JPS61238970A - Manufacture of composite pipe - Google Patents

Manufacture of composite pipe

Info

Publication number
JPS61238970A
JPS61238970A JP7957385A JP7957385A JPS61238970A JP S61238970 A JPS61238970 A JP S61238970A JP 7957385 A JP7957385 A JP 7957385A JP 7957385 A JP7957385 A JP 7957385A JP S61238970 A JPS61238970 A JP S61238970A
Authority
JP
Japan
Prior art keywords
layer
thermite
pipe
reaction
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7957385A
Other languages
Japanese (ja)
Inventor
Osamu Odawara
修 小田原
Yasumasa Ishii
康允 石井
Hiroshi Yamazaki
洋 山崎
Mikio Sato
佐藤 美喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP7957385A priority Critical patent/JPS61238970A/en
Publication of JPS61238970A publication Critical patent/JPS61238970A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To prevent the tensile cracking of a rotating mother pipe when a thermit reaction is caused in the pipe to form produced layers in the pipe, by previously forming a layer of a heat resistant material on the inside of the pipe. CONSTITUTION:A layer 5 of a heat resistant material is formed on the inside of a metallic mother pipe 1, and a thermit agent 2 consisting of a metallic oxide and a metallic reducing agent is put in the pipe 1 to form a layer of the thermit agent 2 on the layer 5. The thermit agent 2 is then ignited in the field of centrifugal force to cause a thermit reaction. A metallic layer and a ceramic layer produced by the thermit reaction are formed on the inside of the mother pipe 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、テルミット反応を利用して母管内面にセラミ
ックス層(生成セラミックス)を被覆形成する複合管の
製造方法の改良に係り、特に前記生成セラミックスの割
れの発生を低減抑止するようにした複合管の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for manufacturing a composite tube in which a ceramic layer (formed ceramic) is formed on the inner surface of a mother tube by utilizing a thermite reaction. The present invention relates to a method for manufacturing a composite pipe that reduces or suppresses the occurrence of cracks in produced ceramics.

(従来の技術) 母管内面にセラミックス層を被覆形成せしめてなる複合
管は、セラミックス層が耐熱性、耐摩耗性、耐食性等に
良好な特性を発揮するため、各種流体の輸送管や工業用
配管部材として広汎な適用用途を有している。
(Prior art) Composite tubes made by coating the inner surface of the mother tube with a ceramic layer are suitable for use as transportation tubes for various fluids and for industrial use because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications as a piping member.

この種複合管の製造手段としては、例えば特公昭57−
40219号公報、特公昭59−27747号公報等に
記載の発明の如く遠心力とチルミント反応を利用するい
わゆる遠心テルミット決が提起されている。すなわち、
この方法は第3図に示すように、母管1内に、例えばA
IとFe2O3の如き金属還元剤と金属酸化物との一定
比率の混合物からなるテルミット剤を装填しテルミット
剤層2を形成し、これを高速回転による遠心力場内で着
火して、下記式に例示する如きテルミット反応を行なわ
しめ、この発熱反応により生成される溶融金属と溶融セ
ラミックスとを比重分離して、第4図に示すように母管
1の内面に金属層3を介して所望のセラミソクス層4を
被覆形成するものである。
As a manufacturing method for this kind of composite pipe, for example,
So-called centrifugal thermite determination using centrifugal force and chillmint reaction has been proposed, such as inventions described in Japanese Patent Publication No. 40219 and Japanese Patent Publication No. 59-27747. That is,
In this method, as shown in FIG. 3, for example, A
A thermite agent consisting of a mixture of I, a metal reducing agent such as Fe2O3, and a metal oxide at a certain ratio is loaded to form a thermite agent layer 2, and this is ignited in a centrifugal force field due to high speed rotation, as shown in the following formula. A thermite reaction is carried out, and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity, and a desired ceramic layer is formed on the inner surface of the main tube 1 via the metal layer 3, as shown in FIG. 4 is coated.

(発明が解決しようとする問題点) 上記テルミット反応の一例を示すと下記の通りFe2O
3+2An →A1203+2Fe+199 Kcal
/A1203モルこの場合の金属層は鉄、セラミックス
層はアルミナとなる。
(Problems to be Solved by the Invention) An example of the thermite reaction described above is as follows: Fe2O
3+2An →A1203+2Fe+199 Kcal
/A1203 moles In this case, the metal layer is iron and the ceramic layer is alumina.

一般にこの種テルミット剤応による発熱量は極めて大き
く、理論的には反応による最高到達温度が3000℃を
越えることもめずらしくない。このように高温を伴う反
応を、例えば鋼管のような金属管(以下母管という)内
で誘導すると、母管と生成物の熱伸縮履歴の異質性によ
り冷却過程で、後者特に生成セラミックスに割れを生ず
るという問題があった。この割れの形態や、密度は母管
の板厚やテルミット剤の使用量によって変化するが、特
に割れ発生率や割れ分布密度が高いのは、引張割れであ
る。時に発生をみる圧縮割れは、母管の収縮力がセラミ
ックス耐力を上回る場合に発生することになるが、一般
にセラミックスの圧縮強度は極めて大きいので、両者の
バランスをとってその回避をはかることはそれ程難しく
ない。
Generally, the amount of heat generated by this type of thermite reaction is extremely large, and theoretically it is not uncommon for the maximum temperature reached by the reaction to exceed 3000°C. When such a reaction involving high temperatures is induced in a metal tube such as a steel pipe (hereinafter referred to as the mother tube), the latter, especially the produced ceramics, may crack during the cooling process due to the heterogeneity in the thermal expansion and contraction histories of the mother tube and the product. There was a problem in that it caused The form and density of these cracks vary depending on the thickness of the main pipe and the amount of thermite used, but tensile cracks have a particularly high crack incidence and crack distribution density. Compression cracking, which sometimes occurs, occurs when the shrinkage force of the main pipe exceeds the proof strength of the ceramics, but since the compressive strength of ceramics is generally extremely high, it is difficult to avoid it by striking a balance between the two. It's not difficult.

一方引張割れは、母管と生成物の界面の影響を強く受け
、ここで生成物の自由収縮が妨げられる場合には極めて
高密度に引張割れを生じることになる。以下この理由を
概説する。
On the other hand, tensile cracking is strongly influenced by the interface between the main pipe and the product, and if the free shrinkage of the product is prevented here, tensile cracking will occur at an extremely high density. The reason for this will be outlined below.

テルミット反応熱を受けると、母管は一旦膨張し、最高
到達温度を経由して以降収縮に転する。
When subjected to the heat of thermite reaction, the main tube expands, reaches its maximum temperature, and then begins to contract.

一方生成物はしばしの溶融状態を経て凝固に至るが、以
降は急冷されるために収縮の一途を辿る。
On the other hand, the product solidifies after being in a molten state for a while, but then continues to shrink as it is rapidly cooled.

そして生成物の温度が高い領域にある間は、母管はその
伝熱を受は冷却勾配は比較的穏やかであるのに生成物は
急冷されるために収縮率は、後者が上回ることになり、
その結果、両者の嵌合状態は極めて穏やかになっている
と想定される。かかる状態では生成物の収縮が先行して
も、母管との界面でそれを妨げるような摩擦力が生じな
いので、自由収縮状態が得られ、引張割れを生じること
もない筈である。
While the temperature of the product is in a high range, the heat transfer to the main tube is relatively gentle, but the product is rapidly cooled, so the shrinkage rate is higher than that of the latter. ,
As a result, it is assumed that the fitted state between the two is extremely gentle. In such a state, even if the product shrinks first, no frictional force is generated at the interface with the main tube to prevent it from shrinking, so a free shrinkage state is obtained and no tensile cracks should occur.

しかし現実にはテルミット反応熱を受けて母管の内表面
は荒され(粗され)生成物外表面もそれに準する形で凹
凸を生ずることになる。このさい母管の板厚やテルミッ
ト剤の使用量によっては母管と生成物が部分的に融合一
体化する場合もある。
However, in reality, the inner surface of the mother tube is roughened by the heat of the thermite reaction, and the outer surface of the product also becomes uneven. At this time, depending on the thickness of the main pipe and the amount of thermite used, the main pipe and the product may partially fuse into one.

後者の場合では生成物の自由収縮が拘束されることは明
らかである。前者の場合にも一応母管と生成物の界面は
分離されているものの、それぞれに凹凸があるために、
生成物の収縮率が大きい温度域であっても、その収縮は
界面が滑らかな場合のような無抵抗に近い状態では行わ
れ難い。セラミックスは引張強度、靭性に欠けるため、
かかる自由収縮を束ばくされると容易に引張割れを呈す
ることになる。遠心テルミット法のような不可避的急冷
を伴うプロセスでは粒界に不純物や欠陥を生じやすく、
本来のセラミックス強度をもつまでに至らないことも割
れの発生を助長することにもなっている。
It is clear that in the latter case the free shrinkage of the product is restricted. In the former case, although the interface between the mother tube and the product is separated, there are irregularities on each side, so
Even in a temperature range where the shrinkage rate of the product is high, the shrinkage is difficult to occur in a nearly non-resistance state such as when the interface is smooth. Ceramics lack tensile strength and toughness,
If such free shrinkage is bundled, tensile cracks will easily occur. Processes that involve unavoidable rapid cooling, such as the centrifugal thermite process, tend to produce impurities and defects at grain boundaries.
The fact that ceramics do not have the strength they should have also promotes the occurrence of cracks.

そこで前に述べた割れ発生原因から明らかなように、そ
の発生を回避するためには鋼管と生成物の界面を平滑に
しておくことが肝要であり、この目的を達成するために
はテルミット剤の下に吸熱材を敷く方法が考えられる。
Therefore, as is clear from the causes of cracking mentioned earlier, it is important to keep the interface between the steel pipe and the product smooth in order to avoid this occurrence, and to achieve this purpose, thermite agent One possible method is to place heat-absorbing material underneath.

具体的には鋼製薄肉円筒を母管である鋼管内に嵌着する
方法や、鋼粒子や酸化物を散布床敷する方法である。こ
れらはその上で行われるテルミット反応熱を一部吸収し
、かつその熱が母管内面に及ぶのを避ける機能をもち、
結果的に母管内表面が加熱によって粗されるのを防ぐ効
果を発揮させようとするものである。
Specifically, there are a method in which a thin steel cylinder is fitted into a steel pipe that is a mother pipe, and a method in which steel particles or oxides are spread on the floor. These have the function of absorbing part of the heat of the thermite reaction that takes place thereon, and preventing that heat from reaching the inner surface of the main tube.
As a result, it is intended to have the effect of preventing the inner surface of the main tube from becoming rough due to heating.

しかし上記の方法では床敷量が過多になったり、施工精
度が悪いと母管−生成物間の密着状態が損われ、複合管
としての構造強度を欠いたり、また酸化物では生成セラ
ミックス中に融解してセラミックス組成に変化を与えた
り、均質性を損う要因となることが考えられる。
However, with the above method, if the amount of bedding is too large or the construction accuracy is poor, the adhesion between the main tube and the product will be impaired, resulting in a lack of structural strength as a composite tube. It is conceivable that it may melt and change the ceramic composition or cause loss of homogeneity.

(問題を解決するための手段) 本発明は上記の欠点を解消し、生成セラミックスの割れ
の発生を低減抑止するために、金属母管内面に、金属酸
化物と金属還元剤とでなるテルミット剤を装填してテル
ミット剤層を形成せしめ、遠心力場内で該テルミット剤
層に着火してテルミット反応を行わしめて、前記金属母
管内面にテルミット反応により生成される金属層及びセ
ラミックス層を被覆形成する方法において、金属母管の
内面にあらかじめ耐熱材膜層を形成し、更にその内面に
テルミット剤層を形成してテルミット反応を行わせる製
造方法を採用したものである。
(Means for Solving the Problems) The present invention solves the above-mentioned drawbacks, and in order to reduce and suppress the occurrence of cracks in the produced ceramics, the present invention provides a thermite agent consisting of a metal oxide and a metal reducing agent on the inner surface of the metal main tube. is charged to form a thermite agent layer, and the thermite agent layer is ignited in a centrifugal force field to cause a thermite reaction, thereby coating the inner surface of the metal mother tube with a metal layer and a ceramic layer generated by the thermite reaction. In this manufacturing method, a heat-resistant material film layer is formed in advance on the inner surface of a metal main tube, and a thermite agent layer is further formed on the inner surface to cause a thermite reaction.

(作 用) 金属母管内面に耐熱材膜層を形成し、更にその内面にテ
ルミット剤を散布等し、遠心力場内で該テルミット剤に
着火してテルミット反応を行わせると、耐熱材膜層が母
管内面に直接反応熱が及ぶのを妨げ、母管内表面の熱に
よる粗れを防ぎ、母管内表面の平滑状態を保つようにし
て冷却過程のセラミックスの引張割れを可及的に小さく
した。
(Function) When a heat-resistant material film layer is formed on the inner surface of the metal main tube, a thermite agent is further sprayed on the inner surface, and the thermite agent is ignited in a centrifugal force field to cause a thermite reaction, the heat-resistant material film layer prevents the reaction heat from directly reaching the inner surface of the main tube, prevents the inner surface of the main tube from becoming rough due to heat, and keeps the inner surface of the main tube smooth to minimize tensile cracks in the ceramic during the cooling process. .

(実施例) 本発明の実施例を第1図と第2図を参照して述べる。両
図において1は金属母管を示し、素材として鋼管を使用
する。5は該母管工の内面に溶射された耐熱材膜層であ
る。この溶射膜の溶射は通常、密着度を高めるために母
管内表面をブラスト等で粗面化するが、本発明では密着
状態はむしろ避ける方が望ましく、鋼面に溶射する場合
は黒皮上に直接施工するようにすればよい。溶射施工は
プラズマ、ガス炎、いずれによっても良いが、母管表面
を余り粗さない方が良いので、容量はそれ程大きなもの
を必要としない。一般に行われる下地に合金層を入れて
密着度を上げるようなことも勿論必要としない。
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2. In both figures, numeral 1 indicates a metal main pipe, and a steel pipe is used as the material. 5 is a heat-resistant material film layer sprayed on the inner surface of the main pipe. Normally, when spraying this thermal spray film, the inner surface of the main tube is roughened by blasting or the like in order to increase the degree of adhesion, but in the present invention, it is preferable to avoid such a state of adhesion. It is best to construct it directly. Thermal spraying may be performed using plasma or gas flame, but since it is better not to roughen the surface of the main tube too much, a large capacity is not required. Of course, it is not necessary to add an alloy layer to the base to increase the adhesion, which is generally done.

溶射材料としては耐熱性を有し、テルミ7)反応熱を受
けてもガス化しないものなら大抵のものを使用できるが
、例示するとアルミナ(Al2O2)、ジルコニヤ(Z
rOz)などである。その他耐熱材膜層は金属溶射膜で
も良い。これらを母管内面に、遠心力テルミット法の施
工に先んじて、30〜300μ−の厚みに溶射しておく
のである。このさい30μmより薄いと断熱の効果がな
く、300 μmより以上は必要でない。こうして母管
内面に耐熱材膜層を形成した後、更にその内面にテルミ
ット剤を散布し、遠心力場内で該テルミット剤に着火し
てテルミット反応を行わしめる。このさいテルミット剤
の種類、使用量は適宜経験、或いは計算等により求めた
ものを使用する。
As thermal spray materials, most materials can be used as long as they have heat resistance and do not gasify even when subjected to the heat of reaction. Examples include alumina (Al2O2) and zirconia (Z).
rOz), etc. Other heat-resistant material film layers may be metal sprayed films. These are sprayed onto the inner surface of the main tube to a thickness of 30 to 300 microns prior to the centrifugal thermite method. In this case, if the thickness is less than 30 μm, there is no heat insulating effect, and if it is thinner than 300 μm, it is not necessary. After the heat-resistant material film layer is thus formed on the inner surface of the main tube, a thermite agent is further sprayed on the inner surface, and the thermite agent is ignited in a centrifugal force field to cause a thermite reaction. In this case, the type and amount of thermite agent to be used are appropriately determined by experience or calculation.

なお、上記実施例においてテルミット反応後に耐熱材膜
層が若干残ったとしても、それと母管とは弱い接面状態
にあるので、生成物の収縮を阻害することはなく、また
構造的にも一体化を損うほどのことにはならない。更に
冷却が進行すると母管の収縮率はセラミックスを上回る
ので、最終状態では生成物が母管に強力に締め上げられ
た状態で落着くので、下に薄層の溶射膜5゛が残っても
、この状態で強度に悪影響がでることにはならない。
In addition, even if a small amount of the heat-resistant material film layer remains after the thermite reaction in the above example, since it and the main tube are in weak contact, it does not hinder the shrinkage of the product, and it is structurally integrated. It will not be enough to damage the country. As cooling progresses further, the shrinkage rate of the main tube exceeds that of ceramics, so in the final state, the product settles in a strongly compressed state in the main tube, so even if a thin layer of sprayed film remains below, In this state, the strength will not be adversely affected.

以下本発明の具体的な実施例を更に下記に挙げる。Further specific examples of the present invention are listed below.

外径165.2inx厚さ7.11m×長さ14301
mの鋼管内にプラズマ溶射により 100μm厚の耐熱
材膜層であるアルミナ層を形成し、その内側にテルミッ
ト剤を21.5kg (酸化鉄15kg、アルミニウム
5瞳、緻密化助剤1.5kg)を散布し、100Gの高
速回転下で着火し、遠心テルミット反応を行なわしめた
。かくして得られたセラミックス層には目視できる引張
割れは全くみられなかった。
Outer diameter 165.2in x thickness 7.11m x length 14301
A 100 μm thick alumina layer, which is a heat-resistant material film layer, is formed inside a steel pipe with a thickness of 100 μm by plasma spraying, and 21.5 kg of thermite agent (15 kg of iron oxide, 5 pupil of aluminum, 1.5 kg of densification aid) is applied inside the alumina layer. The mixture was sprayed and ignited under high speed rotation of 100G to perform a centrifugal thermite reaction. No visible tensile cracks were observed in the ceramic layer thus obtained.

(発明の効果) 母管内表面にあらかじめ形成しておいた耐熱材膜層は、
テルミット反応時に母管内面に直接反応熱が及ぶのを妨
げ、母管内面の熱による粗れを防ぐ。この状態は母管内
表面の平滑状態を保つと共に冷却過程の生成セラミック
スの引張割れを生じがたくする。従って本発明によれば
生成セラミックスの割れの発生を低減抑止する製法とし
ては、工業的に有用である。
(Effect of the invention) The heat-resistant material film layer previously formed on the inner surface of the main tube
Prevents reaction heat from directly reaching the inner surface of the main tube during the thermite reaction, and prevents the inner surface of the main tube from becoming rough due to heat. This state maintains the smooth state of the inner surface of the main tube and makes it difficult for tensile cracks to occur in the ceramic produced during the cooling process. Therefore, the present invention is industrially useful as a manufacturing method for reducing and suppressing the occurrence of cracks in produced ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の一実施例を示し、第1図は本
発明に係る製造工程における母管の断面図であり、第2
図は本発明の製造目的である複合管の断面図である。第
3図と第4図は従来の遠心チルミント法の製造工程にお
ける母管等の断面図と複合管の断面図を示したものであ
る。 1−・−母管、2−テルミット剤層、3・−金属層、4
−・−セラミックス層、5−耐熱材膜層、5′−テルミ
ント反応後の残存耐熱材膜層。 特 許 出 願 人 工業技術院長 等々力達同  上
  久保田鉄工株式会社 代 理 人 弁理士 安  1) 敏  雄第7図  
  第3図 第2図     第4図
1 and 2 show one embodiment of the present invention, FIG. 1 is a sectional view of the main pipe in the manufacturing process according to the present invention, and FIG.
The figure is a cross-sectional view of a composite pipe that is the object of manufacturing the present invention. FIGS. 3 and 4 show a cross-sectional view of a main tube, etc. and a cross-sectional view of a composite tube in the manufacturing process of the conventional centrifugal chill mint method. 1-.-mother pipe, 2-thermite agent layer, 3.-metal layer, 4
-.-Ceramics layer, 5-heat-resistant material film layer, 5'-heat-resistant material film layer remaining after thethermint reaction. Patent Applicant Tatsu Todoroki, Director General of the Agency of Industrial Science and Technology, Kubota Iron Works Co., Ltd. Representative Patent Attorney Yasu 1) Toshio Figure 7
Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、金属母管内面に、金属酸化物と金属還元剤とでなる
テルミット剤を装填してテルミット剤層を形成せしめ、
遠心力場内で該テルミット剤層に着火してテルミット反
応を行わしめて、前記金属母管内面にテルミット反応に
より生成される金属層及びセラミックス層を被覆形成す
る方法において、金属母管の内面にあらかじめ耐熱材膜
層を形成し、更にその内面にテルミット剤層を形成して
テルミット反応を行わせることを特徴とする複合管の製
造方法。
1. A thermite agent consisting of a metal oxide and a metal reducing agent is loaded onto the inner surface of the metal main tube to form a thermite agent layer,
In this method, the thermite agent layer is ignited in a centrifugal force field to cause a thermite reaction, and the inner surface of the metal mother tube is coated with a metal layer and a ceramic layer generated by the thermite reaction. A method for manufacturing a composite tube, comprising forming a material film layer and further forming a thermite agent layer on the inner surface of the material film layer to cause a thermite reaction.
JP7957385A 1985-04-15 1985-04-15 Manufacture of composite pipe Pending JPS61238970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7957385A JPS61238970A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7957385A JPS61238970A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Publications (1)

Publication Number Publication Date
JPS61238970A true JPS61238970A (en) 1986-10-24

Family

ID=13693736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7957385A Pending JPS61238970A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Country Status (1)

Country Link
JP (1) JPS61238970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389677A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027462A (en) * 1983-07-26 1985-02-12 Agency Of Ind Science & Technol Production of pipe having composite construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027462A (en) * 1983-07-26 1985-02-12 Agency Of Ind Science & Technol Production of pipe having composite construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389677A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method

Similar Documents

Publication Publication Date Title
JP3474516B2 (en) Article having a silicon-containing substrate and a barrier layer for preventing formation of a gaseous silicon compound
Paredes et al. The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying
US5894053A (en) Process for applying a metallic adhesion layer for ceramic thermal barrier coatings to metallic components
JPS63236545A (en) Catalyst carrier and its production
JPS648072B2 (en)
JPS602659A (en) Thermally sprayed member for high temperature
EP0480727B1 (en) Coated hearth roll and process for its production
JPS61238970A (en) Manufacture of composite pipe
JPS5849607B2 (en) Cooling stave with non-fused double cooling pipes
JP3150697B2 (en) Method of producing a protective layer on a metal wall exposed to a hot gas
Odawara Long ceramic-lined pipes with high resistance against corrosion, abrasion and thermal shock
US3415631A (en) Protective coated article
EP0185430B1 (en) Method for producing a metallic surface layer on a workpiece
JP3160405B2 (en) Roll for transporting high-temperature steel
JP3576479B2 (en) Water-cooled steel structure
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JPH022955B2 (en)
JP2001073028A (en) Hearth roll for heating furnace
JPH024950A (en) Manufacture of surface treated steel sheet having excellent corrosion resistance and wear resistance
JPH073426A (en) Heat resistant flame sprayed material and heat resistant member having flame sprayed coating
CN106011716A (en) W-WSi2 functionally graded material and preparation method thereof
JPS63255352A (en) Coated roll for conveying high-temperature steel sheet
JPS6179776A (en) Manufacture of composite pipe
JP3043917B2 (en) Rolls for heat treatment furnaces with excellent peel resistance, wear resistance, and build-up resistance
JP3009815B2 (en) Aluminum titanate-alumina spray material