JPH0224660B2 - - Google Patents

Info

Publication number
JPH0224660B2
JPH0224660B2 JP59202768A JP20276884A JPH0224660B2 JP H0224660 B2 JPH0224660 B2 JP H0224660B2 JP 59202768 A JP59202768 A JP 59202768A JP 20276884 A JP20276884 A JP 20276884A JP H0224660 B2 JPH0224660 B2 JP H0224660B2
Authority
JP
Japan
Prior art keywords
thermite
agent
metal
reaction
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59202768A
Other languages
Japanese (ja)
Other versions
JPS6178633A (en
Inventor
Osamu Odawara
Yasumasa Ishii
Hiroshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20276884A priority Critical patent/JPS6178633A/en
Publication of JPS6178633A publication Critical patent/JPS6178633A/en
Publication of JPH0224660B2 publication Critical patent/JPH0224660B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、テルミツト反応を利用して母管内面
にセラミツク層を被覆形成する方法の改良に係
り、より詳しくは、テルミツト反応を促進すると
共に、セラミツクス層をより緻密化する方法に関
する。 (従来の技術) 管内面にセラミツクス層を被覆形成せしめてな
る複合管は、セラミツクス層が耐熱性、耐摩耗
性、耐食性等に良好な特性を発揮するため、各種
流体の輸送管や工業用配管部材として広汎な適用
用途を有している。 この種複合管の製造手段としては、従来種々の
方法が実施されてきているが、最近ではその好適
な製造手段として、遠心力とテルミツト反応を利
用するいわゆる遠心テルミツト法が提起されてい
る。すなわち、この方法は第1図に示すように、
母管1内に、例えばAlとFe2O3の如き金属還元剤
と金属酸化物との一定比率の混合物からなるテル
ミツト剤を装填しテルミツト剤層2を形成し、こ
れを高速回転による遠心力場内で着火して、(1)式
に例示する如きテルミツト反応を行わしめ、この
発熱反応により生成される溶融金属と溶融セラミ
ツクとを比重分離して、第2図に示すように母管
1の内面に金属層3を介して所望のセラミツクス
層4を被覆形成するものである。 Fe2O3+2Al→Al2O3+2Fe +199kcal/Al2O3モル ……(1) 前記金属酸化物と金属還元剤との混合比は、通
常理論混合比に調整されている。例えば、前記の
Fe2O3とAlとの例では、モル比で Fe2O3:Al=1:2 であり、重量比では Fe2O3:Al=2.959:1 である。 (発明が解決しようとする問題点) しかし、金属酸化物と金属還元剤との比を理論
混合比に調整すると、反応生成物の純度が低下す
る。例えば、前記テルミツト剤にFe2O3とAlとの
混合物を用いた場合、生成酸化物は、主として
Al2O3から成るがFeOを10wt%程度含有し、一方
生成金属は、主としてFeから成るがAlを5wt%
程度含有するものとなる。 そこで、Fe2O3との理論混合比を変え、重量比
で、Fe2O3:Al=2.959以下:1とるようにAlを
過配合すると、テルミツト剤中の金属還元剤Al
の還元力が高まり、テルミツト反応が、(1)式の右
辺側により移行するように作用するのであるが、
生成セラミツクスの緻密さの改善には役立たな
い。 本発明は、斯る問題点に鑑み、テルミツト反応
を促進すると共に、生成セラミツクスを緻密化し
て、セラミツクスの品質を向上せしめた複合管の
製造方法を提供することを目的とする。 (問題点を解決するための手段) 上記目的を達成するためになされた本発明の製
造方法は、金属還元剤の粉末と金属酸化物の粉末
とからなるテルミツト主剤に、反応に関与しない
ケイ素化合物の粉末を添加混合した添加テルミツ
ト剤を母管内面に装填し、遠心力場内で該添加テ
ルミツト剤に着火し、テルミツト反応を行わせて
溶融金属及び溶融セラミツクスを生成させ、前記
母管内面に金属層を介してセラミツクス層を被覆
形成する方法において、 テルミツト主剤中の金属還元剤をAlとMgとで
構成し、かつ金属還元剤の配合量を金属酸化物の
還元に理論上要する量よりも多量に配合したこと
を発明の構成とするものでる。 (作 用) 上記手段によれば、テルミツト主剤中の金属還
元剤の配合量を金属酸化物の還元に理論上要する
量よりも多量に配合、すなわち過配合したので、
テルミツト主剤中の金属酸化物の還元作用が強め
られ、テルミツト反応が促進されて、テルミツト
主剤中の未反応金属酸化物乃至反応過程で生成す
る酸化数の減少した金属酸化物の残存が可及的に
減少され、生成セラミツクス中にこれらが含有さ
れるのを有効に防止できる。 また、過配合した金属還元剤をAlとMgとで構
成したので、テルミツト反応によりMgO−Al2O3
スピネル系セラミツクスを生成させることがで
き、これによつてセラミツクス層の酸性溶液に対
する耐食性を著しく向上させることができる。ま
た、添加テルミツト剤中のケイ素化合物により、
生成セラミツクスの緻密化が図られ、前記酸化物
の含有防止と相まつて、セラミツクスの品質向上
を図ることができる。 (実施例) 以下、本発明の実施例につき詳述する。 本発明において使用される添加テルミツト剤
は、テルミツト反応の主体をなすテルミツト主剤
に反応に関与しないケイ素化合物の粉末を添加混
合したものである。 前記テルミツト主剤はAlとMgとで構成された
金属還元剤とFe2O3、Fe3O4、Cr2O3、NiO、
MnO2、CoO、CuO、SnO2等の金属酸化物との
混合粉末であつて、金属還元剤の配合は金属酸化
物に対して過配合されている。一般的には、Al
は金属酸化物の還元に対して理論上必要とされる
配合量とされ、Mgが過配合分とされる。 Mgは、金属還元剤として知られるSiより酸化
性が高いので、金属酸化物として鉄系のものを用
いた場合、未還元のFeOを減少させるのに効果的
である。Mgは、添加テルミツト剤において重量
%で15%以下の添加が有効であるが、3〜5%で
十分であり、3〜5%の添加でFeOを3〜4%に
低減できる。但し、Mgは、酸化するとMgOとな
り、セラミツクスの組成の一部となる。MgOの
セラミツクス中の含有量は、Mgの添加量に比例
し、例えば3〜5%のMgの添加により7〜10%
MgOの組成となる。また、MgOは、Al2O3中に
含まれるとMgOが8%以上ではα−Al2O3
MgO−Al2O3との共晶組織とならず、白色の
MgO−Al2O3スピネル系セラミツクスになる。そ
れ故、物性面ではMgO−Al2O3スピネル系セラミ
ツクスの性質を示し、α−Al2O3主体のセラミツ
クスに比べ、硬度1000Hv、曲げ強度1200Kg/cm2
程度とやや軟らかいセラミツクスとなるが、酸性
溶液に対する耐久性は優れ、従来のセラミツクス
の5倍程度、前記Si添加のセラミツクスの2倍程
度と極めて良好になる。 テルミツト主剤には、テルミツト反応に関与し
ないSiO2、Si3N4、SiC等のケイ素化合物が添加
される。これらの化合物は、溶融セラミツクスの
流動性を下げ、セラミツクスを緻密化する作用を
有する。しかし、多量の添加は、反応熱を過度に
奪い、テルミツト反応を抑止するように作用する
ため好ましくない。SiO2の場合、添加量は、添
加テルミツト剤において重量%で20%以下でよ
く、2〜8%で最良の効果が得られる。 本発明に適用する母管としては、テルミツト反
応に耐えるものであれば、鋼管等の金属製管に限
らずコンクリート管等の非金属管であつてもよ
い。 次により具体的な実施例を掲げて説明する。 (1) 下記に示した母管(鋼管)の内面に第1表の
添加テルミツト剤を装填し、母管を下記に示し
た回転数で回転した後、添加テルミツト剤に着
火してテルミツト反応を生じさせた。尚、No.1
は実施例、No.2および3は比較例である。ま
た、No.3は母管内面にまずSiO2を散布した後、
その上にテルミツト主剤の装填としたものであ
り、他のものは各成分を一括して添加混合した
添加テルミツト剤を母管内面に散布したもので
ある。 Γ母管サイズ(mm) 外径101.6×4.2t×250 Γ母管回転数(rpm) No.1 :1600 No.2,3:1500
(Industrial Application Field) The present invention relates to an improvement in a method of forming a ceramic layer on the inner surface of a main tube using a thermite reaction, and more specifically, it promotes the thermite reaction and densifies the ceramic layer. Regarding how to. (Prior art) Composite pipes made by coating the inner surface of the pipe with a ceramic layer are used as transportation pipes for various fluids and industrial piping because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications as a member. Various methods have been used to manufacture this type of composite tube, and recently, the so-called centrifugal thermite method, which utilizes centrifugal force and thermite reaction, has been proposed as a suitable manufacturing method. That is, this method, as shown in Figure 1,
A thermite agent made of a mixture of a metal reducing agent such as Al and Fe 2 O 3 and a metal oxide at a certain ratio is loaded into the main tube 1 to form a thermite agent layer 2, which is then subjected to centrifugal force due to high speed rotation. A fire is ignited in the field to cause a thermite reaction as exemplified by equation (1), and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity, and the main tube 1 is separated as shown in Figure 2. The inner surface is coated with a desired ceramic layer 4 via a metal layer 3. Fe 2 O 3 +2Al→Al 2 O 3 +2Fe +199 kcal/ 3 moles of Al 2 O (1) The mixing ratio of the metal oxide and the metal reducing agent is usually adjusted to the theoretical mixing ratio. For example, the above
In the example of Fe 2 O 3 and Al, the molar ratio is Fe 2 O 3 :Al=1:2, and the weight ratio is Fe 2 O 3 :Al=2.959:1. (Problems to be Solved by the Invention) However, when the ratio of metal oxide and metal reducing agent is adjusted to the stoichiometric mixing ratio, the purity of the reaction product decreases. For example, when a mixture of Fe 2 O 3 and Al is used as the thermite agent, the produced oxide is mainly
It consists of Al 2 O 3 but contains about 10wt% FeO, while the produced metal mainly consists of Fe but contains 5wt% Al.
It will contain some amount. Therefore, by changing the theoretical mixing ratio with Fe 2 O 3 and over-blending Al so that the weight ratio is Fe 2 O 3 :Al = 2.959 or less: 1, the metal reducing agent Al in the thermite agent
The reducing power of is increased, and the thermite reaction shifts to the right side of equation (1).
It does not help improve the density of the resulting ceramics. SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide a method for manufacturing a composite tube that promotes the thermite reaction, densifies the resulting ceramic, and improves the quality of the ceramic. (Means for Solving the Problems) In order to achieve the above object, the production method of the present invention is characterized in that a silicon compound that does not participate in the reaction is added to the thermite main ingredient consisting of a metal reducing agent powder and a metal oxide powder. An additive thermite agent mixed with a powder of In the method of forming a ceramic layer through a layer, the metal reducing agent in the thermite main ingredient is composed of Al and Mg, and the amount of the metal reducing agent is larger than the amount theoretically required to reduce the metal oxide. The composition of the invention is that it is blended with. (Function) According to the above means, since the amount of the metal reducing agent in the Thermite base agent is blended in a larger amount than the amount theoretically required to reduce the metal oxide, in other words, it is over-blended.
The reducing action of the metal oxide in the thermite base material is strengthened, the thermite reaction is promoted, and unreacted metal oxides in the thermite base material or metal oxides with reduced oxidation numbers generated during the reaction process can remain in the thermite base material. It is possible to effectively prevent these from being contained in the produced ceramics. In addition, since the overmixed metal reducing agent was composed of Al and Mg, MgO−Al 2 O 3 was formed by thermite reaction.
Spinel-based ceramics can be produced, thereby significantly improving the corrosion resistance of the ceramic layer to acidic solutions. In addition, due to the silicon compound in the added thermite agent,
The densification of the produced ceramics is achieved, and together with the prevention of the inclusion of the oxides, the quality of the ceramics can be improved. (Examples) Examples of the present invention will be described in detail below. The additive thermite agent used in the present invention is prepared by adding and mixing powder of a silicon compound that does not take part in the reaction to the thermite main agent which is the main component of the thermite reaction. Thermite main agent is a metal reducing agent composed of Al and Mg, Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 , NiO,
It is a mixed powder with metal oxides such as MnO 2 , CoO, CuO, and SnO 2 , and the metal reducing agent is added in excess of the metal oxide. Generally, Al
is considered to be the amount theoretically required for the reduction of metal oxides, and Mg is considered to be the excess amount. Since Mg has higher oxidizing properties than Si, which is known as a metal reducing agent, when an iron-based metal oxide is used, it is effective in reducing unreduced FeO. It is effective to add Mg in an amount of 15% by weight or less in the added thermite agent, but 3 to 5% is sufficient, and addition of 3 to 5% can reduce FeO to 3 to 4%. However, when Mg is oxidized, it becomes MgO, which becomes part of the composition of ceramics. The content of MgO in ceramics is proportional to the amount of Mg added, and for example, the content of MgO in ceramics is 7 to 10% by adding 3 to 5% Mg.
The composition is MgO. In addition, when MgO is included in Al 2 O 3 , if MgO is 8% or more, it becomes α-Al 2 O 3 .
It does not form a eutectic structure with MgO−Al 2 O 3 and has a white color.
It becomes MgO−Al 2 O 3 spinel ceramics. Therefore, in terms of physical properties, it exhibits the properties of MgO-Al 2 O 3 spinel ceramics, and has a hardness of 1000 Hv and a bending strength of 1200 Kg/cm 2 compared to α-Al 2 O 3- based ceramics.
Although the ceramic is somewhat soft, its durability against acidic solutions is excellent, about five times that of conventional ceramics, and about twice that of the Si-added ceramics. Silicon compounds such as SiO 2 , Si 3 N 4 and SiC, which do not participate in the thermite reaction, are added to the thermite main ingredient. These compounds have the effect of lowering the fluidity of molten ceramics and densifying the ceramics. However, addition of a large amount is not preferable because it takes away too much reaction heat and acts to inhibit the thermite reaction. In the case of SiO2 , the amount added may be up to 20% by weight in the added thermite agent, with best effects being obtained between 2 and 8%. The main pipe applicable to the present invention is not limited to a metal pipe such as a steel pipe, but may be a non-metallic pipe such as a concrete pipe as long as it can withstand the thermite reaction. Next, more specific examples will be described. (1) Load the added thermite agent shown in Table 1 onto the inner surface of the main pipe (steel pipe) shown below, rotate the main pipe at the rotation speed shown below, and then ignite the added thermite agent to cause a thermite reaction. brought about. Furthermore, No.1
is an example, and Nos. 2 and 3 are comparative examples. In addition, in No. 3, after first spraying SiO 2 on the inner surface of the main tube,
In some cases, thermite main agent is loaded thereon, and in other cases, an added thermite agent, in which each component is added and mixed all at once, is sprinkled on the inner surface of the main tube. Γ Bus tube size (mm) Outer diameter 101.6×4.2t×250 Γ Bus tube rotation speed (rpm) No. 1: 1600 No. 2, 3: 1500

【表】 る。
(2) 反応終了後、母管内面に金属層を介して第2
表のセラミツクス層がライニングされていた。
同表において、結晶相はX線回折により同定し
たものである。尚、金属層の厚さはいずれも2
mm程度であつた。
[Table]
(2) After the reaction, a second
The outer ceramic layer was lined.
In the same table, the crystal phases were identified by X-ray diffraction. In addition, the thickness of the metal layer is 2
It was about mm.

【表】【table】

【表】 (3) 得られたセラミツクス層を用いて、80℃の10
%H2SO4溶液に浸漬して耐食性を調べた。比
較のため、従来例としてAlとFe2O3とを理論配
合比としたテルミツト剤を用いて製作した複合
管のセラミツクス層についても耐食性を調べ
た。耐食性は腐食減量を測定することにより判
定した。 その結果を下記第3表に示す。データ値は従
来例の減量を100としたときの指数であり、小
さい値ほど耐食性は良好である。同表より、実
施例に係るNo.1は、結晶相が主としてMgO−
Al2O3スピネルであるため、他のものに比べて
耐食性が極めて良好であることが確認された。
[Table] (3) Using the obtained ceramic layer,
Corrosion resistance was investigated by immersing in % H2SO4 solution . For comparison, we also investigated the corrosion resistance of the ceramic layer of a composite pipe manufactured using a thermite agent containing Al and Fe 2 O 3 in the theoretical mixing ratio as a conventional example. Corrosion resistance was determined by measuring corrosion weight loss. The results are shown in Table 3 below. The data value is an index when the weight loss of the conventional example is set as 100, and the smaller the value, the better the corrosion resistance. From the same table, in No. 1 according to Example, the crystal phase is mainly MgO-
Since it is Al 2 O 3 spinel, it was confirmed that it has extremely good corrosion resistance compared to other materials.

【表】 (発明の効果) 以上説明した通り、本発明によれば、金属酸化
物の配合量に対して金属還元剤を過配合としたテ
ルミツト主剤にケイ素化合物を添加混合した添加
テルミツト剤を用いるので、テルミツト反応を促
進させることができ、未反応乃至反応中間酸化物
の残存を可及的に減少させると共に、セラミツク
スを緻密化することにより、母管にライニングさ
せるセラミツクスの品質を著しく向上させること
ができる。更に、本発明においては、テルミツト
主剤中の金属還元剤をAlとMgとで構成したの
で、テルミツト反応によりMgO−Al2O3スピネル
系セラミツクスを生成させることができ、これに
よつてセラミツクス層の酸性溶液に対する耐食性
を著しく向上させることができる。
[Table] (Effects of the Invention) As explained above, according to the present invention, an additive thermite agent is used in which a silicon compound is added and mixed into a thermite main agent in which a metal reducing agent is added in excess of the amount of metal oxide. Therefore, the thermite reaction can be promoted, the residual unreacted or reaction intermediate oxides can be reduced as much as possible, and the quality of the ceramic lining the main tube can be significantly improved by densifying the ceramic. Can be done. Furthermore, in the present invention, since the metal reducing agent in the thermite main material is composed of Al and Mg, MgO-Al 2 O 3 spinel ceramics can be produced by the thermite reaction, thereby reducing the thickness of the ceramic layer. Corrosion resistance against acidic solutions can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遠心テルミツト法の製造工程における
母管の断面図であり、テルミツト剤(本発明にお
いては、添加テルミツト剤)層が形成された状態
を示し、第2図は本発明の製造目的である複合管
の断面図であり、金属層を介してセラミツクス層
が被覆形成されたものを示す。 1……母管、2……テルミツト剤層、3……金
属層、4……セラミツクス層。
Figure 1 is a cross-sectional view of the main tube in the manufacturing process of the centrifugal thermite method, showing the state in which a thermite agent (added thermite agent in the present invention) layer is formed, and Figure 2 is a cross-sectional view of the main tube in the manufacturing process of the centrifugal thermite method. 1 is a cross-sectional view of a certain composite tube, showing a ceramic layer coated with a metal layer. 1... Mother pipe, 2... Thermite agent layer, 3... Metal layer, 4... Ceramics layer.

Claims (1)

【特許請求の範囲】 1 金属還元剤の粉末と金属酸化物の粉末とから
なるテルミツト主剤に、反応に関与しないケイ素
化合物の粉末を添加混合した添加テルミツト剤を
母管内面に装填し、遠心力場内で該添加テルミツ
ト剤に着火し、テルミツト反応を行わせて溶融金
属及び溶融セラミツクスを生成させ、前記母管内
面に金属層を介してセラミツクス層を被覆形成す
る方法において、 テルミツト主剤中の金属還元剤をAlとMgとで
構成し、かつ金属還元剤の配合量を金属酸化物の
還元に理論上要する量よりも多量に配合したこと
を特徴とする複合管の製造方法。
[Scope of Claims] 1. An additive thermite agent made by adding and mixing powder of a silicon compound that does not participate in the reaction to a thermite main agent consisting of powder of a metal reducing agent and powder of a metal oxide is loaded onto the inner surface of the main tube, and centrifugal force is applied to the thermite agent. A method in which the added thermite agent is ignited in a field to cause a thermite reaction to produce molten metal and molten ceramics, and a ceramic layer is coated on the inner surface of the main tube via a metal layer, the method comprising: reducing the metal in the thermite main agent; 1. A method for producing a composite tube, characterized in that the agent is composed of Al and Mg, and the amount of the metal reducing agent is greater than the amount theoretically required to reduce the metal oxide.
JP20276884A 1984-09-26 1984-09-26 Manufacture of composite pipe Granted JPS6178633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20276884A JPS6178633A (en) 1984-09-26 1984-09-26 Manufacture of composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20276884A JPS6178633A (en) 1984-09-26 1984-09-26 Manufacture of composite pipe

Publications (2)

Publication Number Publication Date
JPS6178633A JPS6178633A (en) 1986-04-22
JPH0224660B2 true JPH0224660B2 (en) 1990-05-30

Family

ID=16462845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20276884A Granted JPS6178633A (en) 1984-09-26 1984-09-26 Manufacture of composite pipe

Country Status (1)

Country Link
JP (1) JPS6178633A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329345C (en) * 2005-11-10 2007-08-01 北京科技大学 Additive used for preparing ceramic lining steel pipe by self straggle high temperature synthesis
JP6181843B1 (en) * 2016-12-15 2017-08-16 ファイアーランス工業株式会社 Lance pipe for oxygen lance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150190A (en) * 1980-01-16 1981-11-20 Agency Of Ind Science & Technol Preparation of composite material by thermite reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150190A (en) * 1980-01-16 1981-11-20 Agency Of Ind Science & Technol Preparation of composite material by thermite reaction

Also Published As

Publication number Publication date
JPS6178633A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
US3329516A (en) Binding agent for refractories and its manufacture
JPH0224660B2 (en)
WO1990013526A1 (en) Refractory material
JPS5934470B2 (en) Manufacturing method of composite structure pipe
CN111393187A (en) Light refractory material modification reinforcing agent and preparation method thereof
JPS6020881B2 (en) oxide sintered magnet
JPS5934469B2 (en) Manufacturing method of composite structure pipe
JPH03501245A (en) Coating material for cast elements
JPS5935068A (en) Basic castable
US4781769A (en) Separating-agent composition and method using same
US4948675A (en) Separating-agent coatings on silicon steel
JPH0557357B2 (en)
JPS61177376A (en) Manufacture of pipe having composite structure
JPH0328255B2 (en)
JPS59207870A (en) Magnesia carbon brick
JPH054871A (en) Corrosion-resistant magnesia-carbon-based brick
JPH0445339B2 (en)
JPH0363457B2 (en)
JP3177553B2 (en) Antioxidant excellent in digestion resistance and method for producing the same
JPS63129061A (en) Al2o3-tic base composite sintered body and manufacture
JPS6048280B2 (en) Manufacturing method of low hydrogen coated arc welding rod
JPS58185475A (en) Manufacture of carbonaceous refractories
JPH0210870B2 (en)
JPS6317265A (en) Refractories for blast furnace cast bed desilicating launder
JPS58213675A (en) Magnesia carbon refractories

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term