉じ込め層、
10.11・・・オーミック電極、20・・電流ストラ
イプ、3l−GaAs基板、32’=A(2o、vGa
o、Js層、33・・・量子井戸層。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士 前出 停他2名 第10 (III) B ↑ 第2図 第31¥1 第4図
FIG. 1 is a schematic cross-sectional view of a GaAs substrate used to investigate the dependence of the epitaxial layer on the plane orientation of the substrate. Second
The figure is a schematic cross-sectional view of a structure grown to evaluate the quality of the epitaxial layer. FIG. 3 is an explanatory diagram showing the dependence of the photoluminescence emission efficiency from the quantum well layer on the inclination angle from (III)B. FIG. 4 is a schematic cross-sectional view of a semiconductor laser manufactured as an example of the present invention. 1...n-GaAs substrate, 2-n-GaAs buffer layer, 3"'n AJLo7Gao, 3As cladding layer, 4...A, exGal-XAS optical guide layer, 5-GaA5i well layer, 6 -A fly, G
a, -xΔS optical Gaiga 11 layer, , p4Z+1-7Ga
o, 3As cladding layer, 8..p-GaAS cap layer, 9.=n-Al. 5Gao, sAS current confinement layer,
10.11...Ohmic electrode, 20...Current stripe, 3l-GaAs substrate, 32'=A(2o, vGa
o, Js layer, 33... quantum well layer. Patent applicant: Sharp Corporation Agent
Patent attorney Suzu and two others No. 10 (III) B ↑ Figure 2 Figure 31 ¥1 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)分子線エピタキシー法により、単結晶基板上にエ
ピタキシャル層を形成して成る半導体装置において、前
記単結晶基板の面方位が(111)B面より0.1〜1
度の範囲で傾いていることを特徴とする半導体装置。
(1) In a semiconductor device in which an epitaxial layer is formed on a single crystal substrate by molecular beam epitaxy, the plane orientation of the single crystal substrate is 0.1 to 1 from the (111)B plane.
A semiconductor device characterized by being tilted within a range of degrees.
(2)前記単結晶基板がGaAs、GaSb、InAs
、InP、GaP、InSbのいずれかから成ることを
特徴とする特許請求の範囲第1項に記載の半導体装置。
(2) The single crystal substrate is made of GaAs, GaSb, InAs
, InP, GaP, or InSb.
(3)前記エピタキシャル層がIII−V族化合物半導体
であることを特徴とする特許請求の範囲第1項に記載の
半導体装置。
(3) The semiconductor device according to claim 1, wherein the epitaxial layer is a III-V group compound semiconductor.
JP60229382A 1985-10-14 1985-10-14 Semiconductor device Granted JPS6288318A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60229382A JPS6288318A (en) 1985-10-14 1985-10-14 Semiconductor device
GB8706194A GB2202371B (en) 1985-10-14 1987-03-16 Semiconductor device
DE19873709134 DE3709134A1 (en) 1985-10-14 1987-03-20 SEMICONDUCTOR COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60229382A JPS6288318A (en) 1985-10-14 1985-10-14 Semiconductor device
GB8706194A GB2202371B (en) 1985-10-14 1987-03-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6288318A true JPS6288318A (en) 1987-04-22
JPH0473610B2 JPH0473610B2 (en) 1992-11-24

Family

ID=39345493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229382A Granted JPS6288318A (en) 1985-10-14 1985-10-14 Semiconductor device

Country Status (3)

Country Link
JP (1) JPS6288318A (en)
DE (1) DE3709134A1 (en)
GB (1) GB2202371B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431410A (en) * 1987-07-27 1989-02-01 Sharp Kk Semiconductor device
JPH01128423A (en) * 1987-11-12 1989-05-22 Sharp Corp Semiconductor device
JPH01154513A (en) * 1987-12-11 1989-06-16 Sony Corp Epitaxial growth method
US5647917A (en) * 1994-09-08 1997-07-15 Sumitomo Electric Industries, Ltd. Epitaxy for growing compound semiconductors and an InP substrate for epitaxial growth
JP2013117228A (en) * 2011-12-02 2013-06-13 Bosch Mahle Turbo Systems Gmbh & Co Kg Supercharger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039515A (en) * 1989-06-07 1991-01-17 Sharp Corp Semiconductor device
CN100453690C (en) * 2006-07-21 2009-01-21 哈尔滨工业大学 Molecular beam epitaxy process of growing GaAs-base InSb film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325314A (en) * 1961-10-27 1967-06-13 Siemens Ag Semi-conductor product and method for making same
US3379584A (en) * 1964-09-04 1968-04-23 Texas Instruments Inc Semiconductor wafer with at least one epitaxial layer and methods of making same
US3476592A (en) * 1966-01-14 1969-11-04 Ibm Method for producing improved epitaxial films
GB8518353D0 (en) * 1985-07-20 1985-08-29 Plessey Co Plc Heterostructure device
EP0214610B1 (en) * 1985-09-03 1990-12-05 Daido Tokushuko Kabushiki Kaisha Epitaxial gallium arsenide semiconductor wafer and method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431410A (en) * 1987-07-27 1989-02-01 Sharp Kk Semiconductor device
JPH01128423A (en) * 1987-11-12 1989-05-22 Sharp Corp Semiconductor device
JPH01154513A (en) * 1987-12-11 1989-06-16 Sony Corp Epitaxial growth method
US5647917A (en) * 1994-09-08 1997-07-15 Sumitomo Electric Industries, Ltd. Epitaxy for growing compound semiconductors and an InP substrate for epitaxial growth
JP2013117228A (en) * 2011-12-02 2013-06-13 Bosch Mahle Turbo Systems Gmbh & Co Kg Supercharger

Also Published As

Publication number Publication date
GB2202371B (en) 1991-03-20
GB2202371A (en) 1988-09-21
JPH0473610B2 (en) 1992-11-24
DE3709134A1 (en) 1988-09-29
GB8706194D0 (en) 1987-04-23

Similar Documents

Publication Publication Date Title
JPH0621575A (en) Manufacture of semiconductor device of buried heterostructure
JP2001093837A (en) Structure of semiconductor thin film and manufacturing method therefor
US4899349A (en) Semiconductor laser device
US4894836A (en) Semiconductor device
JPS6288318A (en) Semiconductor device
US5027169A (en) Semiconductor device with substrate misorientation
US4887274A (en) Deterioration-resistant superlattice semiconductor laser device
US4716129A (en) Method for the production of semiconductor devices
Araki et al. Fabrication of InGaAs quantum wires and dots by selective molecular beam epitaxial growth on various mesa-patterned (001) InP substrates
JPH10294524A (en) Semiconductor laser
JP2002246695A (en) Method for manufacturing semiconductor device using porous substrate, and semiconductor device
JP4350227B2 (en) Semiconductor crystal growth method
JPH088354B2 (en) Heterojunction field effect transistor
JPH06104534A (en) Semiconductor laser element
JP3169064B2 (en) Fabrication method of semiconductor three-dimensional quantum structure
Ono et al. Study of Selective MBE Growth on Patterned (001) InP Substrates Toward Realization of< 100>-Oriented InGaAs Ridge Quantum Wires
JPH0141269B2 (en)
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it
JPS62179790A (en) Semiconductor laser
JPH09260787A (en) Inp-based semiconductor element
JPH0669599A (en) Semiconductor laser diode and its manufacture
JP3247424B2 (en) Gas etching method for group III-V compound semiconductor
Fujikura et al. Extra-Side-Facet Control in Selective Molecular Beam Epitaxial Growth of InGaAs Ridge Quantum Wires for Improvement of Wire Uniformity
JPS62245691A (en) Manufacure of semiconductor laser
JP2002246279A (en) Semiconductor substrate, its producing method and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees