JPH0328255B2 - - Google Patents

Info

Publication number
JPH0328255B2
JPH0328255B2 JP13730283A JP13730283A JPH0328255B2 JP H0328255 B2 JPH0328255 B2 JP H0328255B2 JP 13730283 A JP13730283 A JP 13730283A JP 13730283 A JP13730283 A JP 13730283A JP H0328255 B2 JPH0328255 B2 JP H0328255B2
Authority
JP
Japan
Prior art keywords
thermite
cylindrical tube
ceramic
coating
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13730283A
Other languages
Japanese (ja)
Other versions
JPS6027462A (en
Inventor
Osamu Odawara
Yasumasa Ishii
Hiroshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP13730283A priority Critical patent/JPS6027462A/en
Publication of JPS6027462A publication Critical patent/JPS6027462A/en
Publication of JPH0328255B2 publication Critical patent/JPH0328255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、テルミツト反応を利用して、円筒管
内面にセラミツク層を被覆形成する複合構造管の
製造方法の改良に係り、特にそのセラミツク層の
品質の改善を図るための方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a composite structure tube in which a ceramic layer is coated on the inner surface of a cylindrical tube by using a thermite reaction, and in particular, to improve the quality of the ceramic layer. This relates to the method of

管内面にセラミツク層が被覆形成された複合構
造管は、セラミツク層が耐熱性、耐摩耗性、耐食
性等の良好な特性を発揮するため、各種流体の輸
送管や工業用配管部材として広汎な適用用途を有
している。
Composite structure pipes with a ceramic layer coated on the inner surface of the pipe are widely used as transport pipes for various fluids and industrial piping members because the ceramic layer exhibits good properties such as heat resistance, wear resistance, and corrosion resistance. It has a purpose.

この種の複合構造管の製造手段としては、従来
種々の方法が実施されてきているが、最近ではそ
の好適な製造手段として遠心力とテルミツト反応
を利用するいわゆる遠心テルミツト法が提起され
ている。この方法を最も代表的なアルミニウム−
酸化鉄系のテルミツト反応を利用して、鋼管のよ
うな鉄又は鉄合金製円筒管の内面にアルミナ
(Al2O3)のセラミツクコーテイングを施す場合
を例に説明すると、第1図に示すように、鉄系円
筒管1内にアルミニウム(Al)と酸化鉄(Fe2O3
又はFe3O4)の各粉末あるいは粒子による一定比
率の混合物からなるテルミツト剤2を装填し、こ
れを高速回転による遠心力場内で着火して、下記
式に示す如きテルミツト反応を行なわせ、この発
熱反応により生成される溶融金属(Fe)と溶融
セラミツク(Al2O3)とを比重分離して、第2図
に示すように円筒管1の内面に金属層3を介して
所期のセラミツク層4を被覆形成するものであ
る。
Various methods have been used in the past to produce this type of composite structure pipe, and recently, the so-called centrifugal thermite method, which utilizes centrifugal force and thermite reaction, has been proposed as a preferred method. This method is applied to the most typical aluminum
Taking as an example the case where a ceramic coating of alumina (Al 2 O 3 ) is applied to the inner surface of an iron or iron alloy cylindrical pipe such as a steel pipe by utilizing the iron oxide-based thermite reaction, the process is as shown in Figure 1. In addition, aluminum (Al) and iron oxide (Fe 2 O 3
A thermite agent 2 consisting of a mixture of powders or particles of Fe 3 O 4 or The molten metal (Fe) and molten ceramic (Al 2 O 3 ) produced by the exothermic reaction are separated by specific gravity, and the desired ceramic is deposited on the inner surface of the cylindrical tube 1 via the metal layer 3, as shown in FIG. The layer 4 is formed as a cover.

Fe2O3+2Al→Al2O3+2Fe +199Kcal/Al2O31モル 3Fe3O4+8Al→4Al2O3+9Fe +194Kcal/Al2O31モル この方法によれば、一般には上記のAl−酸化
鉄系のみならず種々の強還元性元素と金属酸化物
よりなるテルミツト反応系を利用することがで
き、その装填量を調整することによつて任意の金
属製円筒管に対して、その内面に所望の厚さで
種々のセラミツクコーテイングを簡単に施すこと
ができ、しかもそのセラミツクコーテイングは同
時に生成される金属層を介して円筒管に高い密着
状態で結合される利点を有する。
Fe 2 O 3 +2Al→Al 2 O 3 +2Fe +199Kcal/Al 2 O 3 1 mole 3Fe 3 O 4 +8Al→4Al 2 O 3 +9Fe +194Kcal/Al 2 O 3 1 mole According to this method, generally the above Al− Thermite reaction systems made of not only iron oxides but also various strong reducing elements and metal oxides can be used, and by adjusting the loading amount, the inner surface of any metal cylindrical tube can be used. Various ceramic coatings can be easily applied to the desired thickness, and the ceramic coating has the advantage that it can be bonded to the cylindrical tube in a highly adhesive manner via a metal layer produced at the same time.

ここで、この遠心テルミツト法においても最も
利用性が大で、かつ代表的な前述の鉄系円筒管に
対しAl−Fe酸化物系のテルミツト反応を適用す
る場合について更に考察すると、この場合の鉄系
円筒管の内面に被覆形成されるセラミツク層は、
前記反応式より明らかなように、α−Al2O3(コ
ランダム)を主とするものからなる。この場合に
おける遠心テルミツト法の問題点として、その生
成セラミツク層の気孔率が高いことが掲げられ
る。
Now, further consideration will be given to the case where the Al-Fe oxide-based thermite reaction is applied to the aforementioned iron-based cylindrical tube, which is the most widely used and typical example of the centrifugal thermite method. The ceramic layer coated on the inner surface of the cylindrical tube is
As is clear from the above reaction formula, it mainly consists of α-Al 2 O 3 (corundum). A problem with the centrifugal thermite method in this case is that the resulting ceramic layer has a high porosity.

そこで、本発明者等はこの問題を改善するた
め、先に特願昭56−144376号において、テルミツ
ト剤に添加物としてSiO2の粉末あるいは粒子を
添加する方法を提案した。この方法は、前記問題
の改善に大いに貢献したのであるが、尚、金属層
とセラミツク層との分離が不十分であり、またセ
ラミツク表面の平滑性に問題があつた。
Therefore, in order to improve this problem, the present inventors previously proposed in Japanese Patent Application No. 144376/1983 a method of adding SiO 2 powder or particles as an additive to the thermite agent. Although this method greatly contributed to the improvement of the above-mentioned problems, the separation of the metal layer and the ceramic layer was insufficient, and there were also problems with the smoothness of the ceramic surface.

本発明はかかる点に鑑みなされたもので、円筒
管内面にテルミツト反応を利用してセラミツクコ
ーテイングする場合、セラミツク層の気孔率の低
下をはじめ、金属層とセラミツク層の分離の促進
及び凝固後のセラミツク表面の平滑化、外観の改
善を目的としている。そして、その特徴とすると
ころは、円筒管内に、テルミツト剤を装填し、遠
心力場内で該テルミツト剤に着火し、テルミツト
反応を行なわせて、前記円筒管内面にテルミツト
反応により生成された金属及びセラミツク層を被
覆形成する方法において、前記テルミツト剤を装
填する前に、予め円筒管内面にバインダーを介し
て結合したケイ素化合物又は金属化合物粉末の被
膜を形成する点にある。
The present invention has been developed in view of the above, and when ceramic coating is applied to the inner surface of a cylindrical tube using thermite reaction, it reduces the porosity of the ceramic layer, promotes the separation between the metal layer and the ceramic layer, and improves the coating after solidification. The purpose is to smooth the ceramic surface and improve its appearance. The feature is that a thermite agent is loaded into a cylindrical tube, the thermite agent is ignited in a centrifugal force field, a thermite reaction occurs, and the metal and metal generated by the thermite reaction are formed on the inner surface of the cylindrical tube. The method for forming a coating with a ceramic layer consists in forming a coating of silicon compound or metal compound powder bonded via a binder on the inner surface of the cylindrical tube before loading the thermite agent.

以下本発明について詳述する。 The present invention will be explained in detail below.

先ず、本発明に使用する円筒管1について述べ
る。前記説明では、この円筒管1として鉄系のも
のについて述べたが、本発明に使用する円筒管1
は鉄系に限らず、テルミツト反応に耐える高融点
の金属、例えば銅、ニツケルなども例示でき、更
にコンクリート、石綿セメントのような無機質系
のものであつてもよい。また、該円筒管1は、予
め作成されたものである必要はなく、通常の遠心
鋳造により形成された円筒管をそのまま引き続い
て使用してもよい。
First, the cylindrical tube 1 used in the present invention will be described. In the above description, an iron-based cylindrical tube 1 was described as the cylindrical tube 1, but the cylindrical tube 1 used in the present invention
is not limited to iron-based materials, but may also include metals with high melting points that can withstand thermite reactions, such as copper and nickel, and may also be inorganic materials such as concrete and asbestos cement. Further, the cylindrical tube 1 does not need to be previously produced, and a cylindrical tube formed by ordinary centrifugal casting may be used as is.

次に、前記円筒管1内面に、バインダーを介し
て結合したケイ素化合物の一例としてSiO2粉末
の被膜の形成方法について述べる。該被膜は、
SiO2粉末に無機バインダー(例えば、水ガラス
水溶液)を加えて泥状にした後、これを前記円筒
管1内面に、刷毛やスプレーにより、均一な厚み
有する膜として形成し、しかる後に乾燥固化させ
たものである。第3図は、上記のようにしてバイ
ンダーを介して結合したSiO2粉末の被膜5を有
する円筒管1の横断面を示している。ここで、
SiO2のバインダーとしては、たとえば水ガラス
などが考えられ、粉末に対し、数%〜10数%ぐら
い加えることができる(場合によつては、30%ぐ
らいまで)。SiO2粉末の結合度を増したい場合
は、水ガラスを増量する。また、SiO2粉末の粒
子の大きさは、溶融セラミツクへの溶出の容易さ
から0.1mm以下が好ましく、使用するSiO2粉末の
重量は、使用テルミツト剤の重量の1/20〜1/10程
度とする。
Next, a method of forming a film of SiO 2 powder as an example of a silicon compound bonded to the inner surface of the cylindrical tube 1 via a binder will be described. The coating is
After adding an inorganic binder (for example, an aqueous water glass solution) to the SiO 2 powder to form a slurry, this is formed as a film with a uniform thickness on the inner surface of the cylindrical tube 1 by brushing or spraying, and then dried and solidified. It is something that FIG. 3 shows a cross section of a cylindrical tube 1 with a coating 5 of SiO 2 powder bonded via a binder as described above. here,
As a binder for SiO 2 , for example, water glass can be used, and it can be added to the powder in an amount of about several percent to several tens of percent (in some cases, up to about 30%). If you want to increase the bonding degree of SiO 2 powder, increase the amount of water glass. In addition, the particle size of the SiO 2 powder is preferably 0.1 mm or less for ease of elution into the molten ceramic, and the weight of the SiO 2 powder used is approximately 1/20 to 1/10 of the weight of the thermite agent used. shall be.

ところで、前記被膜5の生成素材は、SiO2
あるが、生成素材としては他のケイ素化合物又は
金属酸化物を適用することができる。ここで、他
のケイ素化合物又は金属化合物又とは、セラミツ
クと固溶体を形成し、溶融セラミツクの流動性を
増し、凝固後のセラミツクの性能を向上させる酸
化物を意味し、例えばケイ素化合物として
Si3N4、金属化合物としてTiO2、ZrO2、CuO2
MgO、BaO、CoO、NiO、MnO、Cr2O3
Ni2O3、Mn3O4、NaF2、CaF2などを例示でき
る。
Incidentally, although the material for forming the film 5 is SiO 2 , other silicon compounds or metal oxides may be used as the material for forming the film 5 . Here, other silicon compounds or metal compounds mean oxides that form a solid solution with ceramics, increase the fluidity of molten ceramics, and improve the performance of ceramics after solidification. For example, as silicon compounds,
Si 3 N 4 , TiO 2 , ZrO 2 , CuO 2 as metal compounds,
MgO, BaO, CoO, NiO, MnO, Cr2O3 ,
Examples include Ni 2 O 3 , Mn 3 O 4 , NaF 2 and CaF 2 .

以上のようにして、円筒管1内面に、バインダ
ーを介して結合したSiO2粉末の被膜5を形成し
た後、第4図に示すように、該円筒管1を遠心機
金枠6内に挿入し、その両端を中心部に孔8を有
するバンド7,7で固定し、所定の回転に達した
ところで、テルミツト剤散布用の樋9をバンド7
の孔8へ挿入反転し、テルミツト剤2を被膜5が
形成された円筒管1内へ散布する。今、被膜5は
SiO2粉末が比較的強固に係合されているので、
単にSiO2粉末を遠心力で円筒管1内面に付着さ
せた程度のSiO2層に比べて、テルミツト剤2の
散布時に被膜5が破壊されることはなく、テルミ
ツト剤2が直に円筒管1内面に接触する心配がな
い。
After forming the coating 5 of SiO 2 powder bonded via the binder on the inner surface of the cylindrical tube 1 as described above, the cylindrical tube 1 is inserted into the centrifuge frame 6 as shown in FIG. Then, its both ends are fixed with bands 7, 7 having a hole 8 in the center, and when a predetermined rotation is reached, the gutter 9 for distributing thermite agent is connected to the band 7.
The thermite agent 2 is sprayed into the cylindrical tube 1 on which the coating 5 is formed. Now, coating 5 is
Since the SiO 2 powder is relatively tightly engaged,
Compared to a SiO 2 layer that is simply made by adhering SiO 2 powder to the inner surface of the cylindrical tube 1 using centrifugal force, the coating 5 is not destroyed when the thermite agent 2 is sprayed, and the thermite agent 2 is directly attached to the cylindrical tube 1. There is no need to worry about contact with the inside.

次に、前記テルミツト剤2が散布された円筒管
1を更に高速で回転させ所定の回転(通常、
GNoで70〜200)にしたところで、円筒管1中の
テルミツト剤2に着火し、テルミツト反応を起こ
させる。このとき被膜5は、テルミツト反応の高
温により、そのバインダーが解離し、粉末SiO2
層となり、溶融セラミツク中への溶出を容易にす
る。また、前記粉末SiO2層は、テルミツト反応
生成熱の円筒管1への熱伝導を防ぎ、つまり断熱
層として作用し、テルミツト反応による高温状態
を保持し、溶融セラミツク中の気泡の放出や金属
層とセラミツク層の分離を促進する。
Next, the cylindrical tube 1 sprayed with the thermite agent 2 is rotated at a higher speed to a predetermined rotation (usually
When the GNo is set to 70 to 200), the thermite agent 2 in the cylindrical tube 1 is ignited to cause a thermite reaction. At this time, the binder of the film 5 dissociates due to the high temperature of the thermite reaction, and the film 5 becomes powdered SiO 2
It forms a layer and facilitates elution into the molten ceramic. In addition, the powdered SiO 2 layer prevents the heat generated by the thermite reaction from being conducted to the cylindrical tube 1, that is, acts as a heat insulating layer, maintains the high temperature state caused by the thermite reaction, and prevents the release of air bubbles in the molten ceramic and the metal layer. and promotes the separation of ceramic layers.

かくして、テルミツと反応が開始されると、テ
ルミツト剤はその反応生成物たる溶融金属と溶融
セラミツクとに変り、さらにこれらは両者の比重
差に基づき分離される。この頃には、前記粉末状
と化したSiO2は、比重差により溶融アルミナ中
へ溶出し、Al2O3−SiO2系セラミツクを形成す
る。こうして、テルミツト反応が終了し、円筒管
1を金枠6より取り出すと、良質なセラミツク
が、その内面にコーテイングされた複合構造管が
得られる。
Thus, once the reaction with thermite is initiated, the thermite agent is converted into the reaction products molten metal and molten ceramic, which are further separated based on the difference in specific gravity between the two. At this time, the powdered SiO 2 dissolves into the molten alumina due to the difference in specific gravity, forming Al 2 O 3 —SiO 2 ceramic. When the thermite reaction is completed and the cylindrical tube 1 is taken out from the metal frame 6, a composite structure tube whose inner surface is coated with high-quality ceramic is obtained.

次に、本発明の実施例、比較例を掲げて説明す
る。
Next, examples and comparative examples of the present invention will be described.

実施例 1 円筒管として、外径101.6mm、厚さ4.2mm、全長
250mmの鋼管を使用し、管内面の錆を落とし磨い
た後、その内面にSiO2150g(粒径約40μm以下)
に水と水ガラス、それぞれ100g、50gを混合し
泥状にしたものを均一な厚みを有するように塗布
し、しかる後に自然乾燥させ、更に加熱乾燥して
水分を完全に除去し、厚みが約1〜2mmの被膜を
得た。
Example 1 As a cylindrical tube, outer diameter 101.6 mm, thickness 4.2 mm, total length
After using a 250mm steel pipe and polishing the inner surface of the pipe to remove rust, 150g of SiO 2 (particle size of approximately 40μm or less) is applied to the inner surface.
Mix 100g and 50g of water and water glass, make a slurry, and apply it to a uniform thickness, then let it dry naturally, and then heat dry it to completely remove moisture, until the thickness is approx. A coating of 1-2 mm was obtained.

次に、この被膜付の鋼管を遠心機金枠内に挿入
し、その両端をバンドで固定した後、金枠を約
500rpmで回転し、Al−Fe酸化物系テルミツト剤
1500gを管内へ散布した。その後、金枠の回転を
1600rpmに上げたところで、管内テルミツト剤に
着火し、テルミツト反応を起こさせた。反応終了
後充分時間をおき、金枠を冷却させ、遠心機を停
止し金枠より鋼管を取り出し、セラミツク複合管
を得た。
Next, insert this coated steel pipe into the centrifuge metal frame, secure both ends with bands, and then close the metal frame to approximately
Rotates at 500 rpm, Al-Fe oxide thermite agent
1500g was sprayed into the tube. After that, rotate the gold frame.
When the speed was increased to 1,600 rpm, the thermite agent in the tube ignited, causing a thermite reaction. After a sufficient period of time had passed after the reaction, the metal frame was cooled, the centrifuge was stopped, and the steel tube was taken out from the metal frame to obtain a ceramic composite tube.

この複合鋼管の横断面を観察すると、鋼管の内
面より約1.5mmの生成鉄を介して、約3.0mmのセラ
ミツク層が形成されており、このセラミツク層は
極めて緻密であり、その表面は平滑であつた。ま
た、金属層とセラミツク層の分離もよく、明瞭に
その区分が判別できた。
Observing the cross section of this composite steel pipe, it is found that a ceramic layer of approximately 3.0 mm is formed from the inner surface of the steel pipe through approximately 1.5 mm of produced iron, and this ceramic layer is extremely dense and its surface is smooth. It was hot. In addition, the metal layer and ceramic layer were well separated, and their divisions could be clearly distinguished.

実施例 2 円筒管として、外系101.6mm、厚さ4.2mm、全長
250mmの鋼管を使用し、内表面の錆を落として磨
いた後、その内面にSiO2約60g(粒径約40μm以
下)に水と水ガラスを、それぞれ40g、20gを混
合し泥状にしたものを均一な厚みを有するように
塗布し、しかる後に自然乾燥させ、更に加熱乾燥
させ水分を完全に除去し、該鋼管の内面に被膜を
形成した。
Example 2 As a cylindrical tube, outer diameter 101.6 mm, thickness 4.2 mm, total length
A 250 mm steel pipe was used, and after polishing the inner surface to remove rust, the inner surface was mixed with approximately 60 g of SiO2 (particle size of approximately 40 μm or less), 40 g of water, and 20 g of water glass, respectively, to form a slurry. The material was coated to have a uniform thickness, and then air-dried, and then heated and dried to completely remove moisture, thereby forming a coating on the inner surface of the steel pipe.

次に、この被膜付の遠心機金枠内に、厚さ31mm
の黒鉛製円筒を介して挿入し、その両端をバンド
で固定した。黒鉛製円筒を介した理由は、黒鉛の
熱伝導率が、金枠の材料である鋼のそれより大き
く、前記被膜の作用を確認するのに好都合だから
である。ちなみに、黒鉛の熱伝導率は、
0.31cal/cm.sec.℃、鋼のそれは、0.13cal/cm.
sec.℃である。
Next, a 31 mm thick
It was inserted through a graphite cylinder, and both ends were secured with bands. The reason for using a graphite cylinder is that the thermal conductivity of graphite is higher than that of steel, which is the material of the metal frame, and it is convenient for confirming the effect of the coating. By the way, the thermal conductivity of graphite is
0.31 cal/cm. sec.℃, that of steel is 0.13cal/cm.
sec.℃.

そして、前記金枠を約500rpmで回転させ、
Fe2O3:Al=699g:236gからなるテルミツト剤
935gを前記鋼管内へ散布した後、回転を
1580rpm(GNOで130)に上げたところで、管内
テルミツト剤に着火し、テルミツト反応を起こさ
せた。反応終了後充分時間をおき、金枠を冷却さ
せ、遠心機を停止し金枠より鋼管を取り出し、セ
ラミツク複合鋼管を得た。
Then, rotate the metal frame at about 500 rpm,
Thermite agent consisting of Fe 2 O 3 :Al=699g:236g
After dispersing 935g into the steel pipe, rotate it.
When the speed was increased to 1580 rpm (130 for GNO), the thermite agent in the tube ignited, causing a thermite reaction. After a sufficient period of time had passed after the reaction, the metal frame was cooled, the centrifuge was stopped, and the steel tube was taken out from the metal frame to obtain a ceramic composite steel tube.

この複合鋼管の横断面を観察すると、実施例1
の場合と同様に、金属層とセラミツク層との分離
もよく、そのセラミツク層は非常に緻密なもので
あり、またその表面は、美麗で平滑であつた、ま
た、圧壊強度を調べたところ約2200Kg/cm2であつ
た。
Observing the cross section of this composite steel pipe, Example 1
As with the case of It was 2200Kg/ cm2 .

比較例 1 実施例2におけるセラミツク複合構造管の製造
条件において、鋼管内面に被膜を形成する点を被
膜を形成せず、他は同様の条件でセラミツク複合
構造管を製造したところ、金属層とセラミツク層
の分離が悪く、セラミツク表面には凹凸が生じ、
また微粉末状の白色汚れも目立つた。そして圧壊
強度を調べたところ、1900Kg/cm2であり実施例1
の場合より低い値を示した。
Comparative Example 1 A ceramic composite structure pipe was manufactured under the same conditions as in Example 2 except that no film was formed on the inner surface of the steel pipe, and the metal layer and ceramic Layer separation is poor, causing unevenness on the ceramic surface.
In addition, fine powdery white stains were also noticeable. When the crushing strength was examined, it was found to be 1900Kg/cm 2 in Example 1.
The value was lower than that of .

比較例 2 実施例2におけるセラミツク複合構造管の製造
条件において、鋼管内面に被膜を形成する点を被
膜を形成せず、またテルミツト剤として、実施例
2のものを、これにSiO265gを加えたものとし、
他は同様の条件でセラミツク複合構造管を製造し
たところ、未だ、金属層とセラミツク層分離が十
分でなく、また、セラミツク層表面に気孔が目立
つた。しかし、セラミツク層は全般的に非常に緻
密化されており、圧壊強度は約2480Kg/cm2と比較
的良い値を示した。
Comparative Example 2 Under the manufacturing conditions of the ceramic composite structure pipe in Example 2, no film was formed on the inner surface of the steel pipe, and 65 g of SiO 2 was added to the material of Example 2 as a thermite agent. As a matter of fact,
When a ceramic composite structure tube was manufactured under the same conditions, the metal layer and ceramic layer were still not separated sufficiently, and pores were noticeable on the surface of the ceramic layer. However, the ceramic layer was generally very densified, and the crushing strength was approximately 2480 Kg/cm 2 , a relatively good value.

以上のように本発明によると、生成セラミツク
層の品質が他のものに比べて優れたものであるこ
とが判つたが、本発明者等は、更に前記被膜の作
用、つまりセラミツク層を良質化する原因となる
テルミツト反応の高温保持作用を確めるため、放
射温度計を用いて、実施例2、比較例1、比較例
2について、セラミツク生成中の鋼管内の温度状
態を観察した。
As described above, according to the present invention, it has been found that the quality of the produced ceramic layer is superior to that of other ceramic layers, but the present inventors have further improved the effect of the coating, that is, the quality of the ceramic layer. In order to confirm the high-temperature holding effect of the thermite reaction that causes this, the temperature conditions inside the steel pipes during ceramic formation were observed using a radiation thermometer for Example 2, Comparative Example 1, and Comparative Example 2.

この観察方法を述べると、第5図に示すように
放射温度計12は、水平に設置された遠心機金枠
6の一方のバンド7から約3m離れた位置に設置
された。そして、バンド7の孔8を通して、水平
方向と約18度の角度を有して、黒鉛製円筒11中
の鋼管10の内面で、鋼管10の末端より約100
mm離れた位置の温度を測定すべく、放射温度計1
2の観測方向が設定され、その放射率は、0.3に
固定された。また、この放射温度計12には、変
換器12及びレコーダ13が接続され、鋼管10
の内面温度が自動的に記録された。
To describe this observation method, as shown in FIG. 5, the radiation thermometer 12 was installed at a position approximately 3 m away from one band 7 of the centrifuge metal frame 6, which was installed horizontally. Then, through the hole 8 of the band 7, the inner surface of the steel pipe 10 in the graphite cylinder 11 is inserted about 100 degrees from the end of the steel pipe 10 at an angle of about 18 degrees with the horizontal direction.
To measure the temperature at a distance of mm, a radiation thermometer 1
Two observation directions were set, and the emissivity was fixed at 0.3. Further, a converter 12 and a recorder 13 are connected to this radiation thermometer 12, and a steel pipe 10
The internal temperature was automatically recorded.

上記温度測定の結果を第6図に示す。第6図
は、見かけ温度2000℃を越えてからの経過時間に
伴う見かけの温度を示しており、セラミツクが溶
融状態であると考えられる2000℃以上の高温保持
時間は、実施例2の場合が、9.2秒、比較例1の
場合が6.6秒であり、実施例2の場合、つまり鋼
管9内面に被膜5を形成した場合が、他の場合、
つまり鋼管9内面に被膜5を形成しない場合に比
べて、高温保持時間が非常に長いことが確認され
た。
The results of the temperature measurement described above are shown in FIG. Figure 6 shows the apparent temperature with the elapsed time after the apparent temperature exceeds 2000°C. , 9.2 seconds, 6.6 seconds in the case of Comparative Example 1, and in the case of Example 2, that is, when the coating 5 was formed on the inner surface of the steel pipe 9, in other cases,
In other words, it was confirmed that the high temperature holding time was much longer than when the coating 5 was not formed on the inner surface of the steel pipe 9.

以上述べたように、本発明による複号構造管の
製造方法によれば、気孔率の低い緻密な、また、
金属層との分離が明瞭になされた、表面が平滑で
あり美麗なセラミツク層が、その内面にコーテイ
ングされた品質の優れたセラミツク複合構造管を
得ることができる。
As described above, according to the method for manufacturing a double-structured pipe according to the present invention, a dense pipe with low porosity and
It is possible to obtain a high-quality ceramic composite structure tube whose inner surface is coated with a smooth and beautiful ceramic layer that is clearly separated from the metal layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、遠心テルミツト法の製造
工程を示す円筒管の横断面説明図であり、第1図
はテルミツト反応前のテルミツト剤装填状態を、
第2図は、テルミツト反応後における金属層を介
してのセラミツク層の被覆状態を示している。第
3図から第5図は、本発明の実施例を示し、第3
図は、被膜が形成された円筒管の横断面図、第4
図は、被膜が形成された円筒管にテルミツト剤散
布用樋の挿入中の状態説明図、第5図は、テルミ
ツト反応中の円筒管内面の温度を観測している状
態説明図、第6図は、見かけ温度2000℃を越えて
からの経過時間に対するテルミツト反応中の円筒
管内面の温度の関係を示す図である。 1……円筒管、2……テルミツト剤、3……金
属層、4……セラミツク層、5……被膜。
1 and 2 are explanatory cross-sectional views of a cylindrical tube showing the manufacturing process of the centrifugal thermite method, and FIG. 1 shows the thermite agent loaded state before the thermite reaction.
FIG. 2 shows how the ceramic layer is covered with the metal layer after the thermite reaction. 3 to 5 show embodiments of the present invention;
The figure is a cross-sectional view of a cylindrical tube with a coating formed thereon.
The figure is an explanatory diagram of the state in which the thermite dispersion gutter is being inserted into the cylindrical tube on which the coating has been formed. Figure 5 is an explanatory diagram of the state in which the temperature on the inner surface of the cylindrical tube is observed during the thermite reaction. Figure 6 is is a diagram showing the relationship between the temperature of the inner surface of the cylindrical tube during thermite reaction and the elapsed time after the apparent temperature exceeds 2000°C. DESCRIPTION OF SYMBOLS 1... Cylindrical tube, 2... Thermite agent, 3... Metal layer, 4... Ceramic layer, 5... Coating.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒管内に、テルミツト剤を装填し、遠心力
場内で該テルミツト剤に着火し、テルミツト反応
を行なわせて、前記円筒管内面にテルミツト反応
により生成された金属及びセラミツク層を被覆形
成する方法において、前記テルミツト剤を装填す
る前に、予め円筒管内面にバインダーを介して結
合したケイ素化合物又は金属化合物粉末の被膜を
形成することを特徴とする複合構造管の製造方
法。
1. A method of loading a thermite agent into a cylindrical tube, igniting the thermite agent in a centrifugal force field, causing a thermite reaction, and coating the inner surface of the cylindrical tube with a metal and ceramic layer generated by the thermite reaction. . A method for manufacturing a composite structure tube, characterized in that before loading the thermite agent, a coating of silicon compound or metal compound powder bonded via a binder is formed on the inner surface of the cylindrical tube in advance.
JP13730283A 1983-07-26 1983-07-26 Production of pipe having composite construction Granted JPS6027462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13730283A JPS6027462A (en) 1983-07-26 1983-07-26 Production of pipe having composite construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13730283A JPS6027462A (en) 1983-07-26 1983-07-26 Production of pipe having composite construction

Publications (2)

Publication Number Publication Date
JPS6027462A JPS6027462A (en) 1985-02-12
JPH0328255B2 true JPH0328255B2 (en) 1991-04-18

Family

ID=15195506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13730283A Granted JPS6027462A (en) 1983-07-26 1983-07-26 Production of pipe having composite construction

Country Status (1)

Country Link
JP (1) JPS6027462A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238976A (en) * 1985-04-15 1986-10-24 Agency Of Ind Science & Technol Production of metal-ceramic composite pipe
JPS61238970A (en) * 1985-04-15 1986-10-24 Agency Of Ind Science & Technol Manufacture of composite pipe
JPS6389677A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method
JPH06104904B2 (en) * 1986-10-03 1994-12-21 工業技術院長 Manufacturing method of composite structure pipe
JP2717541B2 (en) * 1988-04-21 1998-02-18 株式会社小松製作所 Method of forming ceramic layer on metal body

Also Published As

Publication number Publication date
JPS6027462A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
CA1266776A (en) Lining for protecting the interior of a metallurgical vessel and a method for forming said lining
JPH01166875A (en) Ceramic-metal composite material body and manufacture thereof
JPH0123426B2 (en)
JPH0328255B2 (en)
WO2001036348A1 (en) Insulating refractory material
JPS6362305B2 (en)
US4528244A (en) Fused silica shapes
JPS6328874B2 (en)
JPS5934470B2 (en) Manufacturing method of composite structure pipe
JP2002519302A (en) Molding material for producing refractory lining and fired molded member, lining, and method for producing molded member
JPS5934469B2 (en) Manufacturing method of composite structure pipe
JPS5819376B2 (en) Composite coating agent for centrifugal casting
JPH0113950B2 (en)
JPH0445339B2 (en)
JPS6236996B2 (en)
JP2003511341A (en) Carbon-containing heat-resistant article having protective coating
JPS5841782A (en) Oxidation prevention for graphite-containing refractories
JPH0132189B2 (en)
JPH0545675B2 (en)
GB2091592A (en) Refractory heat-insulating material
JPS593083A (en) Graphite crucible
RU2242339C2 (en) Method for joining hard alloy with cast base of tool
JP2000064060A (en) Member for nonferrous molten metal
JPH0519508B2 (en)
JPH0557357B2 (en)