JPH0216386B2 - - Google Patents

Info

Publication number
JPH0216386B2
JPH0216386B2 JP1791185A JP1791185A JPH0216386B2 JP H0216386 B2 JPH0216386 B2 JP H0216386B2 JP 1791185 A JP1791185 A JP 1791185A JP 1791185 A JP1791185 A JP 1791185A JP H0216386 B2 JPH0216386 B2 JP H0216386B2
Authority
JP
Japan
Prior art keywords
thermite
agent
metal
produced
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1791185A
Other languages
Japanese (ja)
Other versions
JPS61177376A (en
Inventor
Osamu Odawara
Yasumasa Ishii
Hiroshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1791185A priority Critical patent/JPS61177376A/en
Publication of JPS61177376A publication Critical patent/JPS61177376A/en
Publication of JPH0216386B2 publication Critical patent/JPH0216386B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、テルミツト反応を利用して母管内面
にセラミツクス層を被覆形成する方法の改良に係
り、より詳しくは、テルミツト反応を促進させる
と共に、セラミツクスの性状を改善する方法に関
する。 (従来の技術) 管内面にセラミツクス層を被覆形成せしめてな
る複合管は、セラミツクス層が耐熱性、耐摩耗
性、耐食性等に良好な特性を発揮するため、各種
流体の輪送管や工業用配管部材として広汎な適用
用途を有している。 この種複合管の製造手段としては、従来種々の
方法が実施されてきているが、最近ではその好適
な製造手段として、遠心力とテルミツト反応を利
用するいわゆる遠心テルミツト法が提起されてい
る。すなわち、この方法は第1図に示すように、
母管1内に、例えばAlとFe2O3の如き金属還元剤
と金属酸化物との一定比率の混合物からなるテル
ミツト剤を装填しテルミツト剤層2を形成し、こ
れを高速回転による遠心力場内で着火して、(1)式
に例示する如きテルミツト反応を行わしめ、この
発熱反応により生成される溶融金属と溶融セラミ
ツクスとを比重分離して、第2図に示すように母
管1内面に生成金属層3を介して所望の生成セラ
ミツクス層4を被覆形成するものである。 Fe2O3+2Al→Al2O3+2Fe +199Kcal/Al2O31モル ……(1) 前記金属酸化物と金属還元剤との混合比は、通
常理論混合比に調整されている。例えば、前記の
Fe2O3とAlとの例では、モル比で Fe2O3:Al=1:2 であり、重量比では Fe2O3:Al=2.96:1 である。 (発明が解決しようとする問題点) しかし、金属酸化物と金属還元剤との比を理論
混合比に調整すると、反応生成物の純度が低下す
る。例えば、前記テルミツト剤にFe2O3とAlとの
混合物を用いた場合、生成酸化物は、主として
Al2O3から成るがFeOを10wt%近く含有し、一方
生成金属は、主としてFeから成るがAlを5wt%
程度含有するものとなる。セラミツクス中にFeO
が残存すると、セラミツクスの優れた性質が劣化
し好ましくない。 そこで、Fe2O3とAlとの理論混合比を変え、重
量比で、Fe2O3:Al=2.96以下:1となるように
Alを過配合にしたり、SiやMgなどの酸化性の高
い金属還元剤を微量加えることにより、テルミツ
ト剤の金属還元剤の還元力が高まり、テルミツト
反応が(1)式右辺側へ移行し、セラミツクス中の
FeOを減少させることができる。 しかし、単にセラミツクス中のFeOを減少させ
ても、性能の優れたものが得られるとは限らな
い。セラミツクスとして望まれるものは、組織構
成がよく、その構成によつて性能が決まることで
ある。ここにいう性能とは、耐摩耗性であり、耐
腐食性であり、耐熱性である。耐摩耗性は硬くて
丈夫なことが要求され、耐腐食性はα−Al2O3
成が高くかつ腐食に弱い成分を含有しないことが
必要である。更に、緻密であることが必要であ
り、これは大欠陥、微小欠陥を可及的に減少させ
る上でも必要なことである。 本発明は、叙上の問題に鑑み、テルミツト反応
を促進してセラミツクス中のFeOを減少させ、か
つ組成的にも優れた性能を発揮させるセラミツク
スを有する高品質の複合構造管の製造方法を提供
することを目的とする。 (問題点を解決するための手段) 本発明者等は、叙上の目的を達成すべく鋭意研
究を重ねた結果、テルミツト剤に金属Siを特定範
囲添加すると極めて良好な品質のセラミツクスが
得られることを知見した。すなわち、前記目的を
達成する手段として、母管内面にテルミツト剤を
装填し、遠心力場内でテルミツト反応を行わせて
前記母管内面に生成金属層を介して生成セラミツ
クス層を被覆形成する方法において、理論配合さ
れた酸化鉄とAlとからなるテルミツト主剤に金
属Siを前記主剤に対して重量%で1.5〜4.2%添加
した添加テルミツト剤を前記テルミツト剤として
用いるのである。 (実施例) 本発明において、理論配合された酸化鉄
(Fe2O3、Fe3O4、FeO)とAlとから成るテルミツ
ト主剤に添加される金属還元剤として、下記の理
由から金属Siを選択した。すなわち、金属Siは、
AlやMg程ではないが、テルミツト反応を促進す
ることができ、かつSiが酸化して生成するSiO2
はセラミツクス中に容易に溶融してAl2O3−FeO
−SiO2系の酸化物を形成し緻密なセラミツクス
組織ができるからである。 以下、理論配合されたテルミツト主剤(Fe2O3
+2Al)に対する金属Siの添加量により、セラミ
ツクスの組織、気孔率、セラミツクスと生成鉄と
の密着せん断力が如何に変化するかについて説明
し、本発明のSi添加範囲の限定理由に言及する。 第3図は、Si添加量とセラミツクス中のSiO2
FeO含有量との関係を示すグラフ図である。
SiO2及びFeOの残部はAl2O3である。同図より、
Si添加量が増加するに従つて、SiO2量は漸次増
加し、FeOはSiO2が2%付近を越えると安定し
5%弱に落ちつくことが判る。 第4図は、Si添加量とセラミツクス気孔率との
関係を示すグラフ図であつて、Si無添加の場合は
セラミツクス気孔率が25%程度と極めてポーラス
であるが、Si:1〜5%で緻密となり、5%を越
えると逆にポーラスな傾向が出てくる。 第5図は、Si添加量と生成鉄−生成セラミツク
ス間の密着せん断力との関係を示したグラフ図で
ある。密着せん断力は第7図の如く、遠心テルミ
ツト法により製造された複合構造管(母管として
鋼管を使用)を用い、母管1及び生成鉄層3′を
押抜台5に載置し、生成セラミツクス層4のみを
押板ポンチ6を介して押圧して生成セラミツクス
層4が押抜かれた時の押圧力を基に算出した。同
図によると、Siが4.2%を越えると密着せん断力
がSi無添加のとき(約120Kg/cm2)よりもかなり
低下する。これは、第6図に示すように生成セラ
ミツクス層4と生成鉄層3′との境界において空
隙7がかなり発生していることによる。前記空隙
7は、Si添加量が多くなる程、頻度、量とも多く
なることが確かめられている。一方、Si無添加に
近い状態では、セラミツクス中に気孔が目立つこ
とからセラミツクスの溶融状態での流動性が悪い
ことが判断され、生成鉄とのなじみが悪く、せん
断力が低下するものと考えられる。 以上は、テルミツト主剤として(Fe2O3+2Al)
を用いた場合について説明したが、金属酸化鉄と
してFe3O4、FeOを用いた場合でも略同様の結果
を得た。 これらのことから、理論配合された酸化鉄と
Alのテルミツト主剤に対して重量比率でSiを1.5
〜4.2%添加したものは、 セラミツクス組成として、FeO:5%程度
SiO2:2〜4% セラミツクス気孔率2〜3% 生成鉄−生成セラミツクス間の密着せん断力
250〜100Kg/cm2 を示して、良好なセラミツクスライニング管を得
ることができる。 尚、添加テルミツト剤の母管への装填方法とし
ては、テルミツト主剤に金属Siを添加混合したも
のを母管に散布する方法のほか、テルミツト主剤
を母管に散布した後、その上面に金属Siを散布し
てもよい。また、母管としては、鋼管等の金属系
に限らずコンクリート管、陶管等の無機系のもの
でもよい。 次に他の具体的な実施例について説明する。 (1) 第1表の添加テルミツト剤1800gを混合調整
した。
(Industrial Application Field) The present invention relates to an improvement in a method of coating the inner surface of a mother tube with a ceramic layer using a thermite reaction, and more specifically, to promote the thermite reaction and improve the properties of ceramics. Regarding the method. (Prior art) Composite pipes made by coating the inner surface of the pipe with a ceramic layer are suitable for circular conveyance pipes for various fluids and for industrial use because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications as a piping member. Various methods have been used to manufacture this type of composite tube, and recently, the so-called centrifugal thermite method, which utilizes centrifugal force and thermite reaction, has been proposed as a suitable manufacturing method. That is, this method, as shown in Figure 1,
A thermite agent made of a mixture of a metal reducing agent such as Al and Fe 2 O 3 and a metal oxide at a certain ratio is loaded into the main tube 1 to form a thermite agent layer 2, which is then subjected to centrifugal force due to high speed rotation. A fire is ignited in the field to cause a thermite reaction as exemplified by equation (1), and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity, and the inner surface of the main tube 1 is heated as shown in Fig. 2. Then, a desired ceramic layer 4 is coated with a generated metal layer 3 interposed therebetween. Fe 2 O 3 +2Al→Al 2 O 3 +2Fe +199 Kcal/1 mol of Al 2 O 3 (1) The mixing ratio of the metal oxide and the metal reducing agent is usually adjusted to the theoretical mixing ratio. For example, the above
In the example of Fe 2 O 3 and Al, the molar ratio is Fe 2 O 3 :Al=1:2, and the weight ratio is Fe 2 O 3 :Al=2.96:1. (Problems to be Solved by the Invention) However, when the ratio of metal oxide and metal reducing agent is adjusted to the stoichiometric mixing ratio, the purity of the reaction product decreases. For example, when a mixture of Fe 2 O 3 and Al is used as the thermite agent, the produced oxide is mainly
It consists of Al 2 O 3 but contains nearly 10wt% FeO, while the produced metal mainly consists of Fe but contains 5wt% Al.
It will contain some amount. FeO in ceramics
If it remains, the excellent properties of ceramics will deteriorate, which is undesirable. Therefore, the theoretical mixing ratio of Fe 2 O 3 and Al was changed so that the weight ratio was Fe 2 O 3 :Al = 2.96 or less: 1.
By over-blending Al or adding a trace amount of a highly oxidizing metal reducing agent such as Si or Mg, the reducing power of the metal reducing agent in the thermite agent increases, and the thermite reaction shifts to the right side of equation (1). in ceramics
FeO can be reduced. However, simply reducing FeO in ceramics does not necessarily result in superior performance. What is desired for ceramics is that the structure is good, and the performance is determined by that structure. The performance mentioned here is wear resistance, corrosion resistance, and heat resistance. For wear resistance, it is required to be hard and durable, and for corrosion resistance, it is necessary to have a high α-Al 2 O 3 composition and not to contain components that are susceptible to corrosion. Furthermore, it is necessary to be dense, which is also necessary in order to reduce large defects and small defects as much as possible. In view of the above-mentioned problems, the present invention provides a method for manufacturing a high-quality composite structure tube having a ceramic that promotes thermite reaction, reduces FeO in the ceramic, and exhibits excellent compositional performance. The purpose is to (Means for Solving the Problems) As a result of extensive research to achieve the stated purpose, the present inventors have found that by adding metal Si to the thermite agent in a specific range, ceramics of extremely good quality can be obtained. I found out that. That is, as a means for achieving the above object, a method is provided in which a thermite agent is loaded on the inner surface of the main tube, and a thermite reaction is performed in a centrifugal force field to coat the inner surface of the main tube with a produced ceramic layer via a produced metal layer. As the thermite agent, an additive thermite agent is used, which is made by adding metallic Si to a thermite main agent consisting of theoretically mixed iron oxide and Al in an amount of 1.5 to 4.2% by weight based on the main agent. (Example) In the present invention, metal Si was added as a metal reducing agent to the thermite main agent consisting of theoretically mixed iron oxides (Fe 2 O 3 , Fe 3 O 4 , FeO) and Al for the following reasons. Selected. That is, metal Si is
Although not as strong as Al or Mg, it can promote thermite reaction, and SiO 2 is produced by oxidizing Si.
easily melts into ceramics to form Al 2 O 3 −FeO
This is because -SiO 2 -based oxides are formed and a dense ceramic structure is created. Thermite base agent (Fe 2 O 3
How the ceramic structure, porosity, and adhesion shear force between the ceramic and the produced iron change depending on the amount of metal Si added to +2Al) will be explained, and the reason for limiting the range of Si addition in the present invention will be mentioned. Figure 3 shows the amount of Si added, SiO 2 in ceramics,
It is a graph diagram showing the relationship with FeO content.
The balance of SiO 2 and FeO is Al 2 O 3 . From the same figure,
It can be seen that as the amount of Si added increases, the amount of SiO 2 gradually increases, and when SiO 2 exceeds around 2%, FeO stabilizes and settles at a little less than 5%. Figure 4 is a graph showing the relationship between the amount of Si added and the porosity of ceramics. When Si is not added, the porosity of the ceramic is approximately 25%, which is extremely porous, but when Si is added from 1 to 5%, the porosity of the ceramic is extremely porous. It becomes dense, and when it exceeds 5%, it tends to become porous. FIG. 5 is a graph showing the relationship between the amount of Si added and the adhesion shear force between the produced iron and the produced ceramics. As shown in Fig. 7, the contact shear force is measured by using a composite structure pipe (using a steel pipe as the main pipe) manufactured by the centrifugal thermite method, placing the main pipe 1 and the produced iron layer 3' on a punching table 5, It was calculated based on the pressing force when only the produced ceramic layer 4 was pressed through the press plate punch 6 and the produced ceramic layer 4 was punched out. According to the figure, when Si exceeds 4.2%, the adhesion shear force is considerably lower than when no Si is added (approximately 120 Kg/cm 2 ). This is because, as shown in FIG. 6, a considerable number of voids 7 are generated at the boundary between the produced ceramic layer 4 and the produced iron layer 3'. It has been confirmed that the frequency and amount of the voids 7 increase as the amount of Si added increases. On the other hand, in a state with almost no Si added, pores are noticeable in the ceramic, which indicates that the fluidity of the ceramic in the molten state is poor, which is thought to cause poor compatibility with the formed iron and a decrease in shear force. . The above is (Fe 2 O 3 + 2Al) as thermite main agent.
Although we have explained the case where Fe 3 O 4 and FeO were used as the metal iron oxide, substantially the same results were obtained. Based on these facts, the theoretically formulated iron oxide and
Si is added at a weight ratio of 1.5 to the thermite main material of Al.
The ceramic composition with ~4.2% addition is about 5% FeO.
SiO 2 : 2-4% Ceramic porosity 2-3% Adhesive shear force between produced iron and produced ceramics
It shows 250-100Kg/ cm2 , and good ceramic lining tube can be obtained. In addition, as a method of loading the additive thermite agent into the main tube, there is a method of spraying a mixture of thermite base agent and metal Si on the mother tube, or a method of spraying the thermite base agent onto the mother tube and then applying metal Si on the top surface. may be sprayed. Further, the mother pipe is not limited to metal-based pipes such as steel pipes, but may also be inorganic pipes such as concrete pipes and ceramic pipes. Next, other specific examples will be described. (1) 1800 g of the added thermite agent shown in Table 1 was mixed and adjusted.

【表】 (2) 第1表の添加テルミツト剤を内径93.2mm×長
さ250mmの鋼管に略均一な厚さに装填し、高速
回転(1500rpm)して着火し、テルミツト反応
を起こさせた。 (3) テルミツト反応終了後十分冷却して複合管を
得た。該複合管の内面には、厚さ3.6mmのセラ
ミツクスがライニングされていた。 (4) セラミツクスの組成、硬度、気孔率は第2表
の通りであつた。
[Table] (2) The additive thermite agent shown in Table 1 was loaded to a substantially uniform thickness into a steel pipe with an inner diameter of 93.2 mm and a length of 250 mm, and was ignited by rotating at high speed (1500 rpm) to cause a thermite reaction. (3) After the thermite reaction was completed, the tube was sufficiently cooled to obtain a composite tube. The inner surface of the composite tube was lined with ceramics having a thickness of 3.6 mm. (4) The composition, hardness, and porosity of the ceramics were as shown in Table 2.

【表】 また、セラミツクスの結晶相をX線回折した
ところ、実施例1及び2共α−Al2O3が主体で
あつた。セラミツクスの密着せん断力は、実施
例1が約250Kg/cm2と良好だつたのに対し、実
施例2は約100Kg/cm2となり、密着力の低下を
示した。 (発明の効果) 以上説明した通り、本発明は、理論配合された
鉄系のテルミツト主剤に金属Siを1.5〜4.2%添加
した添加テルミツト剤を用いて遠心テルミツト法
を適用するので、セラミツクスの組成中のFeOを
5%程度以下とすることができ、かつ気孔率を2
〜3%に押え、しかも生成鉄と生成セラミツクス
との密着せん断力を100〜250Kg/cm2とすることが
でき、極めて性能のよい複合構造管を得ることが
できる。
[Table] Furthermore, when the crystalline phase of the ceramics was subjected to X-ray diffraction, it was found that α-Al 2 O 3 was the main component in both Examples 1 and 2. The adhesion shear force of the ceramics was good in Example 1 at about 250 Kg/cm 2 , whereas in Example 2 it was about 100 Kg/cm 2 , indicating a decrease in adhesion. (Effects of the Invention) As explained above, the present invention applies the centrifugal thermite method using an additive thermite agent in which 1.5 to 4.2% of metal Si is added to a theoretically blended iron-based thermite main agent. The FeO inside can be reduced to about 5% or less, and the porosity can be reduced to 2.
3%, and the adhesive shearing force between the produced iron and the produced ceramics can be made 100 to 250 Kg/cm 2 , making it possible to obtain a composite structure pipe with extremely good performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遠心テルミツト法におけるテルミツト
剤の装填状態を示す母管の断面図、第2図はテル
ミツト反応後の母管(即ち、複合構造管)の断面
図、第3図はSi添加量とセラミツクス組成との関
係を示すグラフ図、第4図はSi添加量と気孔率と
の関係を示すグラフ図、第5図はSi添加量と密着
せん断面図力との関係を示すグラフ図、第6図は
複合構造管の部分横断面模式図、第7図は密着せ
ん断力の試験方法を示す断面説明図である。 1……母管、2……テルミツト剤層、3……生
成金属層、3′……生成鉄層、4……生成セラミ
ツクス層。
Figure 1 is a cross-sectional view of the main tube showing the loading state of thermite agent in the centrifugal thermite method, Figure 2 is a cross-sectional view of the main tube after thermite reaction (i.e., composite structure tube), and Figure 3 is the amount of Si added and Fig. 4 is a graph showing the relationship between the amount of Si added and the porosity; Fig. 5 is a graph showing the relationship between the amount of Si added and the adhesion shear surface force; FIG. 6 is a schematic partial cross-sectional view of a composite structure pipe, and FIG. 7 is an explanatory cross-sectional view showing a test method for adhesion shear force. 1... Mother pipe, 2... Thermite agent layer, 3... Produced metal layer, 3'... Produced iron layer, 4... Produced ceramic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 母管内面にテルミツト剤を装填し、遠心力場
内でテルミツト反応を行わせて前記母管内面に生
成金属層を介して生成セラミツクス層を被覆形成
する方法において、理論配合された酸化鉄とAl
とからなるテルミツト主剤に金属Siを前記主剤に
対して重量%で1.5〜4.2%添加した添加テルミツ
ト剤を前記テルミツト剤として用いることを特徴
とする複合構造管の製造方法。
1 In a method of loading a thermite agent on the inner surface of the mother tube and causing a thermite reaction in a centrifugal force field to coat the inner surface of the mother tube with a generated ceramic layer via a generated metal layer, theoretically blended iron oxide and Al
A method for producing a composite structure pipe, characterized in that a thermite agent is used as the thermite agent, which is a thermite agent with metal Si added in an amount of 1.5 to 4.2% by weight based on the main agent.
JP1791185A 1985-01-31 1985-01-31 Manufacture of pipe having composite structure Granted JPS61177376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1791185A JPS61177376A (en) 1985-01-31 1985-01-31 Manufacture of pipe having composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1791185A JPS61177376A (en) 1985-01-31 1985-01-31 Manufacture of pipe having composite structure

Publications (2)

Publication Number Publication Date
JPS61177376A JPS61177376A (en) 1986-08-09
JPH0216386B2 true JPH0216386B2 (en) 1990-04-17

Family

ID=11956931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1791185A Granted JPS61177376A (en) 1985-01-31 1985-01-31 Manufacture of pipe having composite structure

Country Status (1)

Country Link
JP (1) JPS61177376A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389678A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method
CN1329345C (en) * 2005-11-10 2007-08-01 北京科技大学 Additive used for preparing ceramic lining steel pipe by self straggle high temperature synthesis

Also Published As

Publication number Publication date
JPS61177376A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
US4793968A (en) Surface modified powder metal parts and methods for making same
JPH0216386B2 (en)
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
US20060091187A1 (en) Flux and method for joining dissimilar metals
JPS5934470B2 (en) Manufacturing method of composite structure pipe
JPS5843460B2 (en) Al alloy for thermal spraying
JPH03501245A (en) Coating material for cast elements
JPS63500107A (en) Sintered alloy based on high speed steel
JPS6027462A (en) Production of pipe having composite construction
JPH0557357B2 (en)
JPS5934469B2 (en) Manufacturing method of composite structure pipe
JPH0224660B2 (en)
JP2592628B2 (en) Method of forming thermal spray coating with excellent build-up resistance
JPS61238976A (en) Production of metal-ceramic composite pipe
JPH07316542A (en) Production of copper-based sintered friction material
JPH0445339B2 (en)
JPS61238975A (en) Manufacture of composite pipe
US4033399A (en) Method for cladding copper and copper alloys to steel substrates
JPH03504742A (en) Method for manufacturing sandwich products with abrasion-resistant surfaces
JPH02254107A (en) Sound absorbing material
JPS59207871A (en) Magnesia carbon brick
JP2000327401A (en) Plate for slide gate
JPS63129061A (en) Al2o3-tic base composite sintered body and manufacture
JPS593083A (en) Graphite crucible
JPS63247303A (en) Production of corrosion-and wear-resistant material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term