JPS6236996B2 - - Google Patents

Info

Publication number
JPS6236996B2
JPS6236996B2 JP57012261A JP1226182A JPS6236996B2 JP S6236996 B2 JPS6236996 B2 JP S6236996B2 JP 57012261 A JP57012261 A JP 57012261A JP 1226182 A JP1226182 A JP 1226182A JP S6236996 B2 JPS6236996 B2 JP S6236996B2
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon nitride
silicon
pores
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012261A
Other languages
Japanese (ja)
Other versions
JPS58130175A (en
Inventor
Susumu Inoe
Teruyasu Tamamizu
Isao Sakashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP57012261A priority Critical patent/JPS58130175A/en
Publication of JPS58130175A publication Critical patent/JPS58130175A/en
Publication of JPS6236996B2 publication Critical patent/JPS6236996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム、鉛、亜鉛等の低融点金
属を溶融する場合に浸漬して使用される耐熱材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant material that is immersed and used when melting low-melting point metals such as aluminum, lead, and zinc.

例えば、溶融アルミニウムの浸漬保護管として
炭化珪素あるいは窒化珪素は濡れにくい材料とし
て従来から注目されているが、その特質上無気孔
のものを得ることができず、材料自体は耐蝕性が
あるにもかかわらず、気孔が起因するマイクロク
ラツクの発生等によつて長寿命のものは得られて
いなかつた。
For example, silicon carbide or silicon nitride have long been attracting attention as materials that are difficult to wet as immersion protection tubes for molten aluminum, but due to their characteristics, it is impossible to obtain porosity-free materials, and even though the materials themselves are corrosion resistant, However, due to the occurrence of microcracks caused by pores, long-life products have not been obtained.

このためその外表面にコート材を被覆すること
によつて気孔中に溶融アルミニウムの浸透を抑制
することも試みられているが、特にそのスラグに
よつてコート材が容易に侵され結局充分に耐用性
のあるものは得られていなかつた。更に炭化珪素
あるいは窒化珪素と同じ材料をC.V.D.法により
緻密なコーテイング膜を形成する方法も考えられ
ているが熱衝撃等によつて剥離を起し易く又高価
格になる等の欠点を有していた。
For this reason, attempts have been made to suppress the infiltration of molten aluminum into the pores by covering the outer surface with a coating material, but the coating material is easily attacked by the slag, and in the end it is not durable enough. I wasn't getting anything sexual. Furthermore, a method of forming a dense coating film using the same material as silicon carbide or silicon nitride using the CVD method has been considered, but this method has drawbacks such as being prone to peeling due to thermal shock, etc., and being expensive. Ta.

本発明は炭化珪素体あるいは窒化珪素体の気孔
中に溶融金属を容易に反応しない材料、即ちアル
ミナ、炭化珪素および窒化珪素の一種又は二種以
上からなる微紛を含浸充填せしめ、これを更に窒
化硼素系コート材が被覆したもので、従来の炭化
珪素あるいは窒化珪素質耐蝕性材料と比較して格
段の長寿命のものを得ることができたものであ
る。
The present invention impregnates and fills the pores of a silicon carbide body or silicon nitride body with fine powder made of a material that does not easily react with molten metal, that is, one or more of alumina, silicon carbide, and silicon nitride, and further nitrides the fine powder. It is coated with a boron-based coating material and has a much longer life than conventional silicon carbide or silicon nitride corrosion-resistant materials.

即ち、充填して使用するアルミナ、炭化珪素、
窒化珪素は比較的溶融金属には耐蝕性を有し、又
本体である炭化珪素体あるいは窒化珪素体に対し
比較的熱膨脹が近接しており、この点で本体の気
孔中にあつて安定した充填となつている。
That is, alumina, silicon carbide, and
Silicon nitride is relatively corrosion resistant to molten metal, and its thermal expansion is relatively close to the silicon carbide body or silicon nitride body, which is the body, so it is stable in the pores of the body. It is becoming.

本発明においてはこの充填体に更に窒化硼素系
コート材を被覆してあるためこのコート材が一部
ガラス化し本体とのなじみを良好にするのみでな
く気孔中に充填されている微粉の集合体に対して
も又気孔壁に対しても、その結合力を向上せしめ
ることができたものである。
In the present invention, since this filling body is further coated with a boron nitride-based coating material, this coating material partially vitrifies and not only improves the compatibility with the main body, but also aggregates of fine powder filled in the pores. It was possible to improve the bonding strength both to the pore walls and to the pore walls.

本体となる炭化珪素体あるいは窒化珪素体は通
常の成形法によつて得たものでよく、一般には20
%前後の気孔を有する。例えば炭化珪素体の場合
では、炭化珪素の粉末を炭素および珪素蒸気によ
つて結合せしめた再結晶体でもよく、又窒化珪素
結合炭化珪素体でもよい。又窒化珪素体の場合も
常法による方法によつて得たものでよい。
The silicon carbide body or silicon nitride body that forms the main body may be obtained by a normal molding method, and is generally made of 20
% of pores. For example, in the case of a silicon carbide body, it may be a recrystallized body in which silicon carbide powder is bonded with carbon and silicon vapor, or it may be a silicon carbide body bonded with silicon nitride. Also, in the case of a silicon nitride body, one obtained by a conventional method may be used.

これら炭化珪素体あるいは窒化珪素体の気孔中
に含浸せしめる充填材はアルミナ、炭化珪素およ
び窒化珪素の一種又は二種以上の混合粉からなる
微粉を使用する。即ち、前述の理由によつてそれ
自体溶融金属に対し耐蝕性を有し、しかもその熱
膨脹が炭化珪素体あるいは窒化珪素体を近接して
いることが好ましいためである。その粒径は本体
の気孔中に容易に含浸せしめることができる程度
のものであれば良く、通常5μ以下である。この
場合充填体は一旦焼成して充填物を焼結せしめて
もよい。
The filler to be impregnated into the pores of these silicon carbide bodies or silicon nitride bodies is a fine powder made of a mixed powder of one or more of alumina, silicon carbide, and silicon nitride. That is, for the above-mentioned reason, it is preferable that it has corrosion resistance against molten metal, and that its thermal expansion is in close proximity to the silicon carbide body or silicon nitride body. The particle size may be such that it can be easily impregnated into the pores of the main body, and is usually 5 μm or less. In this case, the filler may be fired once to sinter the filler.

本発明においては上記充填体に窒化硼素系コー
ト材を被覆することによつて本体をスラグ等から
保護するばかりでなく気孔中に充填された微粉部
分をも保護するものであるが、その組成は窒化硼
素を主成分とすることによつて上記目的に合致さ
せるべく選定したものである。例えば窒化硼素粉
末にリン酸アルミニウムを配合し、この水分散液
を塗布してもよいし、窒化硼素の一部を硼素、ア
ルミナ等他の成分に置換したものでもよい。
In the present invention, by coating the above-mentioned filling body with a boron nitride-based coating material, it not only protects the main body from slag etc. but also protects the fine powder portion filled in the pores, but the composition is It was selected to meet the above objective by having boron nitride as the main component. For example, aluminum phosphate may be blended with boron nitride powder and an aqueous dispersion of the mixture may be applied, or a portion of the boron nitride may be replaced with other components such as boron or alumina.

以下に本発明の一実施例について説明する。再
結晶法で得られた一端封じの炭化珪素管(気孔率
20%)に5μ以下のアルミナ粉20重量%、1μ以
下のアルミナ粉40重量%および5μ以下の炭化珪
素粉40重量%からなる混合粉を水に分散させた懸
濁液を含浸せしめた。乾燥後、窒化珪素粉および
リン酸アルミニウムからなるコート材を2mm厚に
塗布し、溶融アルミニウム浸漬用保護管を得た。
得られた保護管を730℃に加熱した溶融アルミニ
ウム中に浸漬し、特にスラグラインの耐蝕性を測
定したところ、6ケ月連続して浸漬してもほとん
ど変化は見られなかつた。
An embodiment of the present invention will be described below. Silicon carbide tube with one end sealed obtained by recrystallization method (porosity
20%) was impregnated with a suspension in water of a mixed powder consisting of 20% by weight of alumina powder of 5μ or less, 40% by weight of alumina powder of 1μ or less, and 40% by weight of silicon carbide powder of 5μ or less. After drying, a coating material consisting of silicon nitride powder and aluminum phosphate was applied to a thickness of 2 mm to obtain a protective tube for immersion in molten aluminum.
The obtained protective tube was immersed in molten aluminum heated to 730° C., and the corrosion resistance of the slag line in particular was measured, and almost no change was observed even after 6 months of continuous immersion.

同時に対比のため同寸法の再結晶炭化珪素質保
護管(マイカ粉とソーダガラスの混合粉からなる
コート材を塗布と併用比較したところ、このもの
は40日後に亀裂が入り保護管内部にまで溶融アル
ミニウムが浸透して来た。
At the same time, for comparison, we compared a recrystallized silicon carbide protection tube of the same size (using a coating material made of a mixed powder of mica powder and soda glass), which cracked after 40 days and melted inside the protection tube. Aluminum has penetrated.

本発明のものはこのように従来の炭化珪素体あ
るいは窒化珪素体の保有している特長を活用し、
且つその欠点部分を解消せしめることによつて従
来のものに見られない著しい効果を有するもので
あつた。
In this way, the present invention utilizes the features possessed by conventional silicon carbide bodies or silicon nitride bodies,
Moreover, by eliminating these drawbacks, it had remarkable effects not found in conventional products.

Claims (1)

【特許請求の範囲】[Claims] 1 気孔中にアルミナ、炭化珪素および窒化珪素
の一種又は二種以上からなる微末粉を含浸せしめ
た多孔質の炭化珪素体又は窒化珪素体の表面に窒
化硼素系コート材が被覆されてなる溶融金属浸漬
用耐蝕性材料。
1 Molten metal made by coating a boron nitride-based coating material on the surface of a porous silicon carbide body or silicon nitride body whose pores are impregnated with fine powder consisting of one or more of alumina, silicon carbide, and silicon nitride. Corrosion resistant material for immersion.
JP57012261A 1982-01-28 1982-01-28 Anticorrosive material for molten metal immersion Granted JPS58130175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012261A JPS58130175A (en) 1982-01-28 1982-01-28 Anticorrosive material for molten metal immersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012261A JPS58130175A (en) 1982-01-28 1982-01-28 Anticorrosive material for molten metal immersion

Publications (2)

Publication Number Publication Date
JPS58130175A JPS58130175A (en) 1983-08-03
JPS6236996B2 true JPS6236996B2 (en) 1987-08-10

Family

ID=11800424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012261A Granted JPS58130175A (en) 1982-01-28 1982-01-28 Anticorrosive material for molten metal immersion

Country Status (1)

Country Link
JP (1) JPS58130175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514912A (en) * 2003-03-26 2006-05-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Silicon carbide ceramic member having an oxide layer
US7732026B2 (en) 2003-03-26 2010-06-08 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic components having oxide layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227392A (en) * 1985-07-24 1987-02-05 京セラ株式会社 Steeping member for aluminum molten alloy
JPH0753621B2 (en) * 1986-06-12 1995-06-07 東芝セラミックス株式会社 Immersion protection tube for molten metal
JP2588554B2 (en) * 1987-12-29 1997-03-05 日立金属株式会社 Member for molten aluminum and method for producing the same
JP5070910B2 (en) * 2007-03-30 2012-11-14 株式会社Ihi Ceramic matrix composite member and method for producing ceramic matrix composite member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528327A (en) * 1975-06-25 1977-01-22 Nippon Ramineeto Kogyo Kk Writng stationery for the blind
JPS5338282A (en) * 1976-09-20 1978-04-08 Sharp Corp Production of gallium arsenide phophide diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528327A (en) * 1975-06-25 1977-01-22 Nippon Ramineeto Kogyo Kk Writng stationery for the blind
JPS5338282A (en) * 1976-09-20 1978-04-08 Sharp Corp Production of gallium arsenide phophide diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514912A (en) * 2003-03-26 2006-05-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Silicon carbide ceramic member having an oxide layer
US7732026B2 (en) 2003-03-26 2010-06-08 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic components having oxide layer

Also Published As

Publication number Publication date
JPS58130175A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
US4187344A (en) Protective silicon nitride or silicon oxynitride coating for porous refractories
PT95732A (en) ANTIBIALISTIC MATERIALS AND PROCESSES FOR THE MANUFACTURE OF THE SAME
US3243397A (en) Mold and core coating composition from calcined hydrated aluminum silicate, mica, and bentonite
CA2227839C (en) Refractory material of vitreous silica
KR960011356B1 (en) Insulating coating for refractories, coating process and the associated articles
JPS6236996B2 (en)
US3682686A (en) Method of manufacturing carbonaceous refractory products
CA2012235A1 (en) Transfer tube with insitu heater
CN105642877B (en) Silicon carbide whisker combination high-strength compound submersed nozzle and manufacture method
CN1062248C (en) Refractory for continuous casting and immersion type riser
US4528244A (en) Fused silica shapes
EP1307613A4 (en) Boron nitride paste composition, boron nitride "shell" coated ceramic structure, and process of manufacturing
GB1576501A (en) Refractory mouldable composition
US5022150A (en) Method for producing heat transfer tube with insitu heater
US4404154A (en) Method for preparing corrosion-resistant ceramic shapes
US4978039A (en) Transfer tube with insitu heater
JPS6159276B2 (en)
JP3944871B2 (en) Carbon-containing ceramic sintered body
JPS593083A (en) Graphite crucible
JP2004500988A (en) Insulating material and method for coating spouts, pouring tubes, melt flow protection tubes, and other workpieces for pouring or transferring molten metal
JPS6119598B2 (en)
JPS62241874A (en) Immersion protective pipe for molten metal
JP2559324B2 (en) Heat resistant ceramic material
JPH0343231B2 (en)
JP2559325B2 (en) Heat resistant ceramic material