JPS6286173A - Production of composite pipe - Google Patents

Production of composite pipe

Info

Publication number
JPS6286173A
JPS6286173A JP22760485A JP22760485A JPS6286173A JP S6286173 A JPS6286173 A JP S6286173A JP 22760485 A JP22760485 A JP 22760485A JP 22760485 A JP22760485 A JP 22760485A JP S6286173 A JPS6286173 A JP S6286173A
Authority
JP
Japan
Prior art keywords
thermite
thermit
ceramics
agent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22760485A
Other languages
Japanese (ja)
Other versions
JPH0557357B2 (en
Inventor
Osamu Odawara
修 小田原
Yasumasa Ishii
康允 石井
Hiroshi Yamazaki
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP22760485A priority Critical patent/JPS6286173A/en
Publication of JPS6286173A publication Critical patent/JPS6286173A/en
Publication of JPH0557357B2 publication Critical patent/JPH0557357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/06Compacting only by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To decrease FeO in ceramics by using a thermit mixture added with a specific ratio each of Si3N4 and SiC in the stage of coating the ceramic layer in a steel pipe by utilizing a thermit reaction. CONSTITUTION:The Si3N4 or SiC is added to the chief thermit mixture composed of the theoretically compounded iron oxide and Al at 1.5-4.0wt% by the Si-component in the chief mixture. Such thermit mixture is packed in the base pipe 1 to form the thermit layer 2. The thermit layer is ignited in a centrifugal field generated by a high speed rotation to induce the thermit reaction. The molten metal formed by the exothermic reaction and the molten ceramics are subjected to gravity sepn. to coat and formed the desired ceramic layer 4 formed via the metallic layer 3 formed on the inside surface of the pipe 1. The formed ceramics is made denser and the composite pipe having the improved strength, hardness and corrosion resistance of the ceramics is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、テルミット反応を利用して母管内面にセラミ
ックス層を被覆形成する方法の改良に係り、テルミット
反応を促進させると共にセラミックスの性能を改善する
方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an improvement in a method of coating the inner surface of a main tube with a ceramic layer using a thermite reaction, and improves the performance of ceramics while promoting the thermite reaction. Regarding how to improve.

(従来の技術) 母管内にセラミックス層を被覆形成せしめてなる複合管
は、セラミックス層が耐熱性、耐摩耗性、耐食性等に良
好な特性を発揮するため、各種流体の輸送管や工業用配
管部材として法尻な通用用途を有している。
(Prior art) Composite pipes made by coating the mother pipe with a ceramic layer are used as transportation pipes for various fluids and industrial piping because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has common uses as a member.

この種複合管の製造手段としては、従来種々の方法が実
施されてきているが、最近ではその好適な製造手段とし
て、遠心力とテルミット反応を利用するいわゆる遠心テ
ルミットrt−が提起されている。すなわち、この方法
は第1図に示すように、母管1内に、例えばA6とFe
201の如き金属還元剤と金属酸化物との一定比率の混
合物からなるテルミット剤を装填しテルミット剤層2を
形成し、これを高速回転による遠心力場内で着火して、
(1)式に例示する如きテルミット反応を行わしめ、こ
の発熱反応により生成される溶融金属と熔融セラミック
スとを比重分離して、第2図に示すように母管1内面に
生成金属層3を介して所望の生成セラミックス層4を被
覆形成するものである。
Various methods have been used to manufacture this type of composite tube, but recently, so-called centrifugal thermite rt-, which utilizes centrifugal force and thermite reaction, has been proposed as a suitable manufacturing method. That is, in this method, as shown in FIG.
A thermite agent made of a mixture of a metal reducing agent and a metal oxide at a certain ratio such as No. 201 is loaded to form a thermite agent layer 2, and this is ignited in a centrifugal force field due to high speed rotation.
A thermite reaction as exemplified in equation (1) is carried out, and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity to form a produced metal layer 3 on the inner surface of the main tube 1 as shown in FIG. A desired ceramic layer 4 is formed thereon.

Fez  O1+2A6− 八9.−Ch →−2Fe
+199 Kcal/八R−Cへ1モル−(11前記金
属酸化物と金属還元剤との混合比は、通常理論混合比に
調整されている。例えば、前記のFe20)とiとの例
では、モル比で Fe20i:  A6= 1 : 2 であり、重量比では Fe20y;  ^ff =2.9641である。
Fez O1+2A6- 89. -Ch →-2Fe
+199 Kcal/1 mole to 8 R-C (11 The mixing ratio of the metal oxide and metal reducing agent is usually adjusted to the theoretical mixing ratio. For example, in the example of Fe20) and i, The molar ratio is Fe20i:A6=1:2, and the weight ratio is Fe20y;^ff=2.9641.

しかし、金属酸化物と金属還元剤とが理論混合比とされ
たテルミット主剤だけでは、生成セラミックス層がポー
ラスとなるので、特公昭59−34470号公報に開示
されているように5iCh (ケイ酸)を前記主剤に対
して5〜15重量%添加し、セラミックスの緻密化が図
られている。
However, if only the thermite main agent is used in which the metal oxide and metal reducing agent are in a stoichiometric mixing ratio, the resulting ceramic layer will become porous. is added in an amount of 5 to 15% by weight based on the base material to make the ceramic densified.

(発明が解決しようとする問題点) しかしながら、SiO□を添加した場合には、生成セラ
ミックスにおいて、コランダム(α−IR1tch)の
粒界に5i02のガラス相及びSiO□とFeOとの化
合物(Fez 5i04)相が生成し、セラミックス中
のコランダムの比率が低下し、強度、硬さを減する結果
を招来する。また、酸性液中(特に高温下)では、Fe
2SiO4相中のFe分が溶出するため、十分な耐食性
が得られないという欠点があった。因みに、7%5iC
hを添加した時、生成セラミックス中にFeOは14%
程度含有する。
(Problems to be Solved by the Invention) However, when SiO□ is added, a glass phase of 5i02 and a compound of SiO□ and FeO (Fez 5i04 ) phase is formed, and the ratio of corundum in the ceramic decreases, resulting in a decrease in strength and hardness. In addition, in acidic liquids (especially at high temperatures), Fe
Since the Fe content in the 2SiO4 phase is eluted, there is a drawback that sufficient corrosion resistance cannot be obtained. By the way, 7%5iC
When h is added, FeO is 14% in the produced ceramics.
Contains to some extent.

本発明は叙上の問題点に鑑み、遠心テルミット法におい
て、セラミックスの緻密化を損なうことなく、セラミッ
クス中のFeOを減少せしめ、延いては強度、硬度及び
耐食性の向上を目的としてなされたものである。
In view of the above-mentioned problems, the present invention was made with the aim of reducing FeO in ceramics without impairing the densification of ceramics in the centrifugal thermite method, and thereby improving strength, hardness, and corrosion resistance. be.

(問題点を解決するための手段) 上記目的を達成するために、本発明の手段とするところ
は、理論配合された酸化鉄と^lとからなるテルミット
主剤にSi3 N4又は/及びSiCを前記主剤に対し
てSi分で1.5〜4.0重量%添加した添加テルミッ
ト剤を遠心テルミット法におけるテルミット剤として用
いる点にある。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method of adding Si3 N4 or/and SiC to a thermite main agent consisting of theoretically blended iron oxide and ^l. The point is that an added thermite agent containing 1.5 to 4.0% by weight of Si added to the base material is used as a thermite agent in the centrifugal thermite method.

(実施例) 本発明者は、生成セラミックス中にPeOが多く残留す
るのは、テルミット剤中の金属還元剤の還元力が弱いこ
と、更にテルミット反応が大気中で行われるため、金属
酸化物が金属還元剤により有効に還元されないためと考
えた。
(Example) The present inventor believes that the reason why a large amount of PeO remains in the produced ceramic is that the reducing power of the metal reducing agent in the thermite agent is weak, and furthermore, the thermite reaction is carried out in the atmosphere, so the metal oxide is It was thought that this was because it was not effectively reduced by the metal reducing agent.

かかる考えに基づき鋭意研究した結果、テルミット反応
を大気と遮断して行い、かつテルミット剤の金属還元剤
の還元力を高め、更に生成セラミックスの緻密化にも寄
与することのできる方策を見出すに至った。
As a result of intensive research based on this idea, we have discovered a method that allows the thermite reaction to be carried out in isolation from the atmosphere, increases the reducing power of the metal reducing agent in the thermite agent, and further contributes to the densification of the resulting ceramics. Ta.

すなわち、理論配合された酸化鉄と^βとからなるテル
ミット主剤にSi3 N4又はSiCを添加した添加テ
ルミット剤を遠心テルミット法におけるテルミット剤と
して用いるのである。
That is, an additive thermite agent in which Si3 N4 or SiC is added to a thermite main agent consisting of theoretically mixed iron oxide and ^β is used as a thermite agent in the centrifugal thermite method.

テルミット反応による生成熱は、例えばFe2Chとへ
n系の場合、3000°Cにまで達する。一方、Si3
 N4、SiCの分解温度は3000°C以下であるの
で、テルミット反応に際して、Si3N4、SiCは容
易にSiとガス成分に分解して、夫々好適な作用をなす
The heat generated by the thermite reaction reaches up to 3000°C in the case of Fe2Ch and hen-based materials, for example. On the other hand, Si3
Since the decomposition temperature of N4 and SiC is 3000°C or less, Si3N4 and SiC easily decompose into Si and gas components during the thermite reaction, and each performs a suitable action.

因みに、Si3N4の分解温度は1900°c、SiC
のそれは2600°Cである。
By the way, the decomposition temperature of Si3N4 is 1900°C, and the decomposition temperature of SiC
It is 2600°C.

Si3N4は、テルミット反応の高温により、SiとN
とに分解する。Siは過剰還元剤として作用し、未反応
酸化鉄分のセラミックス中の残留量を減少せしめ、また
凝固過程では5tCh (ガラス相)を形成し、コラン
ダム粒界を埋めてセラミックスの緻密化に寄与する。一
方、NはN2ガスとなり不活性ガスとして反応系を被包
し、大気中の02と添加テルミット剤中の^lとを遮断
してテルミット反応を理論どおりに進行せしめる作用を
なし、未反応酸化鉄分の生成を可及的に減少せしめる。
Si3N4 is made of Si and N due to the high temperature of thermite reaction.
It is broken down into. Si acts as an excess reducing agent and reduces the amount of unreacted iron oxide remaining in the ceramic, and also forms 5tCh (glass phase) during the solidification process, filling the corundum grain boundaries and contributing to the densification of the ceramic. On the other hand, N becomes N2 gas and encapsulates the reaction system as an inert gas, blocking 02 in the atmosphere and ^l in the added thermite agent, allowing the thermite reaction to proceed as theoretically, and eliminating unreacted oxidation. Reduce iron production as much as possible.

一方、SiCはStとCとに分解し、Siは叙上の作用
をなす。Cは酸化、燃焼してC02、COガスとなり反
応系全体を大気から遮断すると共に、より良好な還元性
雰囲気を形成して、未反応酸化鉄の残留量を減少せしめ
る。
On the other hand, SiC decomposes into St and C, and Si acts as described above. C oxidizes and burns to become CO2 and CO gas, which isolates the entire reaction system from the atmosphere and forms a more favorable reducing atmosphere to reduce the amount of unreacted iron oxide remaining.

尚、反応系と大気とを遮断するために、N2ガスや静ガ
ス雰囲気中で反応を行うことを試みたが、母管の両端開
放状態でかつテルミット剤の表層にガス流を形成するだ
けでは、十分な遮断は困難であった。また、母管全体を
チャンバー内に設け、真空脱気後、前記不活性ガスを封
入することによリ、大気との完全な遮断が可能になるが
、かかる場合は、特殊な設備を必要とし、生産性低下を
余儀なくされる。
In order to isolate the reaction system from the atmosphere, attempts were made to conduct the reaction in an N2 gas or static gas atmosphere, but it was not possible to simply form a gas flow on the surface layer of the thermite agent with both ends of the main tube open. , sufficient isolation was difficult. In addition, by placing the entire main tube in a chamber and filling it with the inert gas after vacuum degassing, it is possible to completely isolate it from the atmosphere, but in such a case, special equipment is required. , resulting in a decline in productivity.

本発明者は5i311j4、SiCの好適な添加量を見
出すために、テルミット主剤に金属Stを種々の割合で
添加して、Siの添加量がセラミックスの気孔率及びセ
ラミックスと生成鉄との密着せん断力Gこ如何なる影響
を及ぼすかについて調べた。その結果を第3図及び第4
図に示す。
5i311j4 In order to find a suitable addition amount of SiC, the present inventor added metal St to the thermite main agent in various proportions, and determined that the addition amount of Si was determined by adjusting the porosity of the ceramic and the adhesion shear force between the ceramic and the produced iron. We investigated what kind of influence G has. The results are shown in Figures 3 and 4.
As shown in the figure.

第3図は、S1添加量とセラミックス気孔率との関係を
示すグラフ図であって、Si無添加の場合は、セラミッ
クス気孔率が25%程度と極めてポーラスであるが、5
ill〜5%で緻密となり、5%を越えると逆にポーラ
スな(17を向が出て(る。
FIG. 3 is a graph showing the relationship between the amount of S1 added and the ceramic porosity. In the case of no Si addition, the ceramic porosity is extremely porous at about 25%;
When the illumination is ~5%, it becomes dense, and when it exceeds 5%, it becomes porous.

第4図は、Si添加量と生成鉄−生成セラミノクス間の
密着せん断力との関係を示したグラフ図である。密着せ
ん断力は第5図の如く、遠心テルミット法により製造さ
れた複合管(母管として鋼管を使用)を用い、母管l及
び生成鉄層3゛を押抜台5に載置し、生成セラミックス
層4のみをポンチ6を介して押圧して生成セラミックス
層4が押を友かれた時の押圧力を基に算出した。同図に
よると、Siが4%を越えると密着せん断力がSi無添
加のとき(約120 kg / a+I )よりもかな
り低下することが判る。このとき、複合管を断面観察し
た結果、生成セラミックス層4と生成鉄1ii3′との
境界に空隙がかなり発生しているのが観察された。
FIG. 4 is a graph showing the relationship between the amount of Si added and the adhesion shear force between the produced iron and the produced ceraminox. As shown in Fig. 5, the contact shear force is measured by using a composite tube (using a steel pipe as the mother tube) manufactured by the centrifugal thermite method, placing the mother tube 1 and the produced iron layer 3 on a punching table 5, and Calculations were made based on the pressing force when only the ceramic layer 4 was pressed through the punch 6 and the resulting ceramic layer 4 was pushed away. According to the figure, it can be seen that when Si exceeds 4%, the adhesion shear force is considerably lower than when no Si is added (approximately 120 kg/a+I). At this time, as a result of cross-sectional observation of the composite tube, it was observed that a considerable number of voids were generated at the boundary between the produced ceramic layer 4 and the produced iron 1ii3'.

以上は、テルミット主剤として(Fe20t 千2A 
12)を用いた場合について説明したが、金属酸化鉄と
してFe50いFeOを用いた場合でも略同様の結果を
得た。
The above is thermite main agent (Fe20t 1,2A
12), but substantially the same results were obtained when FeO was used as the metal iron oxide.

これらのことから、理論配合された酸化鉄とAIのテル
ミット主剤に対して重量比率でSiを1.5〜4%添加
したものは、 ■ セラミックス気孔率2〜3% ■ 生成鉄−生成セラミノクス間の密着せん断力250
〜100 kg / cd を示して、良好なセラミックスライニング管を得ること
ができる。
Based on these facts, when Si is added in a weight ratio of 1.5 to 4% to the theoretically mixed iron oxide and AI thermite main ingredients, ■ Ceramic porosity 2 to 3% ■ Between produced iron and produced ceraminox Adhesive shear force of 250
~100 kg/cd can be shown to obtain a good ceramic lined tube.

尚、St 1.5〜4%添加した場合の、生成セラミッ
クス中のFeOは5%程度であった。
Note that when 1.5 to 4% of St was added, FeO in the produced ceramic was about 5%.

以上のことから、Si3N4又は/及びSiCは、テル
ミット主剤に対して、Si分で1.5〜4%(Si 3
N4のみで2.5〜6.7%、SjCのみで2.1〜5
.7%)添加すれば、緻密でかつライニング状態の良好
な複合管を得ることが判る。
From the above, Si3N4 or/and SiC has a Si content of 1.5 to 4% (Si 3
2.5-6.7% for N4 only, 2.1-5 for SjC only
.. 7%), it is possible to obtain a composite pipe that is dense and has a good lining condition.

尚、添加テルミット剤の母管への装填方法としては、テ
ルミット主剤に5j3N4又は/及びSiCを添加混合
したものを母管に散布する方法のほか、Si3N4等を
母管に散布した後、その上面にテルミット主剤を散布し
てもよい。また、母管としては、鋼管等の金属基に限ら
ずコンクリート管、陶管等の無機系のものでもよい。
In addition, methods for loading the thermite agent into the main tube include spraying a mixture of 5J3N4 and/or SiC to the thermite main agent, or spraying Si3N4, etc. onto the main tube, and then spraying the upper surface of the main tube. A thermite base agent may be sprayed on the surface. Further, the mother pipe is not limited to a metal base such as a steel pipe, but may be an inorganic base pipe such as a concrete pipe or a ceramic pipe.

次に他の具体的な実施例について、従来例、比、較例と
共に掲げて説明する。尚、従来例はSiO□l然加のも
の、比較例は金属Si添加のものである。
Next, other specific examples will be described together with conventional examples, comparative examples, and comparative examples. The conventional example is one in which SiO□l is added, and the comparative example is one in which metallic Si is added.

(1)第1表の添加テルミット剤を混合調製し、同表に
記載した母管(鋼管)に略均−な厚さになるように装填
して、高速回転(1400〜1500rpm)の下で着
火してテルミット反応を起こさせた。
(1) Mix and prepare the additive thermite agent shown in Table 1, load it into the main pipe (steel pipe) listed in the table so that it has an approximately uniform thickness, and rotate it at high speed (1400 to 1500 rpm). It ignited and caused a thermite reaction.

(2)  テルミット反応終了後十分冷却して複合管を
を得た。該複合管の内面にはそれぞれ約4 asのセラ
ミックス層が形成されていた。
(2) After the thermite reaction was completed, the tube was sufficiently cooled to obtain a composite tube. A ceramic layer of about 4 as thick was formed on the inner surface of each of the composite tubes.

(3)生成セラミックスの組成及び物性を調べた結果を
第2表に示す。尚、耐食性は従来例を基準として指数表
示したものであり、10%H2S04(硫酸)液中に浸
漬して腐食減量を測定して算出したものである。
(3) Table 2 shows the results of examining the composition and physical properties of the produced ceramics. The corrosion resistance is expressed as an index based on the conventional example, and was calculated by immersing it in a 10% H2S04 (sulfuric acid) solution and measuring the corrosion loss.

次     葉 (発明の効果) 以上説明した通り本発明によれば、遠心テルミット法に
おいて、アルミニウム・酸化鉄系のテルミット主剤にS
i3N4又は/及びSiCを前記主剤に対してSi分で
1.5〜4.2重量%添加した添加テルミット剤を使用
するので、テルミット反応によりSi3N4、SiCが
分解し7Si、  N2ガス、CO2ガス、COガスが
生じ、Stは過剰還元剤として作用し、未反応酸化鉄分
のセラミックス中の残留量を減少させ、また凝固過程で
はSiO□を形成し、コランダム粒界を埋めてセラミッ
クスの緻密化を可能ならしめる。一方、N2ガス等は反
応系を被包し、添加テルミット剤中の^βと大気中の0
□とを遮断してテルミット反応を理論どおりに進行せし
め、未反応酸化鉄の生成を可及的に減少せしめることが
できる。而して、生成セラミックスを緻密化するだけで
なく、セラミックス中に鉄分が殆ど含有しないため、F
e2SiO4相を可及的に減少せしめることができ、セ
ラミックスの強度、硬度及び耐食性をいずれも向上せし
めることができ、極めて高品質の生成セラミックス層を
有する複合管を得ることができる。
Next (Effects of the Invention) As explained above, according to the present invention, in the centrifugal thermite method, S
Since we use an additive thermite agent in which i3N4 or/and SiC is added in an Si content of 1.5 to 4.2% by weight based on the base material, the thermite reaction decomposes Si3N4 and SiC, resulting in 7Si, N2 gas, CO2 gas, CO gas is generated, and St acts as an excess reducing agent, reducing the residual amount of unreacted iron oxide in the ceramics, and also forms SiO□ during the solidification process, filling the corundum grain boundaries and making the ceramics densified. Make it familiar. On the other hand, N2 gas etc. encapsulate the reaction system, and the ^β in the added thermite agent and 0 in the atmosphere
By blocking □, it is possible to allow the thermite reaction to proceed according to theory, and to reduce the production of unreacted iron oxide as much as possible. This not only densifies the produced ceramics, but also makes F
The e2SiO4 phase can be reduced as much as possible, the strength, hardness and corrosion resistance of the ceramic can all be improved, and a composite tube with a produced ceramic layer of extremely high quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遠心テルミット法におけるテルミット剤の装填
状態を示す母管の断面図、第2図はテルミット反応後の
母管(即ち、複合管)の断面図、第3図はSi添加量と
気孔率との関係を示すグラフ図、第4図はSi添加量と
密着せん断力との関係を示すグラフ図、第5図は密着せ
ん断力の試験方法に示す断面説明図である。 1・・・母管、2・・・テルミット剤層、3・・・生成
金属層、3゛・・・生成鉄層、4・・・生成セラミック
ス層。
Figure 1 is a cross-sectional view of the mother tube showing the loading state of thermite agent in the centrifugal thermite method, Figure 2 is a cross-sectional view of the mother tube (i.e., composite tube) after the thermite reaction, and Figure 3 is the amount of Si added and pores. FIG. 4 is a graph showing the relationship between the amount of Si added and adhesion shearing force, and FIG. 5 is a cross-sectional explanatory diagram showing the adhesion shearing force test method. DESCRIPTION OF SYMBOLS 1... Mother pipe, 2... Thermite agent layer, 3... Generated metal layer, 3'... Generated iron layer, 4... Generated ceramic layer.

Claims (1)

【特許請求の範囲】 1、母管内面にテルミット剤を装填し、遠心力場内でテ
ルミット反応を行わせて前記母管内面に生成金属層を介
して生成セラミックス層を被覆形成する方法において、 理論配合された酸化鉄とAlとからなるテルミット主剤
にSi_3N_4又は/及びSiCを前記主剤に対して
Si分で1.5〜4.0重量%添加した添加テルミット
剤を前記テルミット剤として用いることを特徴とする複
合管の製造方法。
[Claims] 1. In a method of loading a thermite agent on the inner surface of the mother tube and causing a thermite reaction in a centrifugal force field to coat the inner surface of the mother tube with a generated ceramic layer via a generated metal layer, the theory Thermite agent is characterized in that an additive thermite agent is used as the thermite agent, in which Si_3N_4 or/and SiC is added in an amount of 1.5 to 4.0% by weight based on the base agent to the thermite base agent consisting of iron oxide and Al. A method for manufacturing a composite pipe.
JP22760485A 1985-10-11 1985-10-11 Production of composite pipe Granted JPS6286173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22760485A JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22760485A JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Publications (2)

Publication Number Publication Date
JPS6286173A true JPS6286173A (en) 1987-04-20
JPH0557357B2 JPH0557357B2 (en) 1993-08-23

Family

ID=16863541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22760485A Granted JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Country Status (1)

Country Link
JP (1) JPS6286173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329345C (en) * 2005-11-10 2007-08-01 北京科技大学 Additive used for preparing ceramic lining steel pipe by self straggle high temperature synthesis
CN102990038A (en) * 2012-10-13 2013-03-27 刘玉满 Method for pouring high-strength and high-wear-resistance casting by mesh ceramic block and EPS (Expandable Polystyrene) compound group mould

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111568A (en) * 1980-02-06 1981-09-03 Tokushu Toryo Kk Floating plate material particle for casting
JPS56148465A (en) * 1980-04-17 1981-11-17 Tokushu Toryo Kk Particle for floating plate material during casting
JPS5740219A (en) * 1980-08-22 1982-03-05 Minolta Camera Co Ltd Photographic lens with short length
JPS5927747A (en) * 1982-08-09 1984-02-14 Mitsubishi Electric Corp Casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111568A (en) * 1980-02-06 1981-09-03 Tokushu Toryo Kk Floating plate material particle for casting
JPS56148465A (en) * 1980-04-17 1981-11-17 Tokushu Toryo Kk Particle for floating plate material during casting
JPS5740219A (en) * 1980-08-22 1982-03-05 Minolta Camera Co Ltd Photographic lens with short length
JPS5927747A (en) * 1982-08-09 1984-02-14 Mitsubishi Electric Corp Casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329345C (en) * 2005-11-10 2007-08-01 北京科技大学 Additive used for preparing ceramic lining steel pipe by self straggle high temperature synthesis
CN102990038A (en) * 2012-10-13 2013-03-27 刘玉满 Method for pouring high-strength and high-wear-resistance casting by mesh ceramic block and EPS (Expandable Polystyrene) compound group mould

Also Published As

Publication number Publication date
JPH0557357B2 (en) 1993-08-23

Similar Documents

Publication Publication Date Title
US5011529A (en) Cured surfaces and a process of curing
TW200540130A (en) Crucible for the crystallization of silicon
JPS6286173A (en) Production of composite pipe
JPS5934470B2 (en) Manufacturing method of composite structure pipe
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPH031271B2 (en)
JP3259646B2 (en) Continuous siliconizing equipment for steel strip
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JPH0216386B2 (en)
JPS5934469B2 (en) Manufacturing method of composite structure pipe
JP3154770B2 (en) Silicon nitride ceramics joints
JPS6027462A (en) Production of pipe having composite construction
JP2589511B2 (en) SiC structural material for steam resistant atmosphere
JPS6133701B2 (en)
KR20030035017A (en) Powder Composition for Simultaneous Coating of Aluminum and Silicon on Metal Surfaces and Coating Method Thereof
JPS6178633A (en) Manufacture of composite pipe
JPS59152270A (en) Manufacture of silicon nitride-containing sintered body
JPH11302078A (en) Composite material and its production
SU1089166A1 (en) Composition for siliconizing steel products
JP3175589B2 (en) Coating material for iron-based casting, iron-based casting provided with coating layer using the same, and method of forming coating layer therefor
JPS6240318B2 (en)
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JPS60186473A (en) Silicon nitride sintered body and manufacture
JPH02124777A (en) Cement for silicon nitride ceramic
JP2000327401A (en) Plate for slide gate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term