JPS6240318B2 - - Google Patents

Info

Publication number
JPS6240318B2
JPS6240318B2 JP54154988A JP15498879A JPS6240318B2 JP S6240318 B2 JPS6240318 B2 JP S6240318B2 JP 54154988 A JP54154988 A JP 54154988A JP 15498879 A JP15498879 A JP 15498879A JP S6240318 B2 JPS6240318 B2 JP S6240318B2
Authority
JP
Japan
Prior art keywords
sio
sintered body
sialon sintered
sialon
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54154988A
Other languages
Japanese (ja)
Other versions
JPS5678472A (en
Inventor
Nobuyuki Kuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15498879A priority Critical patent/JPS5678472A/en
Publication of JPS5678472A publication Critical patent/JPS5678472A/en
Publication of JPS6240318B2 publication Critical patent/JPS6240318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良されたサイアロン焼結体の製造方
法に関する。詳しくは珪素化合物とアルミニウム
化合物を主成分とする成型体をSi3N4とSiO2とを
主成分とする粉末で被覆した後焼成して組成式
Si6-zAlzOzN8-z(但しzは1.0〜4.2の正数)で表
わされるサイアロン焼結体を製造するに際し1500
℃以上での昇温速度〔t(℃/min)〕が6z≦t
≦9(z+2)の範囲で、且つ成型体の単位表面
積当りの被覆粉末のSiO2量〔w(g/cm2)〕が
0.005(t+10)/z≦w≦0.009(t+2
0)/zで表わされる範囲 で、窒素ガス雰囲気下に焼成するサイアロン焼結
体の製造方法である。 サイアロン焼結体はSi、Al、O及びNの4元素
から成り、その組成式Si6-zAlzOzN8-z(但し、z
は0〜4.2の正数)で表わされる固溶体であるこ
とが公知である。また該サイアロン焼結体は耐熱
材料として種々の分野でその応用が注目されてい
る。サイアロン焼結体の製造方法としては原料混
合粉末例えばSi3N4−Al2O3−AlN系又はSi3N4
SiO2−AlN系をホツトプレス法によつて高密度化
する方法、あるいは、原料混合粉末の成型体を
N2ガス雰囲気下で焼成する方法が知られてい
る。後者の方法は、複雑な形状のものを大量製造
するのに適しており、工業的に有利な方法であ
る。しかし、この方法では焼成中に、原料の熱分
解を生じ易く、単にN2ガス雰囲気下で焼成する
だけでは焼結体の重量減とそれに伴う組成のずれ
を防ぐことが出来ないため、十分にち密な焼結体
を得ることが難しい欠点を有する。また上記熱分
解を防ぐために成型体の回りをSi3N4とSiO2を主
成分とする粉末で被覆した後焼成する方法も例え
ばジヤナル オブ マテリアル サイアンス(J.
materials science)14〔10〕2309〜2316
(1979)で提案されている。しかこの方法は工業
的に著しく改良された方法であるが、工業的に尚
十分満足出来るものではなかつた。 本発明者はサイアロン焼結体の製造につき鋭意
研究を重ねて来た結果、得られたサイアロン焼結
体の組成、性状等がサイアロン焼結体の製造に於
ける1500℃以上での昇温速度及び成型体に被覆す
るSiO2量によつて著しく影響をうけることを見
出した。更にこれらの影響につき研究を続けた結
果、前記昇温速度とSiO2量との相関性を知見し
本発明を完成させるに至つた。 即ち本発明は珪素化合物とアルミニウム化合物
を主成分とする成型体をSi3N4とSiO2とを主成分
とする粉末で被覆した後焼成して組成式
Si6-zAlzOzN8-z(但しzは1.0〜4.2の正数)で表
わされるサイアロン焼結体を製造するに際し、
1500℃以上での昇温速度〔t(℃/min)〕が6z
≦t≦9(z+2)の範囲で且つ成型体の単位表
面積当りの被覆粉末のSiO2量〔w(g/cm2)〕が
0.005(t+10)/z≦w≦0.009(t+2
0)/zで表わされる範囲 で、窒素ガス雰囲気下に焼成するサイアロン焼結
体の製造方法である。 本発明に於けるサイアロン焼結体の原料は特に
限定されず、公知の原料を使用出来る。前記一般
式からも明らかな如くサイアロン焼結体はSi、
AlO及びNの4元素からなつているが一般に好適
に使用される原料はSi3N4−Al2O3又はSi3N4
SiO2−AlN等の原料を混合したものである。これ
らの原料は反応を速やかに進行させる目的のため
に微細な粉末で用いるのが一般的である。従つて
通常5μm以下、好ましくは1μm以下の粉末と
して用いるのが好適である。 前記原料混合組成は目的物であるサイアロン焼
結体の組成即ちSi6-zAlzOzN8-z(但しzは1.0〜
4.2の正数)に相当するように選べばよい。これ
らの原料は先ず目的の形状に成型される。該成型
は特に限定的ではないが一般には密度が1.6〜2.0
g/cm3程度に成型するのが好適である。次いで該
成型体はSi3N4とSiO2とを主成分とする粉末で被
覆される。該被覆手段は公知の方法が特に限定さ
れず採用されるが一般にはアルミナ、窒化珪素、
炭化珪素、サイアロン等の耐熱性材料で製造され
た容器中にSi3N4とSiO2との混合粉末を入れたも
ののなかに該成型体を設置する方法が好適に採用
される。該Si3N4とSiO2との粉末混合比は特に限
定的ではないが一般にはSi3N4をSiO2より多量に
使用するのが好ましい。例えばSi3N4とSiO2との
混合比はSi3N4が20重量%以上となる如く選ぶの
が一般的で、SiO2は5〜80重量%好ましくは5
〜60重量%の割合となる如く選ぶのが好ましい。
該SiO2量は後述する如く得られるサイアロン焼
結体の性状に大きな影響を与えるが上記混合比の
うちSiO2が5重量%より少なくなると後述する
焼成中に重量減が生起する傾向が生じ一般的には
好ましくない。逆に該SiO2混合比が80重量%を
越えると溶融SiO2が焼成中に成型体と反応して
後処理が難しくなるので一般的には採用しない方
が好ましい。前記Si3N4とSiO2との粉末混合物中
にAl2O3、Si、SiC、Si3N2O等を共存させること
は必要に応じて採用することが出来る。 前記成型体をSi3N4とSiO2との粉末で被覆して
焼成する理由は前記説明で明らかな如く、サイア
ロン焼結体の製造時にサイアロン焼結体の熱分解
を発生するSiOによつて防止すると共に、成型体
の焼結反応、収縮を促進する役目をはたすためで
ある。 前記Si3N4とSiO2との粉末で被覆された成型体
は焼成することによつて目的のサイアロン焼結体
となる。該焼成温度は特に限定的ではなく公知の
温度を選べばよい。一般には1700以上好ましくは
1750〜1950℃で30〜120分間焼成すると十分であ
る。 本発明の最大の特徴は前記成型体の焼成時に於
ける1500℃以上での昇温速度及び被覆粉末中の
SiO2量のコントロールを行う点にある。即ち
1500℃以上での昇温速度〔t(℃/min)〕は式 6z≦t≦9(z+2) ………(1) の範囲に制御する必要がある。 また成型体の単位面積当りの被覆粉末のSiO2
量〔w(g/cm2)〕は、式 0.005(t+10)/z≦w≦0.009(t+
20)/z………(2) の範囲に制御する必要がある。 前記1500℃以上での昇温速度が重要である理由
は、必ずしも明白ではないが次の理由によるもの
と思われる。サイアロンの生成と成型体の収縮
(高密度化)に大きな役割をするX相(推定組成
Si9Al7O21N5)とよばれる反応中間体の生成が1500
℃付近で始まること、および、1500℃以上から被
覆粉末のSiO分圧が徐々に高なり成型体の熱分解
(SiO飛散)を防止する効果が始まるためと推測
される。 上記(1)式及び(2)式で示される条件は本発明者が
数多くのテストとその結果の評価にもとずいて誘
導したものである。該(1)式及び(2)式のいずれもの
条件が満足されたとき初めて得られたサイアロン
焼結体は高密度で且つ室温及び高温に於ける強度
変化が少なくすぐれたものとなる。前記条件を更
に詳しく簡略化して説明するため、以下前記サイ
アロン焼結体の組成式中zが2の場合を例示して
説明する。勿論該zが1.0から4.2までの値につい
ても以下の説明と同様に理解されよう。第1図は
前記z=2の場合の前記(1)式及び(2)式を満足する
条件を斜線で示したものである。昇温速度が第1
図の直線aで示さる12℃/min以下であると、例
えば被覆粉末中のSiO2量が前記(2)式を満足する
適量であつても、焼成反応で発生した高SiOガス
圧下に成型体が長時間さらされる。その結果SiO
ガスが成型体の比較的内部まで浸透反応し、サイ
アロン焼結体の特に表面近傍にガラス相を多く生
成する。このガラス相は高温で軟化するため焼結
体の高温強度以下の原因となる。従つてすぐれた
サイアロン焼結体とはなり得ない。また昇温速度
が第1図の直線Cで示される36℃/min以上であ
ると、成型体からサイアロン焼結体が生成する反
応が十分進行しないうちに、成型体が高温にさら
される。その結果Si3N4の一部がSi3N4→3Si+2N2
の反応により分解し、焼成後のサイアロン焼結体
中に金属Siが共存し易くなる。サイアロン焼結体
中に金属Siが共存すると該サイアロン焼結体の高
温強度に悪影響を与える。次に第1図の直線bと
dによつて、前記昇温速度範囲に対する適正な
SiO2量(成型体単位表面積当り)が示されてい
る。bの値よりSiO2量が少いと、例え適当な昇
温速度で加熱しても、成型体の回りの雰囲気中に
十分な量のSiOを与えることができず、高密度な
焼結体にすることが難しくなる。 また、dの値よりSiO2量が多いと収縮は十分
に進行し、高密度サイアロン焼結体になるが、
SiOガスと成型体との反応が進行し、サイアロン
焼結体にガラス相が多く蓄積する。 前記で説明した焼結体中のガラス相の存在量や
分布状態は、焼結体の破面を適当な処理液(例え
ばHF+HNO3)でエツチングした後、走査型電子
顕微鏡(SEM)で観察することによつて知るこ
とができる。例えばz=2(Si4Al2O2N6)組成の
サイアロンを、t=25℃/min、w=0.22g/cm2
の条件(第1図の直線dの上側の範囲)およびt
=25℃/min、w=0.18g/cm2の条件(第1図の
斜線範囲内)で、1800℃、90分間焼結したものの
各々の破面をエツチング後、SEMで観察した結
果を第2図のa,bに示した。a,b夫々表面か
ら200μm内部の写真であるが、aではサイアロ
ンの粒子と粒子の間がエツチングによつてかなり
除去されており粒界にガラス相が多量に存在して
いたことを示している。これに対して、bでは焼
結体中に元々存在した空孔はみられるものの、粒
子と粒子の間のエツチングの程度は非常に小さ
く、粒界に第2相の存在が少いことを示してい
る。この両者の差が高温おける焼結体の強度の差
となつて現われることは明瞭である。 以上z=2即ち組成式Si4Al2O2N6で示されるサ
イアロン焼結体について述べたが、他の組成につ
いても前記同様の傾向がある。また、前記(1)式及
び(2)式で示されるように、zの値が大きくなると
サイアロン焼結反応は早くなるので昇温速度の適
正範囲もzの値と共に高い方へずれる。また上記
のzの値が大きくなると前記(2)式で示される
SiO2量は少なくてよい方へ移行する。これは、
その値が大きくなるにつれサイアロン焼結反応が
早くなることと、サイアロンのSiO分解圧が低く
なることにより、必要なSiO2量が小さくなるこ
とによるものと考えられる。 以上の説明から明らかな如く、本発明の前記(1)
式及び(2)式の条件を満足する条件下にしかも珪素
ガス雰囲気下に成型体を焼結することによつてす
ぐれたサイアロン焼結体を得ることが出来る。該
焼成時に於ける窒素ガスの存在は本発明に於いて
必須要件であるが窒素ガス雰囲気は必ずしも加圧
状態である必要はない。通常は大気圧で十分であ
るが焼成温度が高くなると例えば1800℃以上に於
いては2〜10気圧或いはそれ以上の窒素ガス圧下
で焼成するのが好ましい。 本発明を更に具体的に説明するため以下実施例
を挙げて説明するが本発明はこれらの実施例に限
定されるものではない。 実施例 1 高純度なSi3N4(平均粒径0.8μm)、Al2O3(同
0.3μm)、およびAlN(同μm)を、Si4Al2O2N6
(z=2)組成となるように、高純度アルミナボ
ールを用いて混合した。混合はヘキサン中で行
い、混合の際のアルミナボールの減量は秤量の
際、予めAl2O3量として引いておいた。混合粉末
約2.3gを金型による一次成型、次いで静水圧プ
レス(1000Kg/cm2)して、密度1.87g/cm3の約
0.5×0.6×4cmの角柱状成型体とした。この成型
体をSi3N4(70重量%)とSiO2(30重量%)の混
合粉末3.8gでほぼ均一に覆われるようにして、
窒化ホウ素製のるつぼ中に設置した(w=0.18
g/cm2)。次いで、このるつぼを1気圧N2気流中
で、1500℃以上の昇温速度25℃/minで1800℃ま
で昇温し、この温度で90分保持した。焼成後の重
量減は1.1〜1.8重量%の範囲であり、得られたサ
イアロン焼結体の平均密度は2.99g/cm3(対理論
比96%)であつた。曲げ強度測定用試料は、焼結
体の表面を研磨し(井2000SiC、最終仕上げ)、
スパン20mmの条件で25℃および1200℃での3度曲
げ強度を測定した。結果は25℃で44Kg/mm2、1200
℃で42Kg/mm2と、強度の低下はほとんど無かつ
た。 実施例2〜14及び比較例1〜19 実施例1における種々の条件を第1表に示すよ
うに変化させた以外は実施例1と同様に実施し
た。その結果は第1表に示す通りであつた。 また比較のため本発明の条件をはずれたところ
で種々の条件を選んで第2表の条件以外は実施例
1と同様に実施した。その結果を第2表に示し
た。
The present invention relates to an improved method of manufacturing a sialon sintered body. In detail, a molded product whose main components are a silicon compound and an aluminum compound is coated with powder whose main components are Si 3 N 4 and SiO 2 and then fired to obtain the composition formula.
1500 when manufacturing a sialon sintered body represented by Si 6-z Al z O z N 8-z (where z is a positive number from 1.0 to 4.2)
The temperature increase rate [t (℃/min)] above ℃ is 6z≦t
≦9(z+2), and the amount of SiO 2 [w (g/cm 2 )] of the coating powder per unit surface area of the molded body is 0.005(t+10)/z≦w≦0.009(t+2).
This is a method for producing a sialon sintered body in which firing is performed in a nitrogen gas atmosphere within the range expressed by 0)/z. Sialon sintered body consists of four elements: Si, Al, O, and N, and its composition formula is Si 6-z Al z O z N 8-z (however, z
is a positive number from 0 to 4.2). Moreover, the applications of the sialon sintered body as a heat-resistant material are attracting attention in various fields. As a method for producing a sialon sintered body, raw material mixed powder such as Si 3 N 4 −Al 2 O 3 −AlN system or Si 3 N 4
A method of densifying SiO 2 -AlN system by hot pressing method, or molding of raw material mixed powder.
A method of firing in an N 2 gas atmosphere is known. The latter method is suitable for mass production of products with complex shapes, and is an industrially advantageous method. However, this method tends to cause thermal decomposition of the raw materials during firing, and simply firing in an N2 gas atmosphere cannot prevent the weight loss of the sintered body and the resulting compositional deviation, so it is not sufficient. It has the disadvantage that it is difficult to obtain a dense sintered body. In addition, in order to prevent the above-mentioned thermal decomposition, a method in which the molded body is coated with powder mainly composed of Si 3 N 4 and SiO 2 and then fired is described in the Journal of Materials Science (J.
materials science) 14 [10] 2309-2316
(1979). However, although this method is a method that has been significantly improved industrially, it is still not fully satisfactory industrially. As a result of extensive research into the production of sialon sintered bodies, the present inventor has determined that the composition, properties, etc. of the obtained sialon sintered bodies are similar to the temperature increase rate at 1500°C or higher in the production of sialon sintered bodies. It was also found that this was significantly affected by the amount of SiO 2 coated on the molded body. Further, as a result of continuing research into these effects, the inventors discovered a correlation between the temperature increase rate and the amount of SiO 2 and completed the present invention. That is, in the present invention, a molded article whose main components are a silicon compound and an aluminum compound is coated with a powder whose main components are Si 3 N 4 and SiO 2 and then fired.
When manufacturing a sialon sintered body represented by Si 6-z Al z O z N 8-z (where z is a positive number from 1.0 to 4.2),
Temperature increase rate [t (°C/min)] at 1500°C or higher is 6z
≦t≦9(z+2) and the amount of SiO 2 [w (g/cm 2 )] of the coating powder per unit surface area of the molded body is 0.005(t+10)/z≦w≦0.009(t+2)
This is a method for producing a sialon sintered body in which firing is performed in a nitrogen gas atmosphere within the range expressed by 0)/z. The raw material for the Sialon sintered body in the present invention is not particularly limited, and known raw materials can be used. As is clear from the above general formula, the sialon sintered body is composed of Si,
It consists of four elements, AlO and N, but the raw materials that are generally preferably used are Si 3 N 4 - Al 2 O 3 or Si 3 N 4 -
It is a mixture of raw materials such as SiO 2 -AlN. These raw materials are generally used in the form of fine powder for the purpose of speeding up the reaction. Therefore, it is suitable to use the powder as a powder with a diameter of usually 5 μm or less, preferably 1 μm or less. The raw material mixture composition is the composition of the target Sialon sintered body, that is, Si 6-z Al z O z N 8-z (however, z is 1.0 ~
4.2 positive number). These raw materials are first molded into the desired shape. Although the molding is not particularly limited, the density is generally 1.6 to 2.0.
It is preferable to mold to approximately g/cm 3 . The molded body is then coated with a powder whose main components are Si 3 N 4 and SiO 2 . The coating means may be any known method without particular limitation, but generally alumina, silicon nitride,
A preferred method is to place the molded body in a container made of a heat-resistant material such as silicon carbide or sialon containing a mixed powder of Si 3 N 4 and SiO 2 . Although the powder mixing ratio of Si 3 N 4 and SiO 2 is not particularly limited, it is generally preferable to use a larger amount of Si 3 N 4 than SiO 2 . For example, the mixing ratio of Si 3 N 4 and SiO 2 is generally selected such that Si 3 N 4 is 20% by weight or more, and SiO 2 is preferably 5 to 80% by weight.
It is preferable to select a proportion of 60% by weight.
The amount of SiO 2 has a great influence on the properties of the obtained sialon sintered body, as described below, but if the SiO 2 content in the above mixing ratio is less than 5% by weight, there is a tendency for weight loss to occur during firing, which will be described later. Not desirable. On the other hand, if the SiO 2 mixing ratio exceeds 80% by weight, molten SiO 2 will react with the molded body during firing, making post-treatment difficult, so it is generally preferable not to employ it. It is possible to coexist Al 2 O 3 , Si, SiC, Si 3 N 2 O, etc. in the powder mixture of Si 3 N 4 and SiO 2 as necessary. As is clear from the above explanation, the reason why the molded body is coated with powder of Si 3 N 4 and SiO 2 and fired is that SiO, which causes thermal decomposition of the sialon sintered body during production of the sialon sintered body, This is to prevent this and also to promote the sintering reaction and shrinkage of the molded body. The molded body coated with the powders of Si 3 N 4 and SiO 2 is fired to become the desired sialon sintered body. The firing temperature is not particularly limited, and any known temperature may be selected. Generally 1700 or more preferably
Baking at 1750-1950°C for 30-120 minutes is sufficient. The greatest feature of the present invention is the rate of temperature increase at 1500°C or higher during firing of the molded body and the temperature increase in the coating powder.
The point is to control the amount of SiO2 . That is,
The temperature increase rate [t (°C/min)] above 1500°C must be controlled within the range of the formula 6z≦t≦9(z+2) (1). Also, SiO 2 of the coating powder per unit area of the molded body
The amount [w (g/cm 2 )] is calculated using the formula 0.005(t+10)/z≦w≦0.009(t+
20) /z......It is necessary to control within the range of (2). The reason why the temperature increase rate above 1500° C. is important is not necessarily clear, but it is thought to be due to the following reason. The X phase (estimated composition
The formation of a reaction intermediate called Si 9 Al 7 O 21 N 5 ) is 1500
It is presumed that this is because the SiO partial pressure of the coating powder gradually increases from 1500°C or higher, and the effect of preventing thermal decomposition (SiO scattering) of the molded body begins. The conditions expressed by the above equations (1) and (2) were derived by the inventor based on numerous tests and evaluation of the results. When both the conditions of formula (1) and formula (2) are satisfied, the obtained sialon sintered body has high density and excellent strength with little change in strength at room temperature and high temperature. In order to explain the above conditions in more detail and in a simplified manner, a case where z in the compositional formula of the Sialon sintered body is 2 will be exemplified and explained below. Of course, values of z from 1.0 to 4.2 will be understood in the same manner as in the following explanation. In FIG. 1, the conditions for satisfying equations (1) and (2) in the case of z=2 are indicated by diagonal lines. The temperature increase rate is the first
If the temperature is below 12°C/min as shown by straight line a in the figure, even if the amount of SiO 2 in the coated powder is an appropriate amount that satisfies formula (2) above, molding under high SiO gas pressure generated in the firing reaction The body is exposed for a long time. As a result, SiO
The gas permeates relatively deep into the molded body and reacts, producing a large amount of glass phase especially near the surface of the sialon sintered body. This glass phase softens at high temperatures, which causes the sintered body to have lower high-temperature strength. Therefore, it cannot be an excellent sialon sintered body. Furthermore, if the temperature increase rate is 36° C./min or higher, as indicated by straight line C in FIG. 1, the molded body will be exposed to high temperatures before the reaction to produce the sialon sintered body from the molded body has sufficiently progressed. As a result, a part of Si 3 N 4 becomes Si 3 N 4 →3Si+2N 2
It decomposes due to the reaction, and metal Si tends to coexist in the sialon sintered body after firing. The coexistence of metal Si in a sialon sintered body has a negative effect on the high temperature strength of the sialon sintered body. Next, use straight lines b and d in Figure 1 to determine the appropriate temperature rise rate range.
The amount of SiO 2 (per unit surface area of the molded body) is shown. If the amount of SiO 2 is less than the value of b, even if heated at an appropriate temperature increase rate, it will not be possible to provide a sufficient amount of SiO into the atmosphere around the compact, resulting in a high density sintered compact. becomes difficult to do. In addition, if the amount of SiO 2 is greater than the value of d, the shrinkage will proceed sufficiently and a high-density sialon sintered body will be formed.
The reaction between the SiO gas and the molded body progresses, and a large amount of glass phase accumulates in the Sialon sintered body. The amount and distribution of the glass phase in the sintered body explained above can be determined by etching the fractured surface of the sintered body with an appropriate treatment solution (e.g. HF + HNO 3 ) and then observing it with a scanning electron microscope (SEM). You can know by this. For example, SiAlON with a composition of z = 2 (Si 4 Al 2 O 2 N 6 ) is heated at t = 25°C/min, w = 0.22 g/cm 2
(range above the straight line d in Figure 1) and t
= 25°C/min, w = 0.18g/ cm2 (within the shaded area in Figure 1), the fractured surfaces of each specimen were sintered for 90 minutes at 1800°C, and after etching, the results were observed using SEM. Shown in Figure 2 a and b. Both a and b are photographs taken 200 μm from the surface. In a, the space between the Sialon particles was considerably removed by etching, indicating that a large amount of glass phase existed at the grain boundaries. . On the other hand, in case b, although the pores that originally existed in the sintered body can be seen, the degree of etching between the particles is very small, indicating that there is little presence of the second phase at the grain boundaries. ing. It is clear that the difference between the two appears as a difference in the strength of the sintered body at high temperatures. Although the sialon sintered body having z=2, that is, the compositional formula Si 4 Al 2 O 2 N 6 has been described above, the same tendency exists for other compositions as well. Furthermore, as shown in equations (1) and (2) above, as the value of z increases, the sialon sintering reaction becomes faster, so the appropriate range of the temperature increase rate also shifts toward higher values as the value of z increases. Also, as the value of z above increases, it is expressed by the above equation (2).
The amount of SiO 2 will shift to a smaller amount. this is,
It is thought that this is because as the value increases, the sialon sintering reaction becomes faster and the SiO decomposition pressure of sialon becomes lower, so that the required amount of SiO 2 becomes smaller. As is clear from the above explanation, the above (1) of the present invention
An excellent sialon sintered body can be obtained by sintering the molded body under conditions that satisfy the conditions of formula and (2) and in a silicon gas atmosphere. Although the presence of nitrogen gas during the firing is an essential requirement in the present invention, the nitrogen gas atmosphere does not necessarily need to be in a pressurized state. Normally, atmospheric pressure is sufficient, but when the firing temperature is high, for example at 1800°C or higher, it is preferable to fire under nitrogen gas pressure of 2 to 10 atmospheres or more. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Highly purified Si 3 N 4 (average particle size 0.8 μm), Al 2 O 3 (average particle size 0.8 μm)
0.3μm) and AlN (same μm), Si 4 Al 2 O 2 N 6
(z=2) They were mixed using high-purity alumina balls. Mixing was performed in hexane, and the weight loss of the alumina balls during mixing was subtracted in advance as the amount of Al 2 O 3 when weighing. Approximately 2.3g of the mixed powder was first molded using a mold, then hydrostatically pressed (1000Kg/cm 2 ) to form a powder with a density of 1.87g/cm 3 .
A prismatic molded body measuring 0.5 x 0.6 x 4 cm was made. This molded body was covered almost uniformly with 3.8 g of mixed powder of Si 3 N 4 (70% by weight) and SiO 2 (30% by weight),
It was placed in a crucible made of boron nitride (w = 0.18
g/ cm2 ). Next, the temperature of this crucible was raised to 1800°C at a temperature increase rate of 25°C/min over 1500°C in a N 2 stream at 1 atm, and maintained at this temperature for 90 minutes. The weight loss after firing was in the range of 1.1 to 1.8% by weight, and the average density of the obtained sialon sintered body was 2.99 g/cm 3 (96% of theoretical ratio). The sample for bending strength measurement was prepared by polishing the surface of the sintered body (I2000SiC, final finish).
Three-degree bending strength was measured at 25°C and 1200°C with a span of 20 mm. The result is 44Kg/mm 2 at 25℃, 1200
The strength was 42Kg/mm 2 at ℃, and there was almost no decrease in strength. Examples 2 to 14 and Comparative Examples 1 to 19 Examples were carried out in the same manner as in Example 1, except that various conditions in Example 1 were changed as shown in Table 1. The results were as shown in Table 1. For comparison, various conditions other than the conditions of the present invention were selected, and experiments were carried out in the same manner as in Example 1 except for the conditions shown in Table 2. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は組成式中z=2の場合の本発明の好適
な焼成条件を斜線で示した。第2図はaが比較の
ため実施したサイアロン焼結体のSEM写真で、
bの本発明の実施により得られたサイアロン焼結
体のSEM写真である。
In FIG. 1, preferred firing conditions of the present invention when z=2 in the composition formula are indicated by diagonal lines. Figure 2 is a SEM photograph of the sialon sintered body carried out by a for comparison.
It is a SEM photograph of the sialon sintered compact obtained by implementing this invention of b.

Claims (1)

【特許請求の範囲】 1 珪素化合物とアルミニウム化合物を主成分と
する成型体をSi3N4とSiO2とを主成分とする粉末
で被覆した後、焼成して組成式Si6-zAlzOzN8-z
(但しzは1.0〜4.2の正数)で表わされるサイア
ロン焼結体を製造するに際し、1500℃以上での昇
温速度〔t(℃/min)〕が6z≦t≦9(z+
2)の範囲で、且つ成型体の単位表面積当りの被
覆粉末のSiO2量〔w(g/cm2)〕が0.005(t+
10)/z≦ w≦0.009(t+20)/zで表わされる範囲で窒
素ガス雰 囲気下に焼成することを特徴とするサイアロン焼
結体の製造方法。
[Claims] 1. A molded body containing a silicon compound and an aluminum compound as its main components is coated with a powder containing Si 3 N 4 and SiO 2 as its main components, and then fired to obtain a composition having the composition formula Si 6-z Al z O z N 8-z
(However, z is a positive number from 1.0 to 4.2) When manufacturing a sialon sintered body, the temperature increase rate [t (°C/min)] above 1500°C must be 6z≦t≦9 (z+
2), and the amount of SiO 2 [w (g/cm 2 )] of the coating powder per unit surface area of the molded body is 0.005 (t+
10) A method for producing a sialon sintered body, which comprises firing in a nitrogen gas atmosphere within the range expressed by /z≦w≦0.009(t+20)/z.
JP15498879A 1979-12-01 1979-12-01 Manufacture of sialon sintered body Granted JPS5678472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15498879A JPS5678472A (en) 1979-12-01 1979-12-01 Manufacture of sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15498879A JPS5678472A (en) 1979-12-01 1979-12-01 Manufacture of sialon sintered body

Publications (2)

Publication Number Publication Date
JPS5678472A JPS5678472A (en) 1981-06-27
JPS6240318B2 true JPS6240318B2 (en) 1987-08-27

Family

ID=15596254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15498879A Granted JPS5678472A (en) 1979-12-01 1979-12-01 Manufacture of sialon sintered body

Country Status (1)

Country Link
JP (1) JPS5678472A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272507A (en) * 1985-09-27 1987-04-03 Ube Ind Ltd Preparation of sialon powder
JP4578009B2 (en) * 2001-03-16 2010-11-10 東洋アルミニウム株式会社 Method for producing nitrogen-containing inorganic compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547269A (en) * 1978-09-27 1980-04-03 Kagaku Gijutsucho Mukizai Manufacture of thialon sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547269A (en) * 1978-09-27 1980-04-03 Kagaku Gijutsucho Mukizai Manufacture of thialon sintered body

Also Published As

Publication number Publication date
JPS5678472A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
US2618565A (en) Manufacture of silicon nitride-bonded articles
JPH027908B2 (en)
JPS6047225B2 (en) Manufacturing method for densified silicon products
US3849344A (en) Solid diffusion sources containing phosphorus and silicon
Biswas et al. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC
WO2012092369A2 (en) Crucible body and method of forming same
US4310499A (en) Process for producing SIALON sintered product
JPS584451B2 (en) Lindopingyou Kotai Kakusangen
EP0783467B1 (en) Reaction-bonded silicon carbide refractory product
US4122140A (en) Hot pressing of silicon nitride using beryllium additive
JPS6240318B2 (en)
Jones et al. Strength, density, nitrogen weight gain relationships for reaction sintered silicon nitride
JPS6050750B2 (en) Silicon nitride composite sintered body
Abe Sintering process of Y 2 O 3-added Si 3 N 4
JPH05201765A (en) Borosilazane as binder for preparing sintered silicon carbide monolith
JPH0244784B2 (en)
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JPH0834685A (en) Surface-coated silicon nitride-based member
JPS5814392B2 (en) Manufacturing method of Sialon sintered body
Rakshit et al. Optimization of time-temperature schedule for nitridation of silicon compact on the basis of silicon and nitrogen reaction kinetics
JPS5929546B2 (en) Manufacturing method of heat-resistant ceramics
JPH0818875B2 (en) Method for manufacturing silicon nitride sintered body
JPH0435436B2 (en)
JPH02233560A (en) High-strength calcined sialon-based compact
JPH0337176A (en) Reacted sintered silicon carbide product and its preparation