JPH0557357B2 - - Google Patents

Info

Publication number
JPH0557357B2
JPH0557357B2 JP60227604A JP22760485A JPH0557357B2 JP H0557357 B2 JPH0557357 B2 JP H0557357B2 JP 60227604 A JP60227604 A JP 60227604A JP 22760485 A JP22760485 A JP 22760485A JP H0557357 B2 JPH0557357 B2 JP H0557357B2
Authority
JP
Japan
Prior art keywords
thermite
agent
ceramics
added
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60227604A
Other languages
Japanese (ja)
Other versions
JPS6286173A (en
Inventor
Osamu Odawara
Yasumasa Ishii
Hiroshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP22760485A priority Critical patent/JPS6286173A/en
Publication of JPS6286173A publication Critical patent/JPS6286173A/en
Publication of JPH0557357B2 publication Critical patent/JPH0557357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/06Compacting only by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、テルミツト反応を利用して母管内面
にセラミツクス層を被覆形成する方法の改良に係
り、テルミツト反応を促進させると共にセラミツ
クスの性能を改善する方法に関する。 (従来の技術) 母管内にセラミツクス層を被覆形成せしめてな
る複合管は、セラミツクス層が耐熱性、耐摩耗
性、耐食性等に良好な特性を発揮するため、各種
流体の輸送管や工業用配管部材として広汎な適用
用途を有している。 この種複合管の製造手段としては、従来種々の
方法が実施されてきているが、最近ではその好適
な製造手段として、遠心力とテルミツト反応を利
用するいわゆる遠心テルミツト法が提起されてい
る。すなわち、この方法は第1図に示すように、
母管1内に、例えばAlとFe2O3の如き金属還元剤
と金属酸化物との一定比率の混合物からなるテル
ミツト剤を装填しテルミツト剤層2を形成し、こ
れを高速回転による遠心力場内で着火して、(1)式
に例示する如きテルミツト反応を行わしめ、この
発熱反応により生成される溶融金属と溶融セラミ
ツクスとを比重分離して、第2図に示すように母
管1内面に生成金属層3を介して所望の生成セラ
ミツクス層4を被覆形成するものである。 Fe2O3+2Al→Al2O3+2Fe +199Kcal/Al2O31モル …(1) 前記金属酸化物と金属還元剤との混合比は、通
常理論混合比に調整されている。例えば、前記の
Fe2O3とAlとの例では、モル比で Fe2O3:Al=1:2 であり、重量比では Fe2O3:Al=2.96:1 である。 しかし、金属酸化物と金属還元剤とが理論混合
比とされたテルミツト主剤だけでは、生成セラミ
ツクス層がポーラスとなるので、特公昭59−
34470号公報に開示されているようにSiO2(ケイ
酸)を前記主剤に対して5〜15重量%添加し、セ
ラミツクスの緻密化が図られている。 (発明が解決しようとする問題点) しかしながら、SiO2を添加した場合には、生
成セラミツクスにおいて、コランダム(α−Al2
O3)の粒界にSiO2のガラス相及びSiO2とFeOと
の化合物(Fe2SiO4)相が生成し、セラミツクス
中のコランダムの比率が低下し、強度、硬さを減
ずる結果を招来する。また、酸性液中(特に高温
下)では、Fe2SiO4相中のFe分が溶出するため、
十分な耐食性が得られないという欠点があつた。
因みに、7%SiO2を添加した時、生成セラミツ
クス中にFeOは14%程度含有する。 本発明は叙上の問題点に鑑み、遠心テルミツト
法において、セラミツクスの緻密化を損なうこと
なく、セラミツクス中のFeOを減少せしめ、延い
ては強度、硬度及び耐食性の向上を目的としてな
されたものである。 (問題点を解決するための手段) 上記目的を達成するために、本発明の手段とす
るところは、理論配合された酸化鉄とAlとから
なるテルミツト主剤にSiCを前記主剤に対してSi
分で1.5〜4.0重量%添加した添加テルミツト剤を
遠心テルミツト法におけるテルミツト剤として用
いる点にある。 (実施例) 本発明者は、生成セラミツクス中にFeOが多く
残留するのは、テルミツト剤中の金属還元剤の還
元力が弱いこと、更にテルミツト反応が大気中で
行われるため、金属酸化物が金属還元剤により有
効に還元されないためと考えた。 かかる考えに基づき鋭意研究した結果、テルミ
ツト反応を大気と遮断して行い、かつテルミツト
剤の金属還元剤の還元力を高め、更に生成セラミ
ツクスの緻密化にも寄与することのできる方策を
見出すに至つた。 すなわち、理論配合された酸化鉄とAlとから
なるテルミツト主剤にSiCを添加した添加テルミ
ツト剤を遠心テルミツト法におけるテルミツト剤
として用いるのである。 テルミツト反応による生成熱は、例えばFe2O3
とAl系の場合、3000℃にまで達する。一方、SiC
の分解温度は2600℃であるので、テルミツト反応
に際して、SiCは容易にSiとCとに分解する。Si
は過剰還元剤として作用し、未反応酸化鉄分のセ
ラミツクス中の残留量を減少せしめ、また凝固過
程ではSiO2(ガラス相)を形成し、コランダム粒
界を埋めてセラミツクスの緻密化に寄与する。一
方、Cは酸化、燃焼してCO2、COガスとなり反
応系全体を大気から遮断すると共に、より良好な
還元性雰囲気を形成して、未反応酸化鉄の残留量
を減少せしめる。 尚、反応系と大気とを遮断するために、N2
スやArガス雰囲気中で反応を行うことを試みた
が、母管の両端開放状態でかつテルミツト剤の表
層にガス流を形成するだけでは、十分な遮断は困
難であつた。また、母管全体をチヤンバー内に設
け、真空脱気後、前記不活性ガスを封入すること
により、大気との完全な遮断が可能になるが、か
かる場合は、特殊な設備を必要とし、生産性低下
を余儀なくされる。 本発明者はSiCの好適な添加量を見出すため
に、テルミツト主剤に金属Siを種々の割合で添加
して、Siの添加量がセラミツクスの気孔率及びセ
ラミツクスと生成鉄との密着せん断力に如何なる
影響を及ぼすかについて調べた。その結果を第3
図及び第4図に示す。 第3図は、Si添加量とセラミツクス気孔率との
関係を示すグラフ図であつて、Si無添加の場合
は、セラミツクス気孔率が25%程度と極めてポー
ラスであるが、Si:1〜5%で緻密となり、5%
を越えると逆にポーラスな傾向が出てくる。 第4図は、Si添加量と生成鉄−生成セラミツク
ス間の密着せん断力との関係を示したグラフ図で
ある。密着せん断力は第5図の如く、遠心テルミ
ツト法により製造された複合管(母管として鋼管
を使用)を用い、母管1及び生成鉄層3′を押抜
台5に載置し、生成セラミツクス層4のみをポン
チ6を介して押圧して生成セラミツクス層4が押
抜かれた時の押圧力を基に算出した。同図による
と、Siが4%を越えると密着せん断力がSi無添加
のとき(約120Kg/cm2)よりもかなり低下するこ
とが判る。このとき、複合管を断面観察した結
果、生成セラミツクス層4と生成鉄層3′との境
界に空隙がかなり発生しているのが観察された。 以上は、テルミツト主剤として(Fe2O3+2Al)
を用いた場合について説明したが、金属酸化鉄と
してFe3O4、FeOを用いた場合でも略同様の結果
を得た。 これらのことから、理論配合された酸化鉄と
Alのテルミツト主剤に対して重量比率でSiを1.5
〜4%添加したものは、 セラミツクス気孔率2〜3% 生成鉄−生成セラミツクス間の密着せん断力
250〜100Kg/cm2 を示して、良好なセラミツクスライニング管を得
ることができる。 尚、Si1.5〜4%添加した場合の、生成セラミ
ツクス中のFeOは5%程度であつた。 以上のことから、SiCは、テルミツト主剤に対
して、Si分で1.5〜4%(SiCのみで2.1〜5.7%)
添加すれば、緻密でかつライニング状態の良好な
複合管を得ることが判る。 尚、添加テルミツト剤の母管への装填方法とし
ては、テルミツト主剤にSiCを添加混合したもの
を母管に散布する方法のほか、SiC粉末を母管に
散布した後、その上面にテルミツト主剤を散布し
てもよい。また、母管としては、鋼管等の金属系
に限らずコンクリート管、陶管等の無機系のもの
でもよい。 次に他の具体的な実施例について、従来例、比
較例と共に掲げて説明する。尚、従来例はSiO2
添加のもの、比較例は金属Si添加のものである。 (1) 第1表の添加テルミツト剤を混合調製し、同
表に記載した母管(鋼管)に略均一な厚さにな
るように装填して、高速回転(1400〜
1500rpm)の下で着火してテルミツト反応を起
こさせた。 (2) テルミツト反応終了後十分冷却して複合管を
得た。該複合管の内面にはそれぞれ約4mmのセ
ラミツクス層が形成されていた。 (3) 生成セラミツクスの組成及び物性を調べた結
果第2表に示す。尚、耐食性は従来例を基準と
して指数表示したものであり、10%H2SO4(硫
酸)液中に浸漬して腐食減量を測定して算出し
たものである。
(Industrial Application Field) The present invention relates to an improvement in a method of forming a ceramic layer on the inner surface of a main tube using a thermite reaction, and relates to a method of accelerating the thermite reaction and improving the performance of ceramics. (Prior art) Composite pipes made by coating the mother pipe with a ceramic layer are used as transportation pipes for various fluids and industrial piping because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications as a member. Various methods have been used to manufacture this type of composite tube, and recently, the so-called centrifugal thermite method, which utilizes centrifugal force and thermite reaction, has been proposed as a suitable manufacturing method. That is, this method, as shown in Figure 1,
A thermite agent made of a mixture of a metal reducing agent such as Al and Fe 2 O 3 and a metal oxide at a certain ratio is loaded into the main tube 1 to form a thermite agent layer 2, which is then subjected to centrifugal force due to high speed rotation. A fire is ignited in the field to cause a thermite reaction as exemplified by equation (1), and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity, and the inner surface of the main tube 1 is heated as shown in Fig. 2. Then, a desired ceramic layer 4 is coated with a generated metal layer 3 interposed therebetween. Fe 2 O 3 +2Al→Al 2 O 3 +2Fe +199 Kcal/1 mol of Al 2 O 3 (1) The mixing ratio of the metal oxide and the metal reducing agent is usually adjusted to the theoretical mixing ratio. For example, the above
In the example of Fe 2 O 3 and Al, the molar ratio is Fe 2 O 3 :Al=1:2, and the weight ratio is Fe 2 O 3 :Al=2.96:1. However, if only thermite base material is used, which has a stoichiometric mixing ratio of metal oxide and metal reducing agent, the resulting ceramic layer will become porous.
As disclosed in Japanese Patent No. 34470, 5 to 15% by weight of SiO 2 (silicic acid) is added to the base material to make the ceramic densified. (Problem to be solved by the invention) However, when SiO 2 is added, corundum (α-Al 2
A glass phase of SiO 2 and a compound phase of SiO 2 and FeO (Fe 2 SiO 4 ) are formed at the grain boundaries of O 3 ), resulting in a decrease in the proportion of corundum in the ceramic, resulting in a decrease in strength and hardness. do. In addition, in acidic liquids (especially at high temperatures), the Fe content in the Fe 2 SiO 4 phase is eluted, so
The drawback was that sufficient corrosion resistance could not be obtained.
Incidentally, when 7% SiO 2 is added, the resulting ceramic contains about 14% FeO. In view of the above-mentioned problems, the present invention was made with the aim of reducing FeO in ceramics without impairing the densification of ceramics using the centrifugal thermite method, and thereby improving strength, hardness, and corrosion resistance. be. (Means for Solving the Problems) In order to achieve the above object, the means of the present invention is to add SiC to the thermite main material which is theoretically mixed with iron oxide and Al.
The point is that the added thermite agent added in an amount of 1.5 to 4.0% by weight per minute is used as the thermite agent in the centrifugal thermite method. (Example) The present inventor believes that the reason why a large amount of FeO remains in the produced ceramics is that the reducing power of the metal reducing agent in the thermite agent is weak, and furthermore, the thermite reaction is carried out in the atmosphere, so the metal oxide is It was thought that this was because it was not effectively reduced by the metal reducing agent. As a result of intensive research based on this idea, we have discovered a method that allows the thermite reaction to be conducted in isolation from the atmosphere, increases the reducing power of the metal reducing agent in the thermite agent, and further contributes to the densification of the resulting ceramics. Ivy. That is, an additive thermite agent in which SiC is added to a thermite main agent consisting of theoretically mixed iron oxide and Al is used as a thermite agent in the centrifugal thermite method. The heat of formation due to thermite reaction is, for example, Fe 2 O 3
In the case of Al-based materials, the temperature reaches up to 3000℃. On the other hand, SiC
Since the decomposition temperature of is 2600°C, SiC easily decomposes into Si and C during the thermite reaction. Si
acts as an excess reducing agent, reducing the amount of unreacted iron oxide remaining in the ceramics, and also forms SiO 2 (glass phase) during the solidification process, filling the corundum grain boundaries and contributing to the densification of the ceramics. On the other hand, C is oxidized and burned to become CO 2 and CO gas, which isolates the entire reaction system from the atmosphere and forms a more favorable reducing atmosphere to reduce the amount of unreacted iron oxide remaining. In order to isolate the reaction system from the atmosphere, attempts were made to conduct the reaction in an N 2 gas or Ar gas atmosphere, but this resulted in only the formation of a gas flow on the surface layer of the thermite agent with both ends of the main tube open. However, it was difficult to sufficiently block it. In addition, by placing the entire main tube inside a chamber and filling it with the inert gas after vacuum degassing, it is possible to completely isolate it from the atmosphere, but in such a case, special equipment is required and production They are forced to degrade their sexuality. In order to find a suitable addition amount of SiC, the present inventor added metal Si to the thermite base material in various proportions, and determined how the addition amount of Si affects the porosity of the ceramic and the adhesion shear force between the ceramic and the produced iron. We investigated whether it would have an impact. The result is the third
It is shown in FIG. FIG. 3 is a graph showing the relationship between the amount of Si added and the porosity of ceramics. When Si is not added, the porosity of ceramics is extremely porous at about 25%, but with Si: 1 to 5%. It becomes dense with 5%
If it exceeds , a porous tendency will appear. FIG. 4 is a graph showing the relationship between the amount of Si added and the adhesion shear force between the produced iron and the produced ceramics. As shown in Fig. 5, the contact shear force is measured by using a composite pipe (using steel pipe as the main pipe) manufactured by the centrifugal thermite method, placing the main pipe 1 and the produced iron layer 3' on a punching table 5, and It was calculated based on the pressing force when only the ceramic layer 4 was pressed through the punch 6 and the produced ceramic layer 4 was punched out. According to the figure, it can be seen that when Si exceeds 4%, the adhesion shear force is considerably lower than when no Si is added (approximately 120 Kg/cm 2 ). At this time, as a result of cross-sectional observation of the composite tube, it was observed that a considerable number of voids were generated at the boundary between the produced ceramic layer 4 and the produced iron layer 3'. The above is (Fe 2 O 3 + 2Al) as thermite main agent.
Although we have explained the case where Fe 3 O 4 and FeO were used as the metal iron oxide, substantially the same results were obtained. Based on these facts, the theoretically formulated iron oxide and
Si is added at a weight ratio of 1.5 to the thermite main material of Al.
For those with ~4% addition, ceramic porosity is 2~3% Adhesive shear force between produced iron and produced ceramics
It shows 250-100Kg/ cm2 , and good ceramic lining tube can be obtained. Note that when 1.5 to 4% Si was added, the FeO content in the produced ceramics was about 5%. From the above, SiC has a Si content of 1.5 to 4% (2.1 to 5.7% for SiC alone) relative to thermite base material.
It can be seen that by adding this, a composite pipe that is dense and has a good lining condition can be obtained. In addition, the method of loading the added thermite agent into the main tube is to spray a mixture of thermite base agent and SiC onto the main tube, or to sprinkle SiC powder onto the mother tube and then apply the thermite base agent on the top surface. May be sprayed. Further, the mother pipe is not limited to metal-based pipes such as steel pipes, but may also be inorganic pipes such as concrete pipes and ceramic pipes. Next, other specific examples will be described together with conventional examples and comparative examples. In addition, the conventional example is SiO 2
The comparative example is one in which metal Si is added. (1) Mix and prepare the additive thermite agent shown in Table 1, load it into the main pipe (steel pipe) listed in the table so that it has an almost uniform thickness, and rotate it at high speed (1400 ~
1500 rpm) to cause a thermite reaction. (2) After the thermite reaction was completed, the tube was sufficiently cooled to obtain a composite tube. A ceramic layer of about 4 mm was formed on the inner surface of each of the composite tubes. (3) Table 2 shows the results of investigating the composition and physical properties of the produced ceramics. The corrosion resistance is expressed as an index based on the conventional example, and was calculated by immersing it in a 10% H 2 SO 4 (sulfuric acid) solution and measuring the corrosion loss.

【表】【table】

【表】 (発明の効果) 以上説明した通り本発明によれば、遠心テルミ
ツト法において、アルミニウム・酸化鉄系のテル
ミツト主剤にSiCを前記主剤に対してSi分で1.5〜
4.2重量%添加した添加テルミツト剤を使用する
ので、テルミツト反応によりSiCが分解してSi、
CO2ガス、COガスが生じ、Siは過剰還元剤とし
て作用し、未反応酸化鉄分のセラミツクス中の残
留量を減少させ、また凝固過程ではSiO2を形成
し、コランダム粒界を埋めてセラミツクスの緻密
化を可能ならしめる。一方、CO2ガス等は反応系
を被包し、添加テルミツト剤中のAlと大気中の
O2とを遮断してテルミツト反応を理論どおりに
進行せしめ、未反応酸化鉄の生成を可及的に減少
せしめることができる。而して、生成セラミツク
スを緻密化するだけでなく、セラミツクス中に鉄
分が殆ど含有しないため、Fe2SiO4相を可及的に
減少せしめることができ、セラミツクスの強度、
硬度及び耐食性をいずれも向上せしめることがで
き、極めて高品質の生成セラミツクス層を有する
複合管を得ることができる。
[Table] (Effects of the Invention) As explained above, according to the present invention, in the centrifugal thermite method, SiC is added to the aluminum/iron oxide based thermite main material at a Si content of 1.5 to 1.5 to
Since the additive thermite agent containing 4.2% by weight is used, SiC decomposes due to thermite reaction and becomes Si,
CO 2 gas and CO gas are generated, and Si acts as an excess reducing agent, reducing the residual amount of unreacted iron oxide in the ceramics, and also forms SiO 2 during the solidification process, filling the corundum grain boundaries and reducing the amount of iron oxide in the ceramics. Makes densification possible. On the other hand, CO 2 gas etc. encapsulate the reaction system and cause the Al in the added thermite agent and the atmosphere to
By blocking O 2 , the thermite reaction can proceed according to theory, and the production of unreacted iron oxide can be reduced as much as possible. This not only densifies the resulting ceramics, but also reduces the Fe 2 SiO 4 phase as much as possible since the ceramics contain almost no iron, thereby increasing the strength of the ceramics.
Both the hardness and the corrosion resistance can be improved, and a composite tube can be obtained with a produced ceramic layer of very high quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遠心テルミツト法におけるテルミツト
剤の装填状態を示す母管の断面図、第2図はテル
ミツト反応後の母管(即ち、複合管)の断面図、
第3図はSi添加量と気孔率との関係を示すグラフ
図、第4図はSi添加量と密着せん断力との関係を
示すグラフ図、第5図は密着せん断力の試験方法
に示す断面説明図である。 1……母管、2……テルミツト剤層、3……生
成金属層、3′……生成鉄層、4……生成セラミ
ツクス層。
FIG. 1 is a cross-sectional view of the main tube showing the loading state of thermite agent in the centrifugal thermite method, FIG. 2 is a cross-sectional view of the main tube (i.e., composite tube) after the thermite reaction,
Figure 3 is a graph showing the relationship between Si addition amount and porosity, Figure 4 is a graph showing the relationship between Si addition amount and adhesive shear force, and Figure 5 is a cross section shown in the adhesive shear force test method. It is an explanatory diagram. 1... Mother pipe, 2... Thermite agent layer, 3... Produced metal layer, 3'... Produced iron layer, 4... Produced ceramic layer.

Claims (1)

【特許請求の範囲】 1 母管内面にテルミツト剤を装填し、遠心力場
内でテルミツト反応を行わせて前記母管内面に生
成金属層を介して生成セラミツクス層を被覆形成
する方法において、 理論配合された酸化鉄とAlとからなるテルミ
ツト主剤にSiCを前記主剤に対してSi分で1.5〜
4.0重量%添加した添加テルミツト剤を前記テル
ミツト剤として用いることを特徴とする複合管の
製造方法。
[Scope of Claims] 1. A method in which a thermite agent is loaded onto the inner surface of the mother tube, a thermite reaction is performed in a centrifugal force field, and a ceramic layer is coated on the inner surface of the mother tube via a metal layer formed, comprising: SiC is added to the thermite main material consisting of iron oxide and Al in a Si content of 1.5 to 1.5 to the main material.
A method for manufacturing a composite pipe, characterized in that an additive thermite agent containing 4.0% by weight is used as the thermite agent.
JP22760485A 1985-10-11 1985-10-11 Production of composite pipe Granted JPS6286173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22760485A JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22760485A JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Publications (2)

Publication Number Publication Date
JPS6286173A JPS6286173A (en) 1987-04-20
JPH0557357B2 true JPH0557357B2 (en) 1993-08-23

Family

ID=16863541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22760485A Granted JPS6286173A (en) 1985-10-11 1985-10-11 Production of composite pipe

Country Status (1)

Country Link
JP (1) JPS6286173A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329345C (en) * 2005-11-10 2007-08-01 北京科技大学 Additive used for preparing ceramic lining steel pipe by self straggle high temperature synthesis
CN102990038A (en) * 2012-10-13 2013-03-27 刘玉满 Method for pouring high-strength and high-wear-resistance casting by mesh ceramic block and EPS (Expandable Polystyrene) compound group mould

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111568A (en) * 1980-02-06 1981-09-03 Tokushu Toryo Kk Floating plate material particle for casting
JPS56148465A (en) * 1980-04-17 1981-11-17 Tokushu Toryo Kk Particle for floating plate material during casting
JPS5740219A (en) * 1980-08-22 1982-03-05 Minolta Camera Co Ltd Photographic lens with short length
JPS5927747A (en) * 1982-08-09 1984-02-14 Mitsubishi Electric Corp Casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111568A (en) * 1980-02-06 1981-09-03 Tokushu Toryo Kk Floating plate material particle for casting
JPS56148465A (en) * 1980-04-17 1981-11-17 Tokushu Toryo Kk Particle for floating plate material during casting
JPS5740219A (en) * 1980-08-22 1982-03-05 Minolta Camera Co Ltd Photographic lens with short length
JPS5927747A (en) * 1982-08-09 1984-02-14 Mitsubishi Electric Corp Casting method

Also Published As

Publication number Publication date
JPS6286173A (en) 1987-04-20

Similar Documents

Publication Publication Date Title
JP2003506295A (en) Oxidation protective coating for carbon-carbon constituent materials
JPH0557357B2 (en)
JPS5934470B2 (en) Manufacturing method of composite structure pipe
US4262055A (en) Fire protection materials and methods of making them
US3287478A (en) Method of sintering aluminum nitride refractories
JPS6210954B2 (en)
JPS5934469B2 (en) Manufacturing method of composite structure pipe
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPS5935068A (en) Basic castable
JPH0216386B2 (en)
JPS6027462A (en) Production of pipe having composite construction
JP3154770B2 (en) Silicon nitride ceramics joints
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JPS5819376B2 (en) Composite coating agent for centrifugal casting
US3261701A (en) Composition of matter containing aluminum nitride and aluminum boride
JPH0224660B2 (en)
JP2000327401A (en) Plate for slide gate
SU1693118A1 (en) Compound for treating metallic surfaces
JPH0445339B2 (en)
RU2574153C1 (en) Powder mix composition for thermal-diffusion zinc-plating of articles from aluminium alloys, method of its fabrication and thermal-diffusion zinc-plating of articles from aluminium alloys
JPS6240318B2 (en)
JP3175589B2 (en) Coating material for iron-based casting, iron-based casting provided with coating layer using the same, and method of forming coating layer therefor
JPS6268737A (en) Flame-retardant heat-insulating material and manufacture thereof
SU1073330A1 (en) Composition for chrome-titanium plating of steel
JPS5943436B2 (en) Method for manufacturing dense β′-sialon sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term