JPS628702B2 - - Google Patents

Info

Publication number
JPS628702B2
JPS628702B2 JP2993878A JP2993878A JPS628702B2 JP S628702 B2 JPS628702 B2 JP S628702B2 JP 2993878 A JP2993878 A JP 2993878A JP 2993878 A JP2993878 A JP 2993878A JP S628702 B2 JPS628702 B2 JP S628702B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
bypass circuit
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2993878A
Other languages
Japanese (ja)
Other versions
JPS54123757A (en
Inventor
Seigo Myamoto
Yasuo Minoshima
Norimoto Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2993878A priority Critical patent/JPS54123757A/en
Publication of JPS54123757A publication Critical patent/JPS54123757A/en
Publication of JPS628702B2 publication Critical patent/JPS628702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

【発明の詳細な説明】 本発明は広範囲な温度条件下で連続的に運転さ
れる空気調和装置に係わり、特に高温外気条件下
でサイクル構成機器への過負荷を防止するための
機構を備えた前記空気調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that operates continuously under a wide range of temperature conditions, and in particular is equipped with a mechanism for preventing overload on cycle components under high temperature outside air conditions. The present invention relates to the air conditioner.

近年、居住性のより向上に対する要請が強くな
り、特に酷暑地用冷房装置あるいは車両に使用さ
れる、例えば特開昭50―54948号公報に示された
空冷式冷房装置において、外気温度が50〜60℃ま
で上昇しても冷房装置を連続的に運転したいとい
う要望が強くなつてきた。
In recent years, there has been a strong demand for improved livability, and air-cooling systems used in extremely hot regions or vehicles, such as the air-cooled cooling system disclosed in Japanese Patent Application Laid-Open No. 50-54948, have become increasingly popular when the outside temperature is 50-50°C. There is a growing demand for continuous operation of air conditioners even when the temperature rises to 60℃.

これに対して、例えば、圧縮機、凝縮器、膨脹
手段、蒸発器を順次連結した従来の空気調和装置
では、外気温度が異常に上昇した場合には凝縮圧
力あるいは温度が異常に上昇し、圧縮機バルブの
破壊、冷媒の劣化、圧縮機モータコイルの絶縁破
壊など、空気調和装置の運転上致命定な悪影響が
生じ、前述の要請にこたえることは困難であつ
た。したがつて、例えば、冷媒R―22を使用した
前記空気調和装置では、運転可能な外気最高温度
は45℃程度とされ、これ以上になると空気調和装
置の連続運転は不可能であり、運転を停止するの
が常であつた。空気調和装置の原理から言えば、
このような異常高温下でも空気調和装置を運転可
能とするためには、凝縮器の放熱面積を十分大き
くとれば良いわけであるが、このような異常高温
下での運転頻度を考えた場合、装置の設置スペー
スあるいは経済性等々の面から現実的な解決策と
は言えない。
On the other hand, for example, in conventional air conditioners in which a compressor, condenser, expansion means, and evaporator are connected in sequence, when the outside air temperature rises abnormally, the condensing pressure or temperature rises abnormally, causing the compression It has been difficult to meet the above-mentioned requirements because of fatal adverse effects on the operation of the air conditioner, such as destruction of air conditioner valves, deterioration of the refrigerant, and insulation breakdown of the compressor motor coil. Therefore, for example, in the above-mentioned air conditioner using refrigerant R-22, the maximum outside air temperature at which it can be operated is approximately 45°C, and if the temperature exceeds this, continuous operation of the air conditioner is impossible and operation must be stopped. It used to stop. From the principle of air conditioning equipment,
In order to enable the air conditioner to operate even under such abnormally high temperatures, it is sufficient to make the heat dissipation area of the condenser sufficiently large, but when considering the frequency of operation under such abnormally high temperatures, This cannot be said to be a realistic solution in terms of equipment installation space or economic efficiency.

そこで、この要求にこたえるため、異常高温下
で使用される頻度を勘案した場合、冷房能力はあ
る程度犠牲にしても空気調和装置の運転を停止し
ない方が、構成機器の耐久性維持及び居住性向上
の面から有利であると考えられ、第1図に示すよ
うな構成になる空気調和装置謂ゆる液バイパス方
式による圧縮機過負荷防止機構を備えたものが前
記空気調和装置用として提案されている。
Therefore, in order to meet this demand, considering the frequency of use under abnormally high temperatures, it is better to maintain the durability of the component equipment and improve livability by not stopping the operation of the air conditioner, even if it sacrifices some cooling capacity. An air conditioner equipped with a compressor overload prevention mechanism using a so-called liquid bypass system has been proposed for the air conditioner as shown in FIG. 1. .

同図に示した空気調和装置は、特に高温外気条
件下でも連続して運転可能としたもので、圧縮機
1、空冷凝縮器2、主回路膨脹手段3、蒸発器
4、を順次連結してなる通常の空気調和装置(主
回路Aと称す)と、前記蒸発器4を側路するよ
う、前記凝縮器2の出口から圧縮機1に主回路A
の冷媒の一部をバイパスする回路(第1のバイパ
ス回路Bと称す)とから構成されている。前記バ
イパス回路Bには、同回路の開閉手段5、同回路
膨脹手段6、冷媒熱交換器7が配設され、前記開
閉手段5は、例えば、空気調和装置の凝縮圧力に
応じて開閉し、同圧力の大きさに応じて流量を変
更可能とする圧力制御弁が如きものであり、また
冷媒熱交換器7は、前記膨脹手段6により断続的
に膨脹され低温低圧となつたバイパス冷媒と凝縮
器2出口の高温高圧冷媒とが熱交換関係におかれ
るような構造となつている。
The air conditioner shown in the figure is capable of continuous operation even under particularly high-temperature outside air conditions, and consists of a compressor 1, an air-cooled condenser 2, a main circuit expansion means 3, and an evaporator 4 connected in sequence. The main circuit A is connected from the outlet of the condenser 2 to the compressor 1 so as to bypass the evaporator 4.
(referred to as a first bypass circuit B). The bypass circuit B is provided with a circuit opening/closing means 5, a circuit expansion means 6, and a refrigerant heat exchanger 7, and the opening/closing means 5 opens and closes according to the condensing pressure of the air conditioner, for example. The refrigerant heat exchanger 7 condenses the bypass refrigerant which has been intermittently expanded by the expansion means 6 to a low temperature and low pressure. The structure is such that the high-temperature, high-pressure refrigerant at the outlet of the container 2 is placed in a heat exchange relationship.

このような空気調和装置において、通常の温度
条件下で空気調和装置が運転される場合、周知の
機能により蒸発器4で寒冷を発生し、所望の冷房
を行なうわけで、もちろん第1のバイパス回路は
閉塞されている。しかしながら、前記したように
凝縮器2を冷却する外気温度が異常に上昇してい
くと、同器2での放熱が不十分となる。このため
空気調和装置の自己制御性により、外気との温度
差がより大きくなるよう凝縮温度、すなわち、凝
縮圧力が上昇することになる。この圧力(圧縮機
1の吐出圧力に略等しい)が圧縮機の耐久上定め
られた制限値以上となると前記開閉手段5が開放
され、主回路Aの冷媒の一部がバイパス回路Bに
流れる。この冷媒は同回路の膨脹手段6により低
温低圧の冷媒に膨脹せられ、冷媒熱交換器7に送
られる。ここで主回路Aの高温高圧冷媒を冷却し
自身は加熱されて圧縮機1に吸引される。
In such an air conditioner, when the air conditioner is operated under normal temperature conditions, cold is generated in the evaporator 4 by a well-known function to perform the desired cooling, and of course the first bypass circuit is occluded. However, as described above, if the temperature of the outside air used to cool the condenser 2 rises abnormally, heat dissipation in the condenser 2 becomes insufficient. Therefore, due to the self-controllability of the air conditioner, the condensing temperature, that is, the condensing pressure increases so that the temperature difference with the outside air becomes larger. When this pressure (approximately equal to the discharge pressure of the compressor 1) exceeds a limit value determined for the durability of the compressor, the opening/closing means 5 is opened and a portion of the refrigerant in the main circuit A flows into the bypass circuit B. This refrigerant is expanded into a low-temperature, low-pressure refrigerant by an expansion means 6 in the same circuit, and sent to a refrigerant heat exchanger 7. Here, the high-temperature, high-pressure refrigerant in the main circuit A is cooled, and the refrigerant itself is heated and sucked into the compressor 1.

この時主回路Aの蒸発器4に供給される冷媒流
量が減少するため同器4での吸熱量が減少し、凝
縮器2での必要放熱量が減少することとなる。こ
れに加えて、冷媒熱交換器7においてバイパス回
路Bの低温冷媒により主回路Aの高温冷媒が冷却
されるため凝縮液の温度が低くなることになる。
At this time, the flow rate of refrigerant supplied to the evaporator 4 of the main circuit A decreases, so the amount of heat absorbed in the evaporator 4 decreases, and the required amount of heat radiation in the condenser 2 decreases. In addition, since the high temperature refrigerant in the main circuit A is cooled by the low temperature refrigerant in the bypass circuit B in the refrigerant heat exchanger 7, the temperature of the condensate becomes low.

これら2つの作用により外気温度が異常に上昇
しても、凝縮圧力(温度)を所定の制限値以下に
抑えることができる。さらに外気温度が上昇して
いくと回路開閉手段5の働きによりバイパス回路
Bに流れる流量が増し、それに応じて蒸発器4に
送られる冷媒は増々減少し、凝縮圧力は制限値を
越えることはない。
Due to these two effects, even if the outside air temperature rises abnormally, the condensing pressure (temperature) can be kept below a predetermined limit value. As the outside air temperature further rises, the flow rate flowing into the bypass circuit B increases due to the action of the circuit opening/closing means 5, and the amount of refrigerant sent to the evaporator 4 decreases accordingly, so that the condensing pressure does not exceed the limit value. .

このようにして、従来の制限温度以上の外気条
件に対しても、空気調和装置は連続して運転がで
きるようになる。
In this way, the air conditioner can operate continuously even under outside air conditions that are higher than the conventional temperature limit.

ところで、この種の空気調和装置に於ける問題
点のひとつに、バイパス回路Bが開放された時圧
縮機1の吐出ガス温度が異常に上昇する場合があ
ることである。この現象を第2図を用いて説明す
ると次の通りである。
Incidentally, one of the problems with this type of air conditioner is that when the bypass circuit B is opened, the temperature of the gas discharged from the compressor 1 may rise abnormally. This phenomenon will be explained using FIG. 2 as follows.

同図は前述第1図に示した空気調和装置におい
て、凝縮器2の冷却空気温度に対する圧縮機1の
吐出圧力と同ガス温度の変化を蒸発器4の冷房負
荷をパラメータに示したものである。図示のよう
に圧縮機1の吐出圧力は冷房負荷の大小に拘わら
ず制限値以下に制御されているのに対して、冷房
負荷が上昇するに伴い圧縮機1の吐出ガス温度が
制限値以上となる領域が存在することである。
This figure shows the changes in the discharge pressure of the compressor 1 and the gas temperature with respect to the cooling air temperature of the condenser 2 in the air conditioner shown in FIG. 1 above, using the cooling load of the evaporator 4 as a parameter. . As shown in the figure, the discharge pressure of the compressor 1 is controlled to be below the limit value regardless of the magnitude of the cooling load, but as the cooling load increases, the discharge gas temperature of the compressor 1 is controlled to be above the limit value. This means that there exists an area where

一般に冷媒R―22を使用した空気調和装置の場
合、吐出ガス温度の制限値は120〜130℃とされて
いる。これを越えると、冷媒の劣化、圧縮機潤滑
油の劣化あるいはモータ内蔵型の圧縮機の場合に
はモータコイル温度の異常上昇等々が生起して、
空気調和装置運転上重大な悪影響をもたらす。
Generally, in the case of an air conditioner using refrigerant R-22, the discharge gas temperature limit value is 120 to 130°C. If this value is exceeded, deterioration of the refrigerant, deterioration of the compressor lubricating oil, or in the case of a compressor with a built-in motor, an abnormal rise in the motor coil temperature, etc. will occur.
Causes serious adverse effects on air conditioner operation.

本発明は上記の点に鑑みてなされたもので、そ
の目的とするところは、上記液バイパス方式によ
る圧縮機過負荷防止機構を備えた空気調和装置に
おいて、バイパス回路が開放された時の圧縮機吐
出ガス温度の上昇をおさえ、より耐久性の優れた
前記空気調和装置を提供するにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide an air conditioner equipped with a compressor overload prevention mechanism using the liquid bypass method, in which the compressor is compressed when the bypass circuit is opened. It is an object of the present invention to provide the air conditioner which suppresses a rise in discharge gas temperature and has more excellent durability.

本発明は前記した空気調和装置の持つ欠点は、
蒸発器4に流入する冷媒量の減少にともなう同器
4出口の冷媒過熱度の上昇、バイパス流量が小な
る時冷媒熱交換器7におけるバイパス回路低圧側
冷媒の過熱度上昇とによる圧縮機1の吸入冷媒温
度の上昇に起因することを実験的に確認し、この
吸入冷媒温度の上昇を防止する方法として、湿り
度の高い低温冷媒を圧縮機1に吸引させ、これに
よつて吐出ガス温度の上昇を防止したものであ
る。
The present invention has the following drawbacks of the above-mentioned air conditioner:
The degree of superheating of the refrigerant at the outlet of the evaporator 4 increases as the amount of refrigerant flowing into the evaporator 4 decreases, and the degree of superheating of the refrigerant on the low-pressure side of the bypass circuit in the refrigerant heat exchanger 7 increases when the bypass flow rate decreases. We have experimentally confirmed that this is caused by an increase in the suction refrigerant temperature, and as a way to prevent this increase in suction refrigerant temperature, we have the compressor 1 suck in low-temperature refrigerant with high humidity, thereby reducing the discharge gas temperature. This prevents the increase.

この点さらに詳細に説明すると次の通りであ
る。第1図にも示したように、バイパス回路Bが
開放された状態では圧縮機1は主回路Aの蒸発器
4で冷却作用を発揮して吸熱した冷媒と、バイパ
ス回路Bの冷媒熱交換器7で主回路Aの高温冷媒
から吸熱した冷媒とが合流混合した状態の冷媒を
吸引することとなる。バイパス回路Bが開放され
た状態では、前述のように蒸発器4に流入する冷
媒量は蒸発器4の冷房負荷に対して減少するた
め、同器4の出口では冷媒過熱度は大きくなる。
冷房負荷が大きくなればなる程この過熱の程度は
増大する。
This point will be explained in more detail as follows. As shown in FIG. 1, when the bypass circuit B is open, the compressor 1 transfers the refrigerant that exerts a cooling effect and absorbs heat in the evaporator 4 of the main circuit A and the refrigerant heat exchanger of the bypass circuit B. At step 7, the refrigerant in which the refrigerant that has absorbed heat from the high-temperature refrigerant in the main circuit A is merged and mixed is sucked. When the bypass circuit B is open, the amount of refrigerant flowing into the evaporator 4 decreases relative to the cooling load of the evaporator 4 as described above, so the degree of superheating of the refrigerant at the outlet of the evaporator 4 increases.
The degree of overheating increases as the cooling load increases.

一方、冷媒熱交換器7での熱交換量は、空気調
和装置が運転される最高の外気温度の時必要なバ
イパス量が流れ、かつ圧縮機1に液戻り現象(湿
り度の高い冷媒が圧縮機1に吸引される現象)が
生じない程度の値となるように、同熱交換器7の
伝熱面積を決定する必要がある。何故ならば、周
知のように圧縮機への液戻りは、圧縮機潤滑油の
稀釈、液圧縮による同機バルブの破壊等圧縮機の
運転上不都合な影響を誘起するもので、この現象
の回避は空気調和装置設計上必須の要件である。
なお、実際には冷凍熱交換器7の出口の冷媒は、
蒸発器4出口の過熱度との関係から若干湿り気味
の状態となることも許される場合がある。
On the other hand, the amount of heat exchanged in the refrigerant heat exchanger 7 is such that the required bypass amount flows when the air conditioner is operated at the highest outside temperature, and the liquid returns to the compressor 1 (refrigerant with high humidity is compressed). It is necessary to determine the heat transfer area of the heat exchanger 7 so that the heat exchanger 7 has a value that does not cause the phenomenon of suction into the heat exchanger 1. This is because, as is well known, the return of liquid to the compressor causes inconvenient effects on the operation of the compressor, such as dilution of the compressor lubricating oil and destruction of the valves of the compressor due to liquid compression.It is important to avoid this phenomenon. This is an essential requirement for air conditioner design.
In addition, in reality, the refrigerant at the outlet of the refrigeration heat exchanger 7 is
Depending on the degree of superheat at the outlet of the evaporator 4, a slightly damp state may be allowed.

したがつて、従来の制限外気温度よりも高い
が、予測されうる最高外気温度以下であるような
運転状況では、バイパス回路Bに流れる流量は少
なく、このため冷媒熱交換器7の低圧側出口冷媒
の過熱度はかなり高くなつている。このように、
蒸発器4の出口における冷媒のエンタルピーより
も前記冷媒熱交換器7の低圧側出口における冷媒
のエンタルピーの方が高い領域では、圧縮機1の
吸入冷媒温度は、蒸発器4の出口冷媒温度よりも
上昇し、これが吐出ガス温度の上昇を誘起するこ
とになる。
Therefore, in an operating situation where the outside temperature is higher than the conventional limit outside temperature but below the maximum outside temperature that can be predicted, the flow rate flowing into the bypass circuit B is small, and therefore the refrigerant at the low pressure side outlet of the refrigerant heat exchanger 7 is The degree of superheating has become quite high. in this way,
In a region where the enthalpy of the refrigerant at the low-pressure side outlet of the refrigerant heat exchanger 7 is higher than the enthalpy of the refrigerant at the outlet of the evaporator 4, the refrigerant temperature sucked into the compressor 1 is lower than the refrigerant temperature at the outlet of the evaporator 4. This will induce an increase in the discharge gas temperature.

この吐出ガス温度の上昇を防止するためには、
何等かの方法により圧縮機1の吸入冷媒温度を低
下させる必要がある。
In order to prevent this discharge gas temperature from rising,
It is necessary to lower the temperature of the refrigerant sucked into the compressor 1 by some method.

まず考えられるのは、蒸発器4の出口冷媒の温
度を低くすることである。このためには、蒸発器
4の冷房負荷に見合う以上の冷媒を蒸発器4に供
給してやる必要があるが、これは本方式の過負荷
防止機能を損うものである。つまり、このように
すると、蒸発器4での吸熱量が増加し、凝縮器2
での必要放熱量が増加することになり、凝縮圧力
を制限値以下に保持することは困難となる。
The first consideration is to lower the temperature of the refrigerant at the outlet of the evaporator 4. For this purpose, it is necessary to supply the evaporator 4 with more refrigerant than the cooling load of the evaporator 4, but this impairs the overload prevention function of this system. In other words, by doing this, the amount of heat absorbed by the evaporator 4 increases, and the amount of heat absorbed by the condenser 2 increases.
This increases the amount of heat dissipation required, making it difficult to maintain the condensing pressure below the limit value.

また、もうひとつの方法としては、バイパス回
路Bの開閉手段を吐出ガス温度の変化に応じて開
度が変更できるものとすることである。この方法
は第1図に示した圧力変化に応じて流量を変更す
る場合に比べて、ここで問題としている外気条件
領域でバイパス流量をさらに増加することを意味
し、冷房能力の低下する度合がさらに大きくなる
こと、また最大外気温度時には逆にバイパス流量
が減少し、温度的には制限値以下に保持できるも
のの圧力的に制限値を越える可能性があること、
さらに温度検知方式による制御は一般に応答性が
緩慢であつて、圧力変化に十分対応できないなど
の問題がある。
Another method is to make the opening/closing means of the bypass circuit B capable of changing the degree of opening according to changes in the temperature of the discharged gas. Compared to the case of changing the flow rate according to the pressure change shown in Figure 1, this method means that the bypass flow rate is further increased in the outside air condition region in question, and the degree of decrease in cooling capacity is reduced. In addition, the bypass flow rate decreases at the maximum outside temperature, and although the temperature can be maintained below the limit value, the pressure limit may be exceeded.
Furthermore, control based on the temperature detection method generally has a slow response and has problems such as not being able to adequately respond to pressure changes.

したがつて、過大な冷房負荷となる頻度を勘案
した場合、第1図の方式に、必要に応じて蒸発器
4出口冷媒のエンタルピーより小なるエンタルピ
ーの冷媒を圧縮機の吸入冷媒に吸引させる、すな
わち、吸熱を伴なわない、あるいは湿り度の高い
低温冷媒を圧縮機の低圧配管に流入させて吸入ガ
ス温度を下げ、これによつて吐出ガス温度の上昇
を防止する手段を構ずるのが最も好ましい。
Therefore, when taking into account the frequency of excessive cooling loads, the system shown in Fig. 1 may include, if necessary, sucking refrigerant with an enthalpy smaller than the enthalpy of the refrigerant at the 4th outlet of the evaporator into the refrigerant sucked into the compressor. In other words, the best solution is to introduce a low-temperature refrigerant that does not absorb heat or has high humidity into the low-pressure piping of the compressor to lower the intake gas temperature, thereby preventing the discharge gas temperature from rising. preferable.

以下、第3図に示す具体的な実施例を用いて本
発明をより詳細に説明する。
Hereinafter, the present invention will be explained in more detail using a specific embodiment shown in FIG.

まず、第3図の実施例について説明すると、圧
縮機1、空冷凝縮器2、膨脹手段3、蒸発器4を
順次連結して構成された主回路A、その途中に回
路開閉手段5、同回路膨脹手段6、冷媒熱交換器
7を介在し、前記主回路Aの蒸発器4を側路する
ごとく、前記凝縮器2出口から前記圧縮機1入口
に主回路Aの冷媒の一部をバイパスする第1のバ
イパス回路B、該回路Bの膨脹手段6と冷媒熱交
換器7の間から同器7を側路するように第2のバ
イパス回路Cが並設されている。前記第2のバイ
パス回路Cの途中には、前記圧縮機1の吐出ガス
温度の変化を検知して作動せられる回路開閉手段
11が配設されている。この開閉手段11は、前
記膨脹手段6の出口と冷媒熱交換器入口を結ぶ配
管8に分岐接合される流体導入部11aと、その
先端が冷媒熱交換器7の低圧側出口に接続される
流体導出部11bと、これら両者11a,11b
を隔し、その一部に流体を流通させる開口部11
cを有する座材11dとから構成される筐体部材
11e、前記座材11dとの位置関係を相対的に
変更して流体が流動可能な隙間(図示せず)を形
成する弁体11f、この弁体11fに押接するば
ね11g、このばね11gの強さを変更するため
の調節機構11h、一端が前記筐体部材11eに
固定され、その内部にばね11iを有し、前記筐
体部材11eの内部と隔絶するように構成された
ベローフラム11j等の可撓部材、これに一端が
固定され他端が前記弁体11fに押接するロツド
11k、前記ベローフラム11j内部と導管11
1により連通され、その内部にガス体、あるいは
液体等温度変化をその圧力変化に変換する媒体を
有する温度検知端112から構成されるがごとき
ものである。この温度検知端112は圧縮機1の
吐出ガス温度を検知するよう圧縮機1の吐出配管
10に設置されている。また、同検知端112が
予め設定した温度以上の値を検知すると、前記弁
体11fは座材11dから離れ、導入部11aか
ら導出部11bに流体が導通するようばね11
g,11iの強さがそれぞれ設定されている。
First, to explain the embodiment shown in FIG. 3, a main circuit A is constructed by sequentially connecting a compressor 1, an air-cooled condenser 2, an expansion means 3, and an evaporator 4. A portion of the refrigerant in the main circuit A is bypassed from the outlet of the condenser 2 to the inlet of the compressor 1 through the expansion means 6 and the refrigerant heat exchanger 7, so as to bypass the evaporator 4 of the main circuit A. A second bypass circuit C is arranged in parallel between the first bypass circuit B, the expansion means 6 of the circuit B, and the refrigerant heat exchanger 7 so as to bypass the expansion means 6 of the circuit B. A circuit opening/closing means 11 is disposed in the middle of the second bypass circuit C and is activated by detecting a change in the temperature of the gas discharged from the compressor 1. This opening/closing means 11 includes a fluid introduction part 11a branched and joined to a pipe 8 connecting the outlet of the expansion means 6 and the refrigerant heat exchanger inlet, and a fluid introduction part 11a whose tip is connected to the low pressure side outlet of the refrigerant heat exchanger 7. The derivation section 11b and both of these 11a and 11b
an opening 11 that separates the
a housing member 11e composed of a seat material 11d having a diameter of 1.c; a valve body 11f that forms a gap (not shown) through which fluid can flow by relatively changing the positional relationship with the seat material 11d; A spring 11g that presses against the valve body 11f, an adjustment mechanism 11h for changing the strength of the spring 11g, one end of which is fixed to the casing member 11e, and a spring 11i inside the casing member 11e. A flexible member such as a bellows frame 11j configured to be isolated from the inside, a rod 11k having one end fixed to this and the other end pressed against the valve body 11f, and the inside of the bellows frame 11j and the conduit 11.
1, and has a temperature sensing end 112 inside which has a medium, such as a gas or a liquid, for converting a temperature change into a pressure change. This temperature detection end 112 is installed in the discharge pipe 10 of the compressor 1 so as to detect the temperature of the discharge gas of the compressor 1. Further, when the detection end 112 detects a temperature equal to or higher than a preset temperature, the valve body 11f separates from the seat member 11d, and the spring 11
The strengths of g and 11i are set respectively.

このような構成になる空気調和装置において、
通常温度条件及び凝縮器2の冷却空気が高くな
り、凝縮圧力が所定の値以上となり第1のバイパ
ス回路Bが機能する条件下での空気調和装置の機
能は前述第1図で説明したものとまつたく同様で
あるので、ここでは省略する。
In an air conditioner with such a configuration,
The functions of the air conditioner under normal temperature conditions and conditions in which the cooling air in the condenser 2 becomes high, the condensing pressure exceeds a predetermined value, and the first bypass circuit B functions are as explained in Fig. 1 above. Since they are the same, they will be omitted here.

さて、第1のバイパス回路Bが開放されてお
り、主回路Aの蒸発器4の冷房負荷が上昇してい
くと、前述第2図で説明したように圧縮機1の吐
出ガス温度が上昇し、ついにはこの制限値を越え
ることになる。かかる場合、第2のバイパス回路
Cの開閉手段11の温度検知端112は、この異
常を内部の圧力変化として検知し、導管111を
介してベローフラム11jに伝達する。そこでベ
ローフラム11jは伸張し、これに固定されたロ
ツド11kは弁体11fを開方向に作用させる。
これにより導入部11aと導出部11bが連通
し、前記膨脹手段6から出た湿り度の高い低温低
圧の冷媒が、冷媒熱交換器7をバイパスして第1
のバイパス回路Bの冷媒ひいては圧縮機1の吸入
冷媒の温度を引き下げることとなる。したがつて
圧縮機1の吐出ガス温度は低下することとなる。
この作用は温度検知端112が吐出ガス温度の制
限値以下の温度を検知するまで継続され、前記吐
出ガス温度が制限値を上回る度合が大なる程、第
2のバイパス回路Cを流動する湿り度の高い低温
冷媒の量は多くなる。
Now, when the first bypass circuit B is open and the cooling load of the evaporator 4 of the main circuit A increases, the discharge gas temperature of the compressor 1 increases as explained in FIG. 2 above. , will eventually exceed this limit value. In such a case, the temperature sensing end 112 of the opening/closing means 11 of the second bypass circuit C detects this abnormality as an internal pressure change, and transmits it to the bellow flamm 11j via the conduit 111. The bellow frame 11j then expands, and the rod 11k fixed thereto acts on the valve body 11f in the opening direction.
As a result, the inlet portion 11a and the outlet portion 11b communicate with each other, and the humid, low-temperature, low-pressure refrigerant coming out of the expansion means 6 bypasses the refrigerant heat exchanger 7 and enters the first
This results in lowering the temperature of the refrigerant in the bypass circuit B and thus the refrigerant sucked into the compressor 1. Therefore, the discharge gas temperature of the compressor 1 will decrease.
This action continues until the temperature detection end 112 detects a temperature below the discharge gas temperature limit value, and the greater the degree to which the discharge gas temperature exceeds the limit value, the more the humidity flowing through the second bypass circuit C increases. The amount of low-temperature refrigerant with high temperature increases.

なお、前記開閉手段11としては、吐出ガス温
度を検知するサーモスイツチにより付勢回路が
ON―OFFせられる電磁弁が如きものでも良い
が、この方式の場合には制御回路が複雑になるこ
と、開時流量がほゞ一定であるためハンチングが
生じ易いことなどの見地から、第3図に示したご
とく第2のバイパス回路Cに流れる流量を吐出ガ
ス温度の大きさに応じて連続的に変更可能とした
手段が好適である。さらに、前記実施例では第1
のバイパス回路Bの膨脹手段6の後流側から低温
低圧の冷媒をバイパスするものであるが、前記開
閉手段11に膨脹機能を兼備させ、第1のバイパ
ス回路Bの開閉手段5の後流もしくはその上流か
ら高温高圧の冷媒を膨脹バイパスしても同様の効
果があることは言うまでもないが、開閉手段11
として許容圧力が高いものを使用する必要があ
る。
In addition, as the opening/closing means 11, an energizing circuit is activated by a thermoswitch that detects the discharge gas temperature.
A solenoid valve that can be turned on and off may be used, but this method requires a complicated control circuit, and since the flow rate is almost constant when open, hunting is likely to occur. As shown in the figure, it is preferable to use means that allows the flow rate flowing into the second bypass circuit C to be changed continuously in accordance with the magnitude of the discharge gas temperature. Furthermore, in the embodiment, the first
The low-temperature, low-pressure refrigerant is bypassed from the downstream side of the expansion means 6 of the first bypass circuit B, but the opening/closing means 11 is also provided with an expansion function, and It goes without saying that the same effect can be obtained by bypassing the high-temperature, high-pressure refrigerant from upstream of the opening/closing means 11.
It is necessary to use one with a high allowable pressure.

以上説明したように、本発明によれば、過負荷
時に必要に応じて湿り度の高い低温低圧の冷媒を
圧縮機吸入ガスに混入させて同ガス温度を低くす
ることができるので、高負荷時における圧縮器吐
出ガス温度の異常上昇が防止できる効果があるの
で、より耐久性の優れた過負荷防止機構付空気調
和装置を提供することができる。
As explained above, according to the present invention, a low-temperature, low-pressure refrigerant with high humidity can be mixed into the compressor suction gas as necessary at the time of overload to lower the gas temperature. Since the present invention has the effect of preventing an abnormal rise in the temperature of the compressor discharge gas, it is possible to provide an air conditioner with an overload prevention mechanism that is more durable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温外気条件下での過負荷を防止する
機構を備えた従来の空気調和装置の系統図、第2
図は第1図の空気調和装置に於ける問題点を説明
するための圧縮機の吐出圧力及び吐出ガス温度の
特性図、第3図は本発明になる空気調和装置の一
実施例を示す系統図である。 A……主回路、B……第1のバイパス回路、C
……第2のバイパス回路、1……圧縮機、2……
凝縮器、3……主回路膨脹手段、4……蒸発器、
5……第1のバイパス回路開閉手段、6……第1
のバイパス回路膨脹手段、7……冷媒熱交換器、
11……第2のバイパス回路開閉手段。
Figure 1 is a system diagram of a conventional air conditioner equipped with a mechanism to prevent overload under high-temperature outside air conditions.
The figure is a characteristic diagram of the discharge pressure and discharge gas temperature of the compressor to explain the problems in the air conditioner of Figure 1, and Figure 3 is a system showing an embodiment of the air conditioner according to the present invention. It is a diagram. A... Main circuit, B... First bypass circuit, C
...Second bypass circuit, 1...Compressor, 2...
Condenser, 3... Main circuit expansion means, 4... Evaporator,
5...first bypass circuit opening/closing means, 6...first
bypass circuit expansion means, 7...refrigerant heat exchanger,
11...Second bypass circuit opening/closing means.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、空冷凝縮器、主回路膨張手段及び蒸
発器を順次連結して形成した冷凍サイクルの、前
記主回路膨張手段の上流側と圧縮機の上流側との
間に、第1のバイパス回路開閉手段と、第1のバ
イパス回路膨張手段と、前記空冷凝縮器の下流側
に近接する冷媒熱交換器とを順次前記主回路膨張
手段上流側から配置して第1のバイパス回路を形
成した空気調和装置において、前記第1のバイパ
ス回路に冷媒が流れ、かつ前記圧縮機の下流側の
冷媒温度が所定値より上昇したときに前記冷媒熱
交換器の冷媒を側路するように作動する第2のバ
イパス回路開閉手段を、前記圧縮機の上流側と前
記主回路膨張手段間に配設したことを特徴とする
空調和装置。
1. In a refrigeration cycle formed by sequentially connecting a compressor, an air-cooled condenser, a main circuit expansion means, and an evaporator, a first bypass circuit is provided between the upstream side of the main circuit expansion means and the upstream side of the compressor. A first bypass circuit is formed by sequentially arranging an opening/closing means, a first bypass circuit expansion means, and a refrigerant heat exchanger adjacent to the downstream side of the air-cooled condenser from the upstream side of the main circuit expansion means. In the harmonizing device, a second bypass circuit operates to bypass the refrigerant of the refrigerant heat exchanger when refrigerant flows through the first bypass circuit and a refrigerant temperature downstream of the compressor rises above a predetermined value. An air conditioner characterized in that a bypass circuit opening/closing means is disposed between the upstream side of the compressor and the main circuit expansion means.
JP2993878A 1978-03-17 1978-03-17 Refrigeration cycle for air conditioner Granted JPS54123757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2993878A JPS54123757A (en) 1978-03-17 1978-03-17 Refrigeration cycle for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2993878A JPS54123757A (en) 1978-03-17 1978-03-17 Refrigeration cycle for air conditioner

Publications (2)

Publication Number Publication Date
JPS54123757A JPS54123757A (en) 1979-09-26
JPS628702B2 true JPS628702B2 (en) 1987-02-24

Family

ID=12289924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2993878A Granted JPS54123757A (en) 1978-03-17 1978-03-17 Refrigeration cycle for air conditioner

Country Status (1)

Country Link
JP (1) JPS54123757A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533491B2 (en) * 2010-09-24 2014-06-25 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater

Also Published As

Publication number Publication date
JPS54123757A (en) 1979-09-26

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
JPH11193967A (en) Refrigerating cycle
JP2007514919A (en) Vapor compression system using overpressure prevention accumulator
US5732564A (en) Heat pump apparatus and method for stable operation with inhibition of foaming
JPH04295566A (en) Engine-driven air-conditioning machine
US5207072A (en) Unloading structure for compressor of refrigeration system
JP2002228282A (en) Refrigerating device
JP2964705B2 (en) Air conditioner
JPS628702B2 (en)
JP3070223B2 (en) Refrigerant heating air conditioner
JP2003336914A (en) Air conditioner
US10557653B1 (en) Suction stabilizer control circuit for a heat pump system
JPS5835971Y2 (en) Refrigeration equipment
JPH06272971A (en) Air conditioner
JPH07294026A (en) Refrigerator
JPS5969663A (en) Refrigeration cycle
US20220048366A1 (en) Combined heat exchanger, heat exchanging system and the optimization method thereof
JPS587148B2 (en) air conditioner
JPH11344264A (en) Freezing cycle device
JPH0439578A (en) Engine-driven air-conditioner
JP2686978B2 (en) Engine driven heat pump device
JPS63251760A (en) Refrigerator
JPS6028935Y2 (en) Heat pump air conditioning system
JPS6139256Y2 (en)
JPH0141907B2 (en)