JPH07316542A - Production of copper-based sintered friction material - Google Patents

Production of copper-based sintered friction material

Info

Publication number
JPH07316542A
JPH07316542A JP13824694A JP13824694A JPH07316542A JP H07316542 A JPH07316542 A JP H07316542A JP 13824694 A JP13824694 A JP 13824694A JP 13824694 A JP13824694 A JP 13824694A JP H07316542 A JPH07316542 A JP H07316542A
Authority
JP
Japan
Prior art keywords
powder
atmosphere
copper
core plate
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13824694A
Other languages
Japanese (ja)
Inventor
Toyomi Fujimori
豊美 藤森
Keiichi Kawashima
恵一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP13824694A priority Critical patent/JPH07316542A/en
Publication of JPH07316542A publication Critical patent/JPH07316542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a copper-based sintered friction material useful for a brake friction pad or a clutch facing, having high frictional characteristics, firmly bondable to a core plate, by sintering a molded article of green compact having a specific composition under limited sintering conditions. CONSTITUTION:Mixed raw material powder comprising (A) (i) 3-8wt.% of Sn powder, (ii) 2-9wt.% of Zn powder, (iii) 4-10wt.% of SiO2 powder and (iv) 15-25wt.% of SiO2 and (v) the rest of electrolyzed copper powder is molded in green compact. The molded article is brought into contact with a bonding face of a core plate and thermally pressed in a reducing atmosphere preferably under 1-10MPa. After the molded article reaches 750-850 deg.C, preferably 790-830 deg.C, the reducing atmosphere is changed into a neutral atmosphere or a vacuum atmosphere and successively the molded article is retained in the above temperature range for a prescribed time (preferably 20 minutes to 5 hours). The molded article in green compact is sintered and simultaneously bonded to the core plate to give the objective frictional material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブレーキパッドあるい
はクラッチフェーシングとして好適な摩擦特性を備え、
芯板と強固に接合された銅系焼結摩擦材の製造方法に関
する。
BACKGROUND OF THE INVENTION The present invention has friction characteristics suitable as a brake pad or a clutch facing,
The present invention relates to a method for manufacturing a copper-based sintered friction material that is firmly bonded to a core plate.

【0002】[0002]

【従来の技術】焼結金属系の摩擦材としては、従来から
Cuを主成分とし、Sn、Zn、Al、Al2 3 、S
iO2 、MoS2 等を添加して焼結した銅合金系のもの
が主流となっているが、更に黒鉛その他の炭素質粉末を
加えることにより潤滑性および熱的、化学的安定性の向
上が図られている(例えば特開昭61−67736 号公報)。
2. Description of the Related Art Sintered metal-based friction materials have hitherto been mainly composed of Cu, Sn, Zn, Al, Al 2 O 3 , S
The mainstream is a copper alloy-based material obtained by adding and sintering iO 2 , MoS 2, etc., but addition of graphite and other carbonaceous powders improves the lubricity and thermal and chemical stability. (For example, Japanese Patent Laid-Open No. 61-67736).

【0003】この種の銅系焼結摩擦材は、通常、鋼など
を裏金とした芯板に接合して使用される関係で、摩擦部
材と芯板部材を密着して強固に接合することが必要とさ
れている。従来、摩擦部材と芯板部材を接合する手段と
しては、例えばZn粉末を含む銅系摩擦材料の粉末成形
体を鋼製裏金の接合面と組合わせて、中性または弱還元
性雰囲気中で加圧加熱して、粉末成形体を焼結するとと
もに裏金に接合させる接合法が提案されている(特開昭
50−150656号公報)。また、特開平2−274802号
公報にはCu5〜70重量部、S、FeS、ZnSなど
0.2〜3重量部(S量換算) 、C5重量部以下、残部
Feからなる圧粉成形品を鋼などに接触させ、非酸化性
雰囲気で1000〜1080℃で加熱することにより接
触界面部にCuを主体とする合金層を形成させて両者を
接合する方法が開示されている。
This type of copper-based sintered friction material is usually used by bonding it to a core plate having steel or the like as a backing metal, so that the friction member and the core plate member can be firmly adhered to each other. is necessary. Conventionally, as a means for joining a friction member and a core plate member, for example, a powder compact of a copper-based friction material containing Zn powder is combined with a joint surface of a steel backing metal and applied in a neutral or weak reducing atmosphere. A joining method has been proposed in which pressure molding is performed to sinter the powder compact and to join it to the backing metal (Japanese Patent Laid-Open No. S60-12065).
50-150656). Further, Japanese Patent Application Laid-Open No. 2-274802 discloses a powder molded product comprising Cu 5 to 70 parts by weight, S, FeS, ZnS and the like 0.2 to 3 parts by weight (S amount conversion), C 5 parts by weight or less, and the balance Fe. A method is disclosed in which an alloy layer mainly composed of Cu is formed at the contact interface portion by contacting with steel or the like and heating at 1000 to 1080 ° C. in a non-oxidizing atmosphere to bond the two.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の先行技術においては、摩擦材としての性能、例えば気
孔率、摩擦係数、摩耗量などについては考慮されていな
いために、摩擦特性の向上と接合部の強度増大の両立を
図るには十分でなかった。
However, in these prior arts, the performance as a friction material, such as the porosity, the friction coefficient, the wear amount, etc., is not taken into consideration. Was not sufficient to achieve both the increase in strength.

【0005】本発明者らは、Cu−Sn合金系について
焼結時の条件を詳細に検討したところ、水素雰囲気中で
焼結すると焼結が進んで収縮するために開気孔率が減少
するため、摩擦係数の低下および摩耗量の増大など摩擦
特性が低下する一方、芯板との接合は強固になること、
また、窒素雰囲気中で焼結すると体積膨張が起こり、開
気孔率が増大して摩擦特性の向上がもたらされるが、芯
板との接合力は低下するという背反関係があることを確
認した。
The present inventors have made a detailed study of the conditions for sintering the Cu-Sn alloy system. As a result, when sintering is performed in a hydrogen atmosphere, the sintering proceeds and shrinks, resulting in a decrease in the open porosity. , The friction characteristics such as the reduction of the friction coefficient and the increase of the wear amount are reduced, while the joint with the core plate is strengthened,
In addition, it was confirmed that there is a trade-off relationship that volume expansion occurs when sintering is performed in a nitrogen atmosphere, the open porosity increases and friction characteristics are improved, but the bonding force with the core plate decreases.

【0006】本発明は、この関係に着目して最適な焼結
条件につき多角的に研究を重ねた結果なされたもので、
その目的は、特定組成の圧粉成形体を限定された焼結条
件下で焼結することにより、高度の摩擦特性を備え、か
つ強固に芯板と接合し得る銅系焼結摩擦材の製造方法を
提供することにある。
The present invention has been made as a result of multifaceted research on optimum sintering conditions by paying attention to this relationship.
The purpose is to produce a copper-based sintered friction material that has a high friction property and can be firmly bonded to a core plate by sintering a green compact of a specific composition under limited sintering conditions. To provide a method.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による銅系焼結摩擦材の製造方法は、Sn粉
3〜8重量%、Zn粉2〜9重量%、SiO2 粉4〜1
0重量%、黒鉛粉15〜25重量%、残部が電解銅粉か
らなる混合原料粉末を圧粉成形し、成形体を芯板の接合
面に当接した状態で還元性雰囲気中において熱圧し、加
熱温度が750〜850℃に達したのち中性雰囲気ある
いは真空雰囲気に切換え、引き続き前記加熱温度に一定
時間保持して圧粉成形体を焼結するとともに芯板に接合
することを構成上の特徴とする。
A method of manufacturing a copper-based sintered friction material according to the present invention for achieving the above object is as follows: Sn powder 3 to 8% by weight, Zn powder 2 to 9% by weight, SiO 2 powder. 4-1
0% by weight, 15 to 25% by weight of graphite powder, and the remainder of the mixed raw material powder made of electrolytic copper powder are compacted, and the compact is hot pressed in a reducing atmosphere in contact with the joint surface of the core plate. After the heating temperature reaches 750 to 850 ° C., the atmosphere is switched to a neutral atmosphere or a vacuum atmosphere, and then the heating temperature is maintained for a certain period of time to sinter the powder compact and bond it to the core plate. And

【0008】本発明の原料成分は、Cuを主成分とし
て、これに一定量のSn、Zn、SiO2 および黒鉛の
粉末粉を加えた組成からなる。主成分となるCu粉に
は、圧粉成形時の材質強度を維持するために好適な樹枝
状の電解銅粉が用いられる。添加成分のうち、Sn粉は
焼結時にCuに固溶してCu−Sn合金を形成して焼結
を促進するとともに開気孔率の増大に機能する成分で、
3〜8重量%の範囲で配合される。この配合量が、3重
量%未満ではCuの焼結が困難となり、8重量%を越え
るとSn成分の凝固偏析を生じて摩擦特性を低下させる
原因となる。なお、Sn粉は200メッシュ以下のアト
マイズ粉またはスタンプ粉を用いることが好ましい。
The raw material component of the present invention is composed of Cu as a main component and a certain amount of Sn, Zn, SiO 2 and graphite powder powder added thereto. As the Cu powder which is the main component, a dendritic electrolytic copper powder suitable for maintaining the material strength during powder compaction is used. Among the added components, Sn powder is a component that forms a solid solution with Cu during sintering to form a Cu—Sn alloy, promotes sintering, and functions to increase the open porosity,
It is compounded in the range of 3 to 8% by weight. If the content is less than 3% by weight, it becomes difficult to sinter Cu, and if it exceeds 8% by weight, solidification segregation of the Sn component is caused, which causes the friction characteristics to be deteriorated. As the Sn powder, it is preferable to use atomized powder or stamp powder of 200 mesh or less.

【0009】Zn粉もSn粉と同様に機能し、この添加
により高価なSnの配合量を少なくすることができる。
SiO2 粉は耐摩耗性を付与し、相手部材を適度に削磨
して新しい摩擦面を露出させることにより摩擦特性を安
定化させる成分となるもので、4〜10重量%の範囲で
配合される。この配合量が、4重量%未満では耐摩耗性
や摩擦係数が低下し、また10重量%を越えると削磨性
が大きくなり過ぎるうえ、焼結体の強度低下を招く。黒
鉛粉は摩擦特性を安定化するために必要な成分であり、
15〜25重量%の割合で配合される。この配合量が1
5重量%未満では摩擦特性が不安定となり、また25重
量%を越えると焼結体の強度ならびに摩擦係数の低下が
著しくなる。
Zn powder also functions in the same manner as Sn powder, and the addition of this can reduce the amount of expensive Sn compounded.
The SiO 2 powder is a component that imparts wear resistance and stabilizes friction characteristics by appropriately grinding the mating member to expose a new friction surface, and is compounded in the range of 4 to 10% by weight. It If the blending amount is less than 4% by weight, the wear resistance and the friction coefficient decrease, and if it exceeds 10% by weight, the abradability becomes too large and the strength of the sintered body decreases. Graphite powder is a component necessary to stabilize friction characteristics,
It is blended in a proportion of 15 to 25% by weight. This compounded amount is 1
If it is less than 5% by weight, the friction characteristics are unstable, and if it exceeds 25% by weight, the strength and friction coefficient of the sintered body are remarkably lowered.

【0010】これらの原料粉末は、例えばV型ブレンダ
ーのような混合装置を用いて均一に混合したのち、所定
の金型に充填し、加圧して圧粉成形する。圧粉成形時の
加圧力は、50〜750MPa の範囲に設定することが好
ましく、50MPa 未満ではハンドリングに耐える成形体
を得ることができなくなる。ついで、成形体は、芯材の
接合面に当接した状態で還元性雰囲気下で熱圧焼結す
る。芯板としては、表面をCuメッキ処理した鉄鋼製の
ものが用いられ、還元性雰囲気は水素ガス及びその混合
ガス、プロパン変性ガスあるいはアンモニア分解ガス等
のガス雰囲気とする。
These raw material powders are uniformly mixed using a mixing device such as a V-type blender, then filled in a predetermined mold and pressed to form a powder compact. The pressing force during powder compaction is preferably set in the range of 50 to 750 MPa, and if it is less than 50 MPa, a molded product that can withstand handling cannot be obtained. Next, the compact is hot pressed and sintered in a reducing atmosphere in a state of being in contact with the joint surface of the core material. As the core plate, one made of steel having a surface plated with Cu is used, and the reducing atmosphere is a gas atmosphere such as hydrogen gas and mixed gas thereof, propane-modified gas or ammonia decomposition gas.

【0011】焼結時の圧力は、1〜10MPaの範囲に
設定することが好ましい。圧力が1MPa未満では芯材
との強固な接合が得られず、10MPaを越えると開気
孔率の減少および摩擦特性が減退するようになる。焼結
時の加熱温度は750〜850℃の範囲になるまで昇温
する。加熱温度が、750℃未満では焼結反応が十分に
進行せず、850℃を越えると焼結体の開気孔率が減少
して摩擦係数の低下および摩耗量の増大など摩擦特性が
劣化する。好ましい加熱温度は、790〜830℃の範
囲である。
The pressure during sintering is preferably set in the range of 1 to 10 MPa. If the pressure is less than 1 MPa, a strong bond with the core material cannot be obtained, and if it exceeds 10 MPa, the open porosity and the friction characteristics are deteriorated. The heating temperature at the time of sintering is raised to the range of 750 to 850 ° C. If the heating temperature is lower than 750 ° C., the sintering reaction does not proceed sufficiently, and if it exceeds 850 ° C., the open porosity of the sintered body is reduced, and the frictional characteristics are deteriorated such as the reduction of the friction coefficient and the increase of the wear amount. The preferred heating temperature is in the range of 790 to 830 ° C.

【0012】加熱温度が750〜850℃の範囲に達し
た時点で中性雰囲気あるいは真空雰囲気に切換え、引き
続き前記の加熱温度の範囲に一定時間保持する。この
際、切換える中性雰囲気としては、例えば窒素、アルゴ
ン等を挙げることができ、中性雰囲気あるいは真空雰囲
気下で加熱する保持時間は20分〜5時間の範囲が適当
である。
When the heating temperature reaches the range of 750 to 850 ° C., the atmosphere is switched to a neutral atmosphere or a vacuum atmosphere, and then the heating temperature range is maintained for a certain period of time. At this time, examples of the neutral atmosphere to be switched include nitrogen and argon, and the holding time for heating in a neutral atmosphere or a vacuum atmosphere is appropriately in the range of 20 minutes to 5 hours.

【0013】上記のように熱圧焼結段階で雰囲気系を還
元性から中性あるいは真空に切換えることにより圧粉成
形体は十分に焼結され、同時に芯板に強固に接合され
る。このようにして製造された銅系焼結摩擦材は、所定
の形状に加工し、表面研磨および油溝切削加工などを施
して製品とする。
As described above, by switching the atmosphere system from reducing to neutral or vacuum in the hot pressing step, the green compact is sufficiently sintered and at the same time firmly joined to the core plate. The copper-based sintered friction material produced in this manner is processed into a predetermined shape, surface-polished and oil-grooved, etc., to obtain a product.

【0014】[0014]

【作用】一般に、本発明の原料粉末を水素あるいはアン
モニア分解ガス等の還元雰囲気下で加熱すると、昇温過
程でSn粉はその融点から溶け出し、温度の上昇ととも
に液相はCu−Sn状態図の液相線に従ってCuの固溶
可能量と容積を増加しながらCu粒子の液相焼結が進行
する。そして、798℃のCu−Sn系包晶温度に達す
ると急激に膨れはじめ、約820℃を頂点として急速に
収縮に変わる。また、混合原料粉末の圧粉成形体を還元
性雰囲気において加熱昇温すると、Snの融点である2
32℃の温度から液相が発生し、更に昇温を続けると芯
板と圧粉成形体の界面が密着して強固な接合体が得られ
る。しかしながら、温度が850℃を越えると焼結体の
開気孔率が減少して、摩擦係数の低下および摩耗量の増
大など摩擦特性が劣化する。一方、中性雰囲気あるいは
真空雰囲気中で焼結すると気孔率は増加し、摩擦特性の
向上がもたらされるが芯板との接合は不安定になる。更
に、850℃を越える温度になるとSn、Znなどの低
融点金属による発泡現象が起こり、また芯板の歪みも生
じる。
In general, when the raw material powder of the present invention is heated in a reducing atmosphere such as hydrogen or ammonia decomposition gas, Sn powder melts out from its melting point during the temperature rising process, and the liquid phase becomes Cu--Sn phase diagram as the temperature rises. Liquid phase sintering of Cu particles proceeds while increasing the solid solution amount and the volume of Cu according to the liquidus line. Then, when it reaches the Cu-Sn peritectic temperature of 798 ° C, it starts to expand rapidly, and rapidly changes to contraction at about 820 ° C. Further, when the green compact of the mixed raw material powder is heated and heated in a reducing atmosphere, the melting point of Sn is 2
A liquid phase is generated from the temperature of 32 ° C., and if the temperature is further increased, the interface between the core plate and the powder compact is brought into close contact with each other to obtain a strong joined body. However, if the temperature exceeds 850 ° C., the open porosity of the sintered body decreases, and the frictional characteristics deteriorate, such as a decrease in the friction coefficient and an increase in the amount of wear. On the other hand, when sintered in a neutral atmosphere or a vacuum atmosphere, the porosity increases and the friction characteristics are improved, but the joining with the core plate becomes unstable. Further, when the temperature exceeds 850 ° C., a foaming phenomenon occurs due to a low melting point metal such as Sn and Zn, and distortion of the core plate also occurs.

【0015】本発明は、焼結温度が750〜850℃の
温度域に達した時点で、焼結雰囲気を還元性雰囲気から
中性雰囲気あるいは真空雰囲気に切換えることにより、
焼結体の開気孔率の増大ならびに摩擦特性の向上を図る
とともに裏金となる芯板との強固かつ安定な接合を可能
とするものである。すなわち、本発明のプロセスによれ
ば、還元性雰囲気下における熱圧焼結により芯板との強
固な接合が図られ、この際問題となる開気孔率の減少お
よび摩擦特性の低下は中性雰囲気あるいは真空雰囲気中
における焼結に切換えることにによって効果的に抑制さ
れる。その上、中性雰囲気あるいは真空雰囲気下の焼結
時に生じる接合の不安定化は、既に還元性雰囲気での焼
結により形成された強固な接合により防止される。
According to the present invention, when the sintering temperature reaches the temperature range of 750 to 850 ° C., the sintering atmosphere is changed from a reducing atmosphere to a neutral atmosphere or a vacuum atmosphere.
It is intended to increase the open porosity of the sintered body and improve the frictional characteristics, and to enable strong and stable bonding with the core plate which is the backing metal. That is, according to the process of the present invention, a strong bond with the core plate is achieved by hot pressure sintering in a reducing atmosphere, and in this case, a decrease in open porosity and a decrease in friction characteristics are caused by a neutral atmosphere. Alternatively, it can be effectively suppressed by switching to sintering in a vacuum atmosphere. In addition, the destabilization of the bonding that occurs during sintering in a neutral atmosphere or a vacuum atmosphere is prevented by the strong bonding already formed by sintering in a reducing atmosphere.

【0016】このような雰囲気切換えによる熱圧焼結工
程の機能が総合的に作用して、優れた摩擦特性ならびに
芯板と強固に接合した高性能の銅系焼結摩擦材を製造す
ることが可能となる。
The functions of the hot-pressing sintering process by switching the atmosphere as described above can be comprehensively operated to produce a high-performance copper-based sintered friction material having excellent friction characteristics and firmly bonded to the core plate. It will be possible.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。しかし、本発明は構成要件を満たす限
りこれら実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. However, the present invention is not limited to these examples as long as the constitutional requirements are satisfied.

【0018】実施例1 電解銅粉(粒径100 μm 以下) 62重量%、Sn粉( ス
タンプ粉、# 200 以下) 5重量%、Zn粉( スタンプ
粉、# 200 以下) 7重量%、SiO2 粉(珪石粉、平均
粒径17μm)6重量%および黒鉛粉(粒径100 μm 以下)
20重量%の割合で配合し、V型混合機により20分間
混合して均質な混合粉末を調製した。この混合原料粉末
を外径335mm、内径280mmのリング状金型に充填
し、300MPaの圧力で圧粉成形して、外径335m
m、内径280mm、厚さ1.5mmの成形体を得た。この
成形体を、表面に銅メッキを施した鉄芯板の両面に当接
した状態で、2MPaの圧力を付与しながら水素雰囲気
中で加熱し、2時間で830℃に昇温したのち窒素雰囲
気に切換え、この温度に1時間保持して熱圧焼結させ
た。その条件を表1に示した。ついで、得られた焼結体
の両面を平面研削加工し、更に油溝として螺旋溝および
放射溝(中心から外側に両面で36本)を加工形成して銅
系焼結摩擦材を製造した。
Example 1 62% by weight of electrolytic copper powder (particle size 100 μm or less), 5% by weight Sn powder (stamping powder, # 200 or less), Zn powder (stamping powder, # 200 or less) 7% by weight, SiO 2 Powder (silica powder, average particle size 17 μm) 6% by weight and graphite powder (particle size 100 μm or less)
The mixture was blended in a proportion of 20% by weight and mixed for 20 minutes by a V-type mixer to prepare a homogeneous mixed powder. This mixed raw material powder was filled in a ring-shaped mold having an outer diameter of 335 mm and an inner diameter of 280 mm, and was compacted at a pressure of 300 MPa to obtain an outer diameter of 335 m.
A molded product having an m, an inner diameter of 280 mm and a thickness of 1.5 mm was obtained. This molded body was heated in a hydrogen atmosphere while applying a pressure of 2 MPa in a state where it was in contact with both sides of an iron core plate having a surface plated with copper, and the temperature was raised to 830 ° C. for 2 hours, and then the nitrogen atmosphere. And the temperature was maintained for 1 hour for hot pressure sintering. The conditions are shown in Table 1. Then, both surfaces of the obtained sintered body were subjected to surface grinding, and spiral grooves and radial grooves (36 on both sides from the center to the outside) were processed and formed as oil grooves to manufacture a copper-based sintered friction material.

【0019】実施例2〜4 表1に示す組成の混合原料粉末および加熱処理条件を適
用し、その他は実施例1と同一条件により銅系焼結摩擦
材を製造した。
Examples 2 to 4 A copper-based sintered friction material was manufactured under the same conditions as in Example 1 except that the mixed raw material powder having the composition shown in Table 1 and the heat treatment conditions were applied.

【0020】比較例1〜6 表1に示す組成の混合原料粉末を用い、加熱処理条件と
して雰囲気の切換えを行わず、水素雰囲気中または窒素
雰囲気中のみで所定温度に加熱して一定時間保持して焼
結し、その他は実施例1と同一条件により銅系焼結摩擦
材を製造した。
Comparative Examples 1 to 6 Using mixed raw material powders having the compositions shown in Table 1, without changing the atmosphere as a heat treatment condition, the mixture was heated to a predetermined temperature only in a hydrogen atmosphere or a nitrogen atmosphere and kept for a certain time. And sintered, and a copper-based sintered friction material was manufactured under the same conditions as in Example 1 except for the above.

【0021】[0021]

【表1】 [Table 1]

【0022】上記の各銅系焼結摩擦材について、開気孔
率、摩擦特性および芯板との接合強度を測定し、その結
果を表2に示した。なお、測定値は下記の方法による値
である。
With respect to each of the above copper-based sintered friction materials, the open porosity, frictional characteristics and joint strength with the core plate were measured, and the results are shown in Table 2. The measured value is a value obtained by the following method.

【0023】開気孔率;日本粉末冶金工業会規格、JP
MAM02−1992により焼結体に油を含浸させ、そ
の含浸量から算出した。
Open porosity; Japan Powder Metallurgical Industry Association Standard, JP
The sintered body was impregnated with oil by MAM02-1992, and calculated from the impregnated amount.

【0024】動摩擦係数; 測定機:慣性型摩擦試験機(東京衡機製作所製) 外径340mm、内径280mmの摩擦板(摩擦面積 292cm
2 、有効半径0.1550m)を各3枚用い、相手材としてS4
5Cを4枚使って交互に組み合わせて摩擦面数を6面と
した。慣性モーメントを10.5kgfms2、係合面圧を2
0kgf/cm2 にそれぞれ設定し、回転数を1400rpm か
ら2400rpm まで200rpm づつ上げてトルクを測定
した。動摩擦係数は、各トルクから〔μ=T/P×Z×
R〕式(但し、Tはトルク、Pは総押付け力、Zは摩擦
面数、Rは有効半径)で算出した値で、大きい程摩擦特
性に優れていることを示す。
Dynamic Friction Coefficient; Measuring Machine: Inertial Friction Tester (Tokyo Koki Co., Ltd.) Friction plate with outer diameter 340 mm, inner diameter 280 mm (friction area 292 cm
2 , effective radius 0.1550m), 3 sheets each, S4 as mating material
The number of frictional surfaces was set to 6 by alternately using 4 sheets of 5C. Inertia moment of 10.5kgfms 2 , engagement surface pressure of 2
The torque was measured by setting each to 0 kgf / cm 2 and increasing the rotation speed from 1400 rpm to 2400 rpm in 200 rpm increments. The dynamic friction coefficient is calculated from each torque by [μ = T / P × Z ×
R] (where T is torque, P is total pressing force, Z is the number of friction surfaces, and R is effective radius), and the larger the value, the better the friction characteristics.

【0025】摩耗率;摩擦材の摩耗体積(A×d×Z)
を運動エネルギー(1/2×I×ω2 )で割った値〔V
=(A×d×Z)/(1/2×I×ω2 )〕であり、V
は摩耗率、Aは摩擦材1面の面積、dは摩耗厚み、Zは
摩擦面数、Iは慣性モーメント、ωは回転角速度であ
る。摩耗率Vは小さい程摩擦特性に優れていることを示
す。
Wear rate; wear volume of friction material (A × d × Z)
Value divided by kinetic energy (1/2 × I × ω 2 ) [V
= (A × d × Z) / (1/2 × I × ω 2 )], and V
Is the wear rate, A is the area of one surface of the friction material, d is the wear thickness, Z is the number of friction surfaces, I is the moment of inertia, and ω is the rotational angular velocity. The smaller the wear rate V, the better the frictional properties.

【0026】接合強度;芯板の裏板側を治具に固定し、
摩擦材側の境界線付近に厚み方向に荷重をかけて剪断強
さを測定した。接合強度は〔F=f/A〕式(但し、f
は剪断荷重、Aは破断面積)で算出した値である。
Bonding strength: The back plate side of the core plate is fixed to a jig,
A shear strength was measured by applying a load in the thickness direction near the boundary line on the friction material side. The bonding strength is [F = f / A] formula (however, f
Is a shear load and A is a value calculated by a fracture area).

【0027】なお、接合部における接合されている面積
の割合は、比較例2は35%、比較例4は45%、比較
例6は30%であり、その他は約100%であった。ま
た、比較例6は摩擦試験中に摩擦材が芯板から剥離し、
途中で試験を中止した。
The proportions of the joined areas in the joined portion were 35% in Comparative Example 2, 45% in Comparative Example 4, 30% in Comparative Example 6, and about 100% in other cases. Further, in Comparative Example 6, the friction material peeled from the core plate during the friction test,
The test was canceled on the way.

【0028】[0028]

【表2】 [Table 2]

【0029】以上の結果から、本願発明の実施例による
摩擦材は、比較例の摩擦材に比べて高い開気孔率を有す
るとともに動摩擦係数が大きく、また摩耗率の小さな優
れた摩擦特性を示している。更に、芯板材との接合強度
も大きく摩擦材として、摩擦特性と接合強度がバランス
良く付与されていることが認められる。
From the above results, the friction materials according to the examples of the present invention show excellent friction characteristics having a high open porosity, a large dynamic friction coefficient, and a small wear rate as compared with the friction materials of the comparative examples. There is. Furthermore, it is recognized that the frictional property and the bonding strength are imparted in a good balance as a friction material having a large bonding strength with the core plate material.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば焼結条件
として昇温時の雰囲気を還元性雰囲気とし、昇温後の焼
結時における雰囲気を中性雰囲気あるいは真空雰囲気に
切換えることにより摩擦特性の向上と裏金となる芯板と
の強固な接合を同時に達成することが可能となる。した
がって、高性能が要求されるブレーキパッドやクラッチ
フェーシングの銅系焼結摩擦材の製造方法として極めて
有用である。
As described above, according to the present invention, as a sintering condition, the atmosphere at the time of temperature rise is a reducing atmosphere, and the atmosphere at the time of sintering after the temperature rise is changed to a neutral atmosphere or a vacuum atmosphere to reduce friction. It is possible to simultaneously improve the characteristics and firmly bond the core plate as the back metal. Therefore, it is extremely useful as a method for producing a copper-based sintered friction material for brake pads and clutch facings that require high performance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 9/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Sn粉3〜8重量%、Zn粉2〜9重量
%、SiO2 粉4〜10重量%、黒鉛粉15〜25重量
%、残部が電解銅粉からなる混合原料粉末を圧粉成形
し、成形体を芯板の接合面に当接した状態で還元性雰囲
気中において熱圧し、加熱温度が750〜850℃に達
したのち中性雰囲気あるいは真空雰囲気に切換え、引き
続き前記温度範囲に一定時間保持して圧粉成形体を焼結
するとともに芯板に接合することを特徴とする銅系焼結
摩擦材の製造方法。
1. A mixed raw material powder comprising 3 to 8 wt% Sn powder, 2 to 9 wt% Zn powder, 4 to 10 wt% SiO 2 powder, 15 to 25 wt% graphite powder, and the balance being electrolytic copper powder. Powder molding, hot pressing the molded body in a reducing atmosphere in contact with the joint surface of the core plate, and after switching the heating temperature to 750 to 850 ° C, switch to a neutral atmosphere or a vacuum atmosphere, and continue to the above temperature range. A method for manufacturing a copper-based sintered friction material, which comprises holding the powder for a certain period of time to sinter the powder compact and joining it to a core plate.
【請求項2】 加熱温度が790〜830℃である請求
項1記載の銅系焼結摩擦材の製造方法。
2. The method for producing a copper-based sintered friction material according to claim 1, wherein the heating temperature is 790 to 830 ° C.
【請求項3】 加圧力が1〜10MPa である請求項1
又は2記載の銅系焼結摩擦材の製造方法
3. The pressing force is 1 to 10 MPa.
Or a method for producing a copper-based sintered friction material according to 2
【請求項4】 中性雰囲気あるいは真空雰囲気における
保持時間を、20分〜5時間に設定する請求項1、2又
は3記載の銅系焼結摩擦材の製造方法。
4. The method for producing a copper-based sintered friction material according to claim 1, wherein the holding time in a neutral atmosphere or a vacuum atmosphere is set to 20 minutes to 5 hours.
JP13824694A 1994-05-27 1994-05-27 Production of copper-based sintered friction material Pending JPH07316542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13824694A JPH07316542A (en) 1994-05-27 1994-05-27 Production of copper-based sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13824694A JPH07316542A (en) 1994-05-27 1994-05-27 Production of copper-based sintered friction material

Publications (1)

Publication Number Publication Date
JPH07316542A true JPH07316542A (en) 1995-12-05

Family

ID=15217490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13824694A Pending JPH07316542A (en) 1994-05-27 1994-05-27 Production of copper-based sintered friction material

Country Status (1)

Country Link
JP (1) JPH07316542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
KR100954437B1 (en) * 2009-11-20 2010-04-27 주식회사 로얄초경 Manufacturing method of automobile disc brake pad and automobile disc brake pad
WO2010038944A3 (en) * 2008-09-30 2010-06-17 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method
JP2021116369A (en) * 2020-01-27 2021-08-10 株式会社タンガロイ Friction material and brake pad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
WO2010038944A3 (en) * 2008-09-30 2010-06-17 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method
KR100954437B1 (en) * 2009-11-20 2010-04-27 주식회사 로얄초경 Manufacturing method of automobile disc brake pad and automobile disc brake pad
JP2021116369A (en) * 2020-01-27 2021-08-10 株式会社タンガロイ Friction material and brake pad

Similar Documents

Publication Publication Date Title
JPH08232029A (en) Nickel-base grain dispersed type sintered copper alloy and its production
KR20020029946A (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
JP4215126B2 (en) Magnesium-based composite material and method for producing the same
JPH04320494A (en) Self-lubricating material and its preparation
JPH07316542A (en) Production of copper-based sintered friction material
JP4686690B2 (en) Magnesium-based composite powder, magnesium-based alloy material, and production method thereof
JP4197751B2 (en) Metallic friction material and method for manufacturing the same
JPS6149375B2 (en)
JP5403707B2 (en) Cu-based infiltration powder
JP2733684B2 (en) Joined sintered friction material
CN109136605B (en) Self-propagating synthesis of copper-based composite powder and application thereof
JP3485270B2 (en) Wet friction material
JP3336370B2 (en) Method of manufacturing semiconductor substrate material, semiconductor substrate material and semiconductor package
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPH0913101A (en) Iron based mixture for powder metallurgy and its production
JP3788385B2 (en) Manufacturing method of iron-based sintered alloy members with excellent dimensional accuracy, strength and slidability
JPH116021A (en) Coppery sintered friction material and its production
JPH07149921A (en) Production of bronze-based wet friction material
JPH08233005A (en) Manufacture of metallic system friction member
JPH11264031A (en) Sintered metal friction member and its production
CN113550993B (en) Reinforced high-speed train brake pad material and preparation method thereof
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH08253833A (en) Copper-molybdenum alloy and its production
JPH04320495A (en) Self-lubricating composite material and its preparation
JP2001254129A (en) Method of producing friction material