JPS6286764A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6286764A
JPS6286764A JP22645385A JP22645385A JPS6286764A JP S6286764 A JPS6286764 A JP S6286764A JP 22645385 A JP22645385 A JP 22645385A JP 22645385 A JP22645385 A JP 22645385A JP S6286764 A JPS6286764 A JP S6286764A
Authority
JP
Japan
Prior art keywords
gate
oxide film
film
electrode
grow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22645385A
Other languages
Japanese (ja)
Inventor
Machio Yamagishi
山岸 万千雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22645385A priority Critical patent/JPS6286764A/en
Publication of JPS6286764A publication Critical patent/JPS6286764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printers Characterized By Their Purpose (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce the occupying area of a cell by a method wherein a gate electrode is provided with a double-layer structure in which an insulating film is sandwiched by two layers of the gate material and a conductive material layer is formed on the side wall of the gate electrode corresponding to the lower gate material layer with an insulating film in between. CONSTITUTION:An oixde film 14 and a polycrystalline film 15 is formed on a substrate 13 and the polycrystalline film 15 is left only a part where a cell is to be formed by photoetching. After an oxide film 16 for element isolation is made to grow, a floating gate 15 is formed. At that time, the oxide film 14 is removed by etching and an oxide film 17 is made to grow as a 1st gate oxide film. After that, the gate 15 is subjected to thermal oxidization to make an oxide film 19 grow and the oxide film 19 and the gate 15 are removed by etching with a gate 18 as a mask. Then ions are implanted with those gate electrodes as a mask to form regions 20 and 21. Then the gate 16 is oxidized to form a thermal oxide film 22. Then an electrode 23 is formed by patterning and electrons is the gate 15 are drawn out by applying a voltage to the electrode 23 for erasing. with this constitution, the occupying area per one cell can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気的消去可能及び電気的書き変え可能なRO
M (Read 0nly Memory)に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides an electrically erasable and electrically rewritable RO.
This relates to M (Read Only Memory).

〔従来の技術〕[Conventional technology]

従来のE E P ROM (Electricall
y Brasableand Programable
 Read 0nly Memory)の構造が第2図
に示される。この素子はSiゲートNチャンネルMNO
5技術によるものである。一つのメモリー機能を持たせ
るのに2個のトランジスタが必要である。一つのトラン
ジスタはゲート電極lOを持つ読み出し用MOSトラン
ジスタであり、他の一つは窒化シリコン膜12、ゲート
電極11を有してメモリー機能を持つMNOSトランジ
スタである。基板から薄い酸化膜を通して電荷をトンネ
ルさせ、酸化膜−窒化膜界面付近のトラップに蓄えてメ
モリー機能を持たせている。(日経エレクトロニクス1
9B2.5.24 P、P、154〜168)〔発明が
解決しようとする問題点〕 第2図に示されるように、従来の構造のEEFROMに
おいては、一つのメモリーとして回路上の機能を持たせ
るためには読み出し用トランジスタとメモリー用トラン
ジスタの2個のMOS)ランジスタが必要である。この
ため一つのセルの占有面積が大になると言う問題点があ
った。
Conventional EEPROM (Electrical
Brasable and Programmable
The structure of the read only memory is shown in FIG. This device is a Si gate N-channel MNO
5 technology. Two transistors are required to provide one memory function. One transistor is a read MOS transistor having a gate electrode 10, and the other is an MNOS transistor having a silicon nitride film 12 and a gate electrode 11 and having a memory function. Charges are tunneled from the substrate through a thin oxide film and stored in traps near the oxide film-nitride interface, providing a memory function. (Nikkei Electronics 1
9B2.5.24 P, P, 154-168) [Problems to be Solved by the Invention] As shown in Figure 2, the EEFROM of the conventional structure has a circuit function as one memory. In order to do this, two MOS transistors are required: a read transistor and a memory transistor. Therefore, there was a problem in that the area occupied by one cell became large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、ゲート電極の下層のフローティング
ゲート15の側部に絶縁膜22を介して消去用電極23
を設け、この電極に電圧を加えることによってフローテ
ィングゲート15中の電子を引っばり出して消去動作を
行わせ、一つのトランジスタに読み出し・選択・メモリ
ー機能を持たせて上記問題点を解決した。
In the present invention, an erasing electrode 23 is provided on the side of the floating gate 15 under the gate electrode via an insulating film 22.
By applying a voltage to this electrode, the electrons in the floating gate 15 are pulled out to perform an erasing operation, and one transistor is provided with reading, selection, and memory functions, thereby solving the above problems.

〔作用〕[Effect]

従来は、消去を行う時に流すFowler−Norde
heimトンネル電流が流れるための薄い酸化膜をソー
ス領域のN゛拡散層上に形成し、このN゛拡散層の面積
を広くとらなければならなかった。そこで本発明におい
ては、N1拡散層上からF−N)ンネル電流として消去
動作を行うのではなく、フローティングゲート15側面
にトンネル可能な薄い絶縁物22を設け、その上部に導
電体23を成長させることによって従来の問題点を解決
した。
Conventionally, the Fowler-Norde signal used when erasing
A thin oxide film for the heim tunnel current to flow was formed on the N2 diffusion layer in the source region, and the area of this N2 diffusion layer had to be made large. Therefore, in the present invention, instead of performing the erase operation as a F-N channel current from above the N1 diffusion layer, a thin insulator 22 capable of tunneling is provided on the side surface of the floating gate 15, and a conductor 23 is grown on top of the thin insulator 22. This solved the problems of the conventional method.

この導電体23に電圧を印加しフローティングゲート1
5中からチャージを電界によってトンネル電流として抜
き出して消去をするので、従来の装置のように必要以上
に大きな面積をとらなくても良くなった。
A voltage is applied to this conductor 23 and the floating gate 1
Since the charge is extracted from the inside of 5 as a tunnel current by an electric field and erased, it is no longer necessary to take up an unnecessarily large area as in conventional devices.

〔実施例〕〔Example〕

本発明のEEFROMの製造方法を第1図A〜Gに基い
て説明する。
A method of manufacturing an EEFROM according to the present invention will be explained based on FIGS. 1A to 1G.

先ず半導体基板13の上に酸化膜14、多結晶膜15を
形成する(第1図A)。フォトエッチによりセル形成部
分のみに多結晶膜15を残す。
First, an oxide film 14 and a polycrystalline film 15 are formed on a semiconductor substrate 13 (FIG. 1A). By photo-etching, the polycrystalline film 15 is left only in the cell formation area.

(第1図B)。第1図Cでは素子間分離用の酸化膜16
を成長させ電子を蓄積するフローティングゲート15を
形成させたところまでを示しである。
(Figure 1B). In FIG. 1C, an oxide film 16 for isolation between elements is shown.
The figure shows up to the point where a floating gate 15 for accumulating electrons is formed.

このとき酸化膜14をエッチオフし第1ゲート酸化膜と
して酸化膜14を成長させる。その後コントロールゲー
ト18をパターニング形成する前に、フローティングゲ
ート15を熱酸化して第2ゲート酸化膜19を成長させ
る(第1図D)。そしてこのコントロールゲート18を
マスクとして第2ゲート酸化膜19とフローティングゲ
ート15をエツチング除去し、そしてこれらゲート電極
をマスクとしてイオン注入を行ってソース・ドレイン領
域20.21を形成する(第1図E)。この後にフロー
ティングゲート15を酸化し約200〜300人の熱酸
化膜22を形成し、トンネル用酸化膜とする(第1図F
)。そして消去動作を行なわせるための電極23をパタ
ーニング形成させる(第1図G)。この電極23に電圧
を加えることによりフローティングゲート15中の電子
を引っばり出し消去を行わせる。消去は電極15と23
の間の電界によるFowler−Nordheim )
ンネル効果を利用する。
At this time, the oxide film 14 is etched off to grow the oxide film 14 as a first gate oxide film. Thereafter, before patterning the control gate 18, the floating gate 15 is thermally oxidized to grow a second gate oxide film 19 (FIG. 1D). Then, using this control gate 18 as a mask, the second gate oxide film 19 and floating gate 15 are removed by etching, and using these gate electrodes as a mask, ion implantation is performed to form source/drain regions 20.21 (FIG. 1E). ). After this, the floating gate 15 is oxidized to form a thermal oxide film 22 of about 200 to 300 layers, which is used as a tunnel oxide film (see Fig. 1F).
). Then, an electrode 23 for performing an erasing operation is formed by patterning (FIG. 1G). By applying a voltage to this electrode 23, the electrons in the floating gate 15 are pulled out and erased. Erasing is done using electrodes 15 and 23.
Fowler-Nordheim due to the electric field between
Take advantage of the channel effect.

〔効果〕〔effect〕

従来の装置に比較して、1セル当たりの占有面積が小と
なった。しかも本発明のEEFROMは従来の製造工程
に比較してそれ程複雑とならない製造方法により製造す
ることができる。
Compared to conventional devices, the area occupied by each cell is smaller. Moreover, the EEFROM of the present invention can be manufactured by a manufacturing method that is less complicated than conventional manufacturing processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Gは本発明のEEPROMを製造する各工程
を示す。第2図は従来のEEPROMの構造を示す。 1・・・n型基板    2・・・P−wel13・・
・ソース又はドレイン 4・・・ドレイン又はソース 5・・・ソース又はドレイン 6・・・素子間分離領域 7・・・層間絶縁膜   8.9・・・AI電極10・
・・ゲート電極(Poly−Si)11・・・ゲート電
極   12・・・窒化シリコン13・・・半導体基板
   14・・・酸化膜15・・・フローティングゲー
ト 16・・・素子間分離酸化膜 17・・・第1ゲート酸化膜 18・・・コントロールゲート 19・・・第2ゲート酸化膜 20・・・ソース     21・・・ドレイン22・
・・酸化膜     23・・・消去用電極特許出願人
  ソ ニ −株式会社 代理人弁理士 沢 1)雅 男 外1名j−ト萌のEE
PROMtヤーtす5名べt41第1図
FIGS. 1A to 1G show each step of manufacturing the EEPROM of the present invention. FIG. 2 shows the structure of a conventional EEPROM. 1...N-type substrate 2...P-well13...
- Source or drain 4...Drain or source 5...Source or drain 6...Inter-element isolation region 7...Interlayer insulating film 8.9...AI electrode 10-
...Gate electrode (Poly-Si) 11... Gate electrode 12... Silicon nitride 13... Semiconductor substrate 14... Oxide film 15... Floating gate 16... Element isolation oxide film 17. ...First gate oxide film 18...Control gate 19...Second gate oxide film 20...Source 21...Drain 22...
... Oxide film 23 ... Erasing electrode patent applicant Soni - Representative patent attorney Sawa Co., Ltd. 1) Masao and 1 other J-to Moe's EE
PROM player 5 people t41 Figure 1

Claims (1)

【特許請求の範囲】[Claims] MOS型半導体装置において、ゲート電極のゲート材が
絶縁膜を介して2層構造からなり、上記少なくともゲー
ト材のうち下層のほうのゲート電極側部に、絶縁膜を介
して導電材を形成したことを特徴とする半導体装置。
In a MOS type semiconductor device, the gate material of the gate electrode has a two-layer structure with an insulating film interposed therebetween, and a conductive material is formed at least on the side of the gate electrode in the lower layer of the gate material with the insulating film interposed therebetween. A semiconductor device characterized by:
JP22645385A 1985-10-11 1985-10-11 Semiconductor device Pending JPS6286764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22645385A JPS6286764A (en) 1985-10-11 1985-10-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22645385A JPS6286764A (en) 1985-10-11 1985-10-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6286764A true JPS6286764A (en) 1987-04-21

Family

ID=16845334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22645385A Pending JPS6286764A (en) 1985-10-11 1985-10-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6286764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287676A (en) * 1988-09-26 1990-03-28 Ricoh Co Ltd Floating gate type non-volatile memory
US5051793A (en) * 1989-03-27 1991-09-24 Ict International Cmos Technology, Inc. Coplanar flash EPROM cell and method of making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287676A (en) * 1988-09-26 1990-03-28 Ricoh Co Ltd Floating gate type non-volatile memory
US5051793A (en) * 1989-03-27 1991-09-24 Ict International Cmos Technology, Inc. Coplanar flash EPROM cell and method of making same

Similar Documents

Publication Publication Date Title
KR940009644B1 (en) Non-volatile semiconductor memory device and manufacturing method thereof
JP3922341B2 (en) Manufacturing method of semiconductor device having nonvolatile memory transistor
JP2002231831A (en) Method for manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory
JP4217409B2 (en) Nonvolatile memory device and manufacturing method thereof
JPH04211177A (en) Nonvolatile semiconductor storage device and its manufacture
JPH08330454A (en) Floating gate type nonvolatile semiconductor storage device
US6979859B2 (en) Flash memory cell and fabrication method
JPH08306889A (en) Non-volatile semiconductor memory device and its fabrication method
JPH1092961A (en) Fresh memory device and its manufacture
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
JPS6286764A (en) Semiconductor device
JPH05226662A (en) Semiconductor storage device
JPH08107155A (en) Memory device of nonvolatile semiconductor and its preparation
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
KR101151035B1 (en) / device and manufacturing method of flash or eeprom having excellent on/off characteristics
JPH07106442A (en) Nonvolatile semiconductor memory
JPH04167472A (en) Semiconductor memory device and production method
JP2729622B2 (en) Method for manufacturing semiconductor memory device
JP4040138B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPS62245676A (en) Non-volatile semiconductor memory
JP2001332709A (en) Nonvolatile semiconductor storage device and its manufacturing method
JPH10270577A (en) Semiconductor device and its manufacture
JPH03174777A (en) Semiconductor device and manufacture thereof