JPS5849607B2 - Cooling stave with non-fused double cooling pipes - Google Patents

Cooling stave with non-fused double cooling pipes

Info

Publication number
JPS5849607B2
JPS5849607B2 JP54041926A JP4192679A JPS5849607B2 JP S5849607 B2 JPS5849607 B2 JP S5849607B2 JP 54041926 A JP54041926 A JP 54041926A JP 4192679 A JP4192679 A JP 4192679A JP S5849607 B2 JPS5849607 B2 JP S5849607B2
Authority
JP
Japan
Prior art keywords
cooling
stave
thickness
tube
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041926A
Other languages
Japanese (ja)
Other versions
JPS55134284A (en
Inventor
「ぎよう」一 鈴木
照男 下間
正昭 樋口
常典 菅原
健 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
JFE Engineering Corp
Original Assignee
Nippon Chuzo Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd, Nippon Kokan Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP54041926A priority Critical patent/JPS5849607B2/en
Priority to GB8010925A priority patent/GB2046890B/en
Priority to US06/136,755 priority patent/US4327899A/en
Priority to AU57206/80A priority patent/AU530115B2/en
Priority to FR8007853A priority patent/FR2454078B1/en
Priority to DE3013560A priority patent/DE3013560C2/en
Publication of JPS55134284A publication Critical patent/JPS55134284A/en
Publication of JPS5849607B2 publication Critical patent/JPS5849607B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0045Cooling of furnaces the cooling medium passing a block, e.g. metallic
    • F27D2009/0048Cooling of furnaces the cooling medium passing a block, e.g. metallic incorporating conduits for the medium

Description

【発明の詳細な説明】 この発明は、高炉等の冶金用炉のクーリングステーブの
構造の改良に関するもので、炉からの熱負荷によってス
テーブ母材に生ずるクラツクが冷却管部分に波及して全
体的破損の原因になることを完全に防止し得るクーリン
グステーブを提供する目的のためのものである。
Detailed Description of the Invention The present invention relates to improving the structure of a cooling stave for a metallurgical furnace such as a blast furnace. The purpose is to provide a cooling stave that can be completely prevented from causing damage.

高炉等の冶金用炉の炉壁は、一般的には耐火煉瓦で構築
され適宜の冷却箱が外側の鉄皮を通して随所に設けられ
ていたが、近年の高炉の大型化に伴い炉内の熱容量も飛
躍的に増大して冷却箱による冷却では間に合わなくなっ
て来ており、最近では殆んどの高炉においてクーリング
ステーブが採用されている。
The walls of metallurgical furnaces such as blast furnaces were generally constructed of refractory bricks, and appropriate cooling boxes were installed at various places through the outer shell, but as blast furnaces have become larger in recent years, the heat capacity inside the furnace has increased. The number of blast furnaces has increased dramatically, and cooling using a cooling box is no longer sufficient, and recently, cooling staves have been adopted in most blast furnaces.

このクーリングステーブに要求される性質は、言う迄も
なく耐熱性、耐摩耗性に富み、且つ長期に亘って炉壁を
強固に維持するものでなければならないが、また一方こ
のステーブの炉内側受熱面での効果的な熱交換と、ステ
ーブ内側における冷却水管路とステーブ母材どの伝熱効
率、ステーブ母材に発生した亀裂の冷却水管路への伝播
防止、などの最適条件をも具備し、且つそれの製造工程
も簡単でなげればならない。
Needless to say, the characteristics required of this cooling stave are that it has high heat resistance and wear resistance, and that it must maintain the strength of the furnace wall over a long period of time. It also has the optimum conditions such as effective heat exchange on the surface, heat transfer efficiency between the cooling water pipe inside the stave and the stave base material, and prevention of propagation of cracks that occur in the stave base material to the cooling water pipe. The manufacturing process must also be simple.

而して、従来提案されているクーリングステープには、
冷却管が一重でステーブ母材との間を非融着としたいわ
ゆる非融着型のもの、冷却管が二重でステープ母材と非
融着型のもの、及び融着型のものなどがあり、冷却管と
ステーブ母材との間を非融着とするための処理は非金属
層を冷却管の表面に設けしかるのちステーブ母材と鋳合
せてなるものが多い。
Therefore, the cooling tape that has been proposed so far is
There are so-called non-fusion types with a single cooling pipe and non-fusion between the stave base material, those with double cooling pipes and non-fusion with the stave base material, and fusion types. However, the treatment for preventing fusion between the cooling pipe and the stave base material is often performed by providing a non-metallic layer on the surface of the cooling pipe and then casting it with the stave base material.

しかしながら、従来から実用化され、実施されているク
ーリングステーブでは冷却管とステーブ母材間の伝熱効
率が悪いことから、ステーブ母材の溶損が生ずること、
ステーブ母材に発生した亀裂が非融着処理の不充分さか
ら冷却管にまで波及すること、などのために、折角のク
ーリングステープの効用が充分発揮されていない憾みが
あった。
However, in the cooling staves that have been put into practical use and implemented in the past, the heat transfer efficiency between the cooling pipe and the stave base material is poor, resulting in melting and loss of the stave base material.
Due to cracks that occur in the stave base material that spread to the cooling pipes due to insufficient non-bonding treatment, it has been regrettable that the effectiveness of the cooling tape has not been fully utilized.

この発明は、上記の従来のクーリングステーブの諸欠陥
に鑑みこれを解消するとともに耐熱性、耐摩耗性に富み
且つ長期に亘って炉壁な強固に維持することの可能なク
ーリングステーブを提供するものである。
This invention provides a cooling stave that eliminates the various deficiencies of the conventional cooling stave described above, has high heat resistance and wear resistance, and is capable of maintaining the strength of the furnace wall over a long period of time. It is.

即ち、この発明は内管のC当量が0.20〜0.38、
外管のC当量が0.15〜0.25の引き抜き二重鋼管
の外側に厚さ0.08〜0. 2 5 mmのアルミナ
被膜を設け、次いで球状黒鉛鋳鉄と鋳合せてなる非融着
型二重冷却管を備えたクーリングステーブである。
That is, in this invention, the C equivalent of the inner tube is 0.20 to 0.38,
A thickness of 0.08 to 0.2 mm is provided on the outside of a drawn double-walled steel pipe whose C equivalent is 0.15 to 0.25. This is a cooling stave equipped with a non-fused double cooling pipe made of a 25 mm alumina coating and then cast with spheroidal graphite cast iron.

次に、この発明のクーリングステーブにおいて上記の構
戒とした理由について説明する。
Next, the reason for the above-mentioned precautions in the cooling stave of the present invention will be explained.

この発明のクーリングステープは従来知られているクー
リングステーブの分類に従えば、外面非融着二重冷却管
型に入るものであるが、この発明においてはこの二重管
の圧着加工上の見地、および浸炭に伴う材質の劣化防止
の見地から内管、外管に夫々材質の異なるものを選んで
使用するところに特徴の一つがある。
According to the classification of conventionally known cooling staves, the cooling tape of this invention falls into the double cooling tube type with no external fusion. One of the features is that different materials are selected for the inner and outer tubes to prevent material deterioration due to carburization.

即ち、 内管にはC当量 に換算して0.20〜0、38好ましくは0.23〜0
.35の組或の鋼を、 又外管にはC当量に換算 ?して0.15〜0.25好まし《は0.17〜0.2
0の組成の鋼を用い、且つ内外管の密着度を高めるため
二重管にしたものを冷牽加工等により引き抜き二重管と
するものである。
That is, the inner tube contains 0.20 to 0,38 preferably 0.23 to 0 in terms of C equivalent.
.. 35 steel, and convert it into C equivalent for the outer tube? and 0.15 to 0.25 preferably << is 0.17 to 0.2
This method uses steel with a composition of 0.0 and is made into a double tube in order to increase the degree of adhesion between the inner and outer tubes, which is then drawn out by cold drawing or the like to form a double tube.

このことを更に別の観点から説明すると、内管はクーリ
ングステーブの本来の使命である冷却が仮令ステーブ母
材たる鋳物本体に割れが生じた場合でも、又それの波及
により外管に亀裂その他の損傷が生じた場合でも、支障
なく行えるように引張強さが4 0 kg/ mm”以
上であることが必要であり、一方外管は2重管とすると
きの冷牽加工等の加工性の面から、又万一アルナ被膜の
欠損部分、薄い部分(このようなことは殆んど起り得な
いが)が存在した場合に、その箇所にステーブ母材の鋳
物本体からの浸炭が起きても支障がないように低カーボ
ンの軟かい材質とする必要がある。
To explain this from another perspective, even if the inner tube is unable to cool, which is the original mission of the cooling stave, even if a crack occurs in the cast body, which is the base material of the stave, the outer tube may have cracks or other cracks due to the ripple effect. Even if damage occurs, the tensile strength must be 40 kg/mm” or more so that the work can be carried out without any problems.On the other hand, the outer tube must have a tensile strength of 40 kg/mm” or more to ensure workability such as cold drawing when making a double tube. In addition, in the event that there is a missing or thin part of the Aluna coating (although such a thing almost never occurs), even if carburization occurs from the cast body of the stave base material at that location. It is necessary to use a soft material with low carbon so as not to cause any problems.

このような理由から内外管の鋼組成におげるC当量を上
記の通りに限定した。
For this reason, the C equivalent in the steel composition of the inner and outer tubes was limited as described above.

この発明の内外管のために好ましい鋼の一例の化学或分
及び機械的性質を下の第1表に示す。
The chemical and mechanical properties of an example of a preferred steel for the inner and outer tubes of this invention are shown in Table 1 below.

而して、外管のC当量を上記の範囲に限定したのは、そ
の外側に溶射法によって設けるアルミナ被膜を伝熱効率
を高めるため厚さO.OS〜0.25mmと薄くしたこ
とによる万一の浸炭に対処したもので、上記範囲を超え
たC当量のものを使用した場合には浸炭に伴う脆化が考
えられるため好ましくな《、上記範囲未満のC当量のも
のは強度か弱過ぎる難点があるためである。
The reason why the C equivalent of the outer tube is limited to the above range is that the alumina coating formed on the outside by a thermal spraying method has a thickness of O. This is to deal with the possibility of carburization caused by making the thickness OS ~ 0.25 mm. If a C equivalent exceeding the above range is used, embrittlement may occur due to carburization, so it is not preferable. This is because a material having a C equivalent of less than 10% has a disadvantage of being too weak in strength.

又、内管のC当量を上記の範囲に限定したのは、内管は
物理的には外管と圧着されているが、金属組織的には全
く別のものであるから、仮にステーブ母材に亀裂が発生
した場合には、非融着層によって一次的な亀裂防止がな
され、この非融着層で亀裂の伝播が防止されずに、外管
にまで亀裂が派生した場合でも、この内管で喰い止める
ことのできる強度を必要とするためである。
In addition, the C equivalent of the inner tube was limited to the above range because although the inner tube is physically crimped to the outer tube, their metallographic structure is completely different. If a crack occurs in the outer tube, the non-fused layer will provide temporary crack prevention, and even if this non-fused layer does not prevent the crack from propagating and the crack spreads to the outer tube, the inner This is because the pipe needs to be strong enough to stop it.

なお、この内外管の鋼のC当量の限定は上述の浸炭防止
と強度に対する配慮のほかに二重管形成の引き抜き処理
等の加工性の点でも無理の生じない強度の組合せとした
ものであることは言う迄もない。
The C equivalent of the steel for the inner and outer tubes is limited not only in consideration of carburization prevention and strength as described above, but also in terms of workability such as drawing processing for forming double tubes, and is a combination of strengths that will not cause unreasonable problems. Needless to say.

次に、この発明のもう一つの特徴は上記の二重冷却管の
外側に形成される非融着層のアルミナ被膜の厚さを最適
範囲に限定したことである。
Another feature of the present invention is that the thickness of the alumina coating, which is the non-fusion layer formed on the outside of the double cooling tube, is limited to an optimum range.

既に冒頭の従来技術の説明で触れたように、冷却用金属
管の外側に粘土、アルミナ、ジルコニア、その他の非融
着層形成のための表面処理を施すことば周知であるが、
上述のこの発明における引き抜き二重冷却管の鋼材質の
選定と相俟って非融着層を形成する被膜の材質と厚さは
極めて重要である。
As already mentioned in the explanation of the prior art at the beginning, it is well known that surface treatments such as clay, alumina, zirconia, or other materials are applied to the outside of the cooling metal tube to form a non-bonding layer.
In addition to the selection of the steel material of the drawn double cooling pipe in this invention as described above, the material and thickness of the coating forming the non-fusion layer are extremely important.

そこでこの発明では非融着層を形戒する被膜としてアル
ミナ溶射を採用し、その厚さを0.08〜Q.25mm
の範囲とした。
Therefore, in this invention, alumina spraying is used as a coating to form a non-bonding layer, and the thickness is set to 0.08 to Q. 25mm
The range of

このアルミナ溶射は被覆層の厚さを薄くできることと伝
熱効率が他の材料より優れているから採用したものであ
り、その厚さの上限を0.25mmとしたのはこれを超
えると充分な熱交換が行われないのでステーブ母材の溶
損事故にもつながる恐れがあるからであり、又OD8間
未満では伝熱効率は良好になるが外管への浸炭の恐れが
あって外管が脆《なり、最終的には内管にも悪影響を与
えかねないからである。
This alumina thermal spraying was adopted because the thickness of the coating layer can be made thinner and its heat transfer efficiency is superior to other materials. This is because the stave base material is not replaced, which may lead to melting and damage to the stave base material.Also, if the OD is less than 8, the heat transfer efficiency is good, but there is a risk of carburization of the outer tube, and the outer tube becomes brittle. This is because it may ultimately have an adverse effect on the inner tube.

第1図はアルミナ溶射被膜の厚さと、冷却管とステーブ
母材の鋳物間の熱伝達率の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the thickness of the alumina spray coating and the heat transfer coefficient between the cooling pipe and the casting of the stave base material.

この図から明らかなようにアルミナ被膜の厚さと冷却管
・鋳物間の熱伝達率は反比例するものであり、被膜の厚
さ0.1〜0.2關の間で急激に変化するので、この観
点からもこの発明におけるアルミナ被膜の厚さ限定の必
要性が理解されよう。
As is clear from this figure, the thickness of the alumina coating is inversely proportional to the heat transfer coefficient between the cooling pipe and the casting, and it changes rapidly between 0.1 and 0.2 degrees of coating thickness. From this point of view, the necessity of limiting the thickness of the alumina coating in this invention can be understood.

尚、この発明でステーブ母材として鋳合せに用いる球状
黒鉛鋳鉄の一例の化学成分及び機械的性質を下の第2表
に示す。
The chemical composition and mechanical properties of an example of the spheroidal graphite cast iron used for casting as the stave base material in this invention are shown in Table 2 below.

次に、こQ発明の好ましい二重冷却管の実施例の化学戒
分及び機械的性質を下の第3表に示す。
Next, the chemical properties and mechanical properties of preferred embodiments of the dual cooling tube of the Q invention are shown in Table 3 below.

?記の内外管を冷牽加工して二重管とし、内外管の密着
度を高め、この二重冷却管の外側にアルミナ溶射により
厚さ0.14mmのアルナ被膜を設け、次いで上記の球
状黒鉛鋳鉄と鋳合せて通常の形状のクーリングステーブ
を製造した、この場合の鋳込温度はアルミナ被膜が上記
の如く薄いことを考慮に入れて1245±15℃の範囲
とした。
? The inner and outer tubes described above are cold drawn to form a double tube, the degree of adhesion between the inner and outer tubes is increased, and an alumina coating with a thickness of 0.14 mm is provided on the outside of this double cooling tube by alumina spraying, and then the above spheroidal graphite is applied. A cooling stave of a normal shape was manufactured by casting with cast iron.The casting temperature in this case was set in the range of 1245±15°C, taking into consideration the thinness of the alumina coating as described above.

これより低い鋳込温度ではパイプ・鋳物間の間隙が広く
なって伝熱効率が低下するし、逆に温度が高いとアルミ
ナ被膜の溶融によりパイプ・鋳物間に融着状態が発生し
易《なり、浸炭の恐れがある。
If the casting temperature is lower than this, the gap between the pipe and the casting will become wider and the heat transfer efficiency will decrease; if the temperature is higher, on the other hand, the alumina coating will melt and a fused state will easily occur between the pipe and the casting. There is a risk of carburization.

なお、二重管をつくる場合内管に黒皮材を用いて冷牽加
工により二重管としこれを鋳込んだ場合の熱伝達率は、
2 0 0 0 Kcal/rr? hr ℃であり、
内管に酸洗処理材を用いて冷牽加工により二重管としこ
れを鋳込んだ場合の熱伝達率は5000Kcal/〆h
r ’Cであり、勿論内管は酸洗処理材を用いるべきで
ある。
In addition, when making a double pipe, the heat transfer coefficient when the inner pipe is made of black bark material and the double pipe is made by cold drawing and then cast is as follows:
2 0 0 0 Kcal/rr? hr ℃,
When the inner tube is made of pickled material and made into a double tube by cold drafting and cast, the heat transfer coefficient is 5000Kcal/h.
r'C, and of course the inner tube should be made of pickled material.

写真1は上記のアルミナ被膜の厚さを0、05間とした
場合の外管外面側断面の鋼組織を示す顕微鏡( X 1
0 0 )写真であり、写真2は上記のアルミナ被膜
の厚さを0.14mrnとした場合の同様の写真である
Photo 1 is a microscope (X 1
0 0 ), and Photo 2 is a similar photo when the thickness of the alumina coating was set to 0.14 mrn.

又写真3はアルナ被膜の厚さを0.05山とした場合の
外管肉厚中央部の断面の鋼組織を示す顕微鏡(xioo
)写真であり、写真4は上記のアルミナ被膜の厚さを0
.14mrnとした場合の同様の写真である。
Photo 3 shows the steel structure of the cross section at the center of the wall thickness of the outer tube when the thickness of the Aluna coating is 0.05 mm.
), and Photo 4 shows the thickness of the above alumina coating being 0.
.. This is a similar photograph taken when 14mrn was used.

写真1のアルミナ被膜0.05朋の場合では浸炭がある
が、写真2のアルナ被膜0.14mmのこの発明のもの
は浸炭がないことが理解されよう。
It will be understood that carburization occurs in the case of the alumina coating of 0.05 mm in Photo 1, but there is no carburization in the case of this invention with the alumina coating of 0.14 mm in Photo 2.

以上の構成になるこの発明の非融着型二重冷却管を備え
たクーリングステーブは、冷却管近傍の熱の流れを一次
元円筒の伝熱として近似でき、その冷却管の熱通過率を
冷却条件、管径等に応じて所定の値とすることにより、
冷却能を損うことなく実現が可能である。
The cooling stave equipped with non-fused double cooling pipes of the present invention configured as described above can approximate the flow of heat near the cooling pipes as heat transfer in a one-dimensional cylinder, and the heat transfer rate of the cooling pipes can be reduced. By setting a predetermined value according to conditions, pipe diameter, etc.
This can be achieved without compromising cooling capacity.

したがって、十分な冷却能力を有するクーリングステー
ブを提供するものであり、かつ仮に熱的ショック、その
他でクーリングステーブ本体に亀裂が発生したとしても
、非融着層によりパイプへの亀裂の伝播が防止され、更
には万一非融着層が不良でステーブ母材の鋳物と外管が
融着箇所があり、そこから外管へ亀裂が伝播した場合で
も、内外管が非融着状態になっているので、内管にまで
亀裂が伝播することはない。
Therefore, a cooling stave with sufficient cooling capacity is provided, and even if a crack occurs in the cooling stave body due to thermal shock or other reasons, the non-fusion layer prevents the crack from propagating to the pipe. Furthermore, in the unlikely event that the unfused layer is defective and there is a fused spot between the stave base material casting and the outer tube, and a crack propagates from there to the outer tube, the inner and outer tubes will remain unfused. Therefore, the crack will not propagate to the inner pipe.

又、このことから当然に冷却水の漏洩に対して二重の安
全性を有すると共に、ステープ本体の鋳物、冷却管、冷
却水間の伝熱抵抗をクーリングステーブが確保するため
、炉体寿命を延長せしめる効果をもたらすものである。
In addition, this naturally provides double safety against leakage of cooling water, and the cooling stave ensures heat transfer resistance between the casting of the main body of the staple, the cooling pipe, and the cooling water, thereby extending the life of the furnace body. This has the effect of prolonging the time.

因みに、この発明の上記実施例のクーリングステーブを
装着した高炉は稼動3ケ年の経た現在も、何ら問題点が
生ぜず、高炉の安定操業上の寄与は非常に大きい。
Incidentally, even after three years of operation, the blast furnace equipped with the cooling stave according to the above-mentioned embodiment of the present invention has not encountered any problems, and has greatly contributed to the stable operation of the blast furnace.

又、この発明のクーリングステーブは高炉のみならず、
冷却管を鋳込んだ冷却盤として他の炉設備にも適用でき
ることは言う迄もない。
In addition, the cooling stave of this invention is not only used in blast furnaces.
Needless to say, it can be applied to other furnace equipment as a cooling plate with cooling pipes cast into it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却管・鋳物間熱伝達率とアルミナコーティン
グの厚さとの関係を示す線図である。 第2図はアルミナ被膜の厚さを0.05mmとした場合
の外管外面側断面の鋼組織を示す顕微鏡写真であり、第
3図はアルミナ被膜の厚さを0.14mvtとした場合
の外管外面側断面の鋼組織を示す顕微鏡写真であり、第
4図はアルミナ被膜の厚さを0.05山とした場合の外
管肉厚中央部の鋼組織を示す顕微鏡写真であり、第5図
はアルミナ被膜の厚さを0.14mmとした場合の外管
肉厚中央部の鋼組織を示す顕微鏡写真である。
FIG. 1 is a diagram showing the relationship between the heat transfer coefficient between the cooling pipe and the casting and the thickness of the alumina coating. Figure 2 is a micrograph showing the steel structure of the cross section of the outer surface of the outer tube when the thickness of the alumina coating is 0.05 mm, and Figure 3 is a photomicrograph showing the steel structure of the outer tube when the thickness of the alumina coating is 0.14 mvt. FIG. 4 is a microphotograph showing the steel structure in the cross section of the outer surface of the tube, and FIG. The figure is a micrograph showing the steel structure at the center of the wall thickness of the outer tube when the thickness of the alumina coating is 0.14 mm.

Claims (1)

【特許請求の範囲】[Claims] 1 内管のC当量が0,20〜0.38、外管のC当量
が0.15〜0.25の引き抜き二重鋼管の外側に厚さ
0.08〜0.25mmのアルミナ被膜を設け、次いで
球状黒鉛鋳鉄と鋳合せてなる非融着型二重冷却管を備え
たクーリングステーフ。
1. An alumina coating with a thickness of 0.08 to 0.25 mm is provided on the outside of a drawn double-walled steel pipe in which the inner tube has a C equivalent of 0.20 to 0.38 and the outer tube has a C equivalent of 0.15 to 0.25. Next, a cooling staff with non-fused double cooling pipes made of spheroidal graphite cast iron.
JP54041926A 1979-04-09 1979-04-09 Cooling stave with non-fused double cooling pipes Expired JPS5849607B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54041926A JPS5849607B2 (en) 1979-04-09 1979-04-09 Cooling stave with non-fused double cooling pipes
GB8010925A GB2046890B (en) 1979-04-09 1980-04-01 Stave cooling device having unwelded double tube
US06/136,755 US4327899A (en) 1979-04-09 1980-04-03 Stave cooling device having unwelded double tube
AU57206/80A AU530115B2 (en) 1979-04-09 1980-04-08 Stave cooling device
FR8007853A FR2454078B1 (en) 1979-04-09 1980-04-08 TUBULAR COOLING DEVICE COMPRISING A DOUBLE UNSOLDED TUBE
DE3013560A DE3013560C2 (en) 1979-04-09 1980-04-09 Blast furnace plate cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54041926A JPS5849607B2 (en) 1979-04-09 1979-04-09 Cooling stave with non-fused double cooling pipes

Publications (2)

Publication Number Publication Date
JPS55134284A JPS55134284A (en) 1980-10-18
JPS5849607B2 true JPS5849607B2 (en) 1983-11-05

Family

ID=12621838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54041926A Expired JPS5849607B2 (en) 1979-04-09 1979-04-09 Cooling stave with non-fused double cooling pipes

Country Status (6)

Country Link
US (1) US4327899A (en)
JP (1) JPS5849607B2 (en)
AU (1) AU530115B2 (en)
DE (1) DE3013560C2 (en)
FR (1) FR2454078B1 (en)
GB (1) GB2046890B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146463A (en) * 1981-03-06 1982-09-09 Nippon Steel Corp Manufacture of stave cooler
DE3129391C1 (en) * 1981-07-25 1982-11-04 Estel Hoesch Werke Ag, 4600 Dortmund Process for the production of castings with cast steel tubes
DE3243377A1 (en) * 1982-11-24 1984-08-23 GMB Giesserei & Maschinenbau Bodan AG, Romanshorn CASTING PIECE WITH MOLDED CHANNEL
GB2418478A (en) 2004-09-24 2006-03-29 Ti Group Automotive Sys Ltd A heat exchanger
JP2010529399A (en) * 2007-05-31 2010-08-26 アメリファブ,インコーポレイテッド Adjustable heat exchanger and method of use
US20100078151A1 (en) * 2008-09-30 2010-04-01 Osram Sylvania Inc. Ceramic heat pipe with porous ceramic wick
CN102489955A (en) * 2011-12-06 2012-06-13 阳谷祥光铜业有限公司 Method for manufacturing cooling element and cooling element
CN105154607A (en) * 2015-08-20 2015-12-16 四川德胜集团钒钛有限公司 Method for repairing cooling wall of blast furnace online
CN110462321A (en) 2017-01-30 2019-11-15 艾美瑞法布有限公司 Top for electric arc furnaces, metallurgical furnace or refining furnace carries furnace roof and its system
US20190024980A1 (en) * 2017-07-18 2019-01-24 Amerifab, Inc. Duct system with integrated working platforms

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1090574A (en) * 1913-08-23 1914-03-17 James P Dovel Air-cooled blast-furnace stack.
US2743089A (en) * 1954-08-13 1956-04-24 Griscom Russell Co Heat exchanger tube sheet leakage prevention and detection construction
FR2053891A5 (en) * 1969-07-22 1971-04-16 Inst Ochistke Tekhno Long life heat exchanger members
DE2127448C3 (en) * 1970-06-04 1975-08-21 Ishikawajima-Harima Jukogyo K.K., Tokio Cooling element, in particular plate cooler, for blast furnaces
IN149308B (en) * 1977-04-21 1981-10-17 Thyssen Ag
DE2719166C3 (en) * 1977-04-29 1981-03-19 Thyssen AG vorm. August Thyssen-Hütte, 4100 Duisburg Cooling element for a metallurgical furnace
NL7804072A (en) * 1977-04-29 1978-10-31 Thyssen Ag COOLING ELEMENT FOR A METALLURGIC OVEN.
DE2719165C2 (en) * 1977-04-29 1983-02-03 Thyssen AG vorm. August Thyssen-Hütte, 4100 Duisburg Cooling element for a metallurgical furnace
DE2804544C3 (en) * 1978-02-03 1981-05-07 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Cooling plate for a metallurgical furnace, in particular a blast furnace

Also Published As

Publication number Publication date
US4327899A (en) 1982-05-04
JPS55134284A (en) 1980-10-18
GB2046890B (en) 1983-03-16
GB2046890A (en) 1980-11-19
AU5720680A (en) 1980-10-16
FR2454078A1 (en) 1980-11-07
FR2454078B1 (en) 1987-01-16
DE3013560A1 (en) 1980-10-23
DE3013560C2 (en) 1984-03-29
AU530115B2 (en) 1983-06-30

Similar Documents

Publication Publication Date Title
JPS5849607B2 (en) Cooling stave with non-fused double cooling pipes
EP1466021B1 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
JPH04124213A (en) Lance pipe
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JPH05306405A (en) Furnace protecting wall provided with slow-cooling type stave cooler
JP2875413B2 (en) Molten metal container
JP2003279265A (en) Water-cooled panel for electric furnace
US5435528A (en) Porous plug structure for aluminum furances
JPS602661A (en) Roll for heat treatment furnace
US4330912A (en) Furnace roll
JP2765449B2 (en) Blast furnace furnace cooling system
JP2000104110A (en) Heat-insulating structure of molten metal vessel
JPH03264154A (en) Heat exchanging body casting having excellent cooling capacity
JPS61104008A (en) Furnace body of blast furnace and other metallurgical furnace
JPH03264153A (en) Heat exchanging body casting having excellent cooling capacity
JPS62192521A (en) Hearth roller
GB2064079A (en) Surface coated copper furnace components
JPS62288483A (en) Hearth roll
JPS61238970A (en) Manufacture of composite pipe
JPS61201719A (en) Construction of skid button for heating furnace
JPH0771732B2 (en) Heat exchange casting having excellent cooling ability and method for producing the same
JPS63176356A (en) Refractories for ladle and ladle
JPH065397Y2 (en) Stave cooler
JP2000297308A (en) Stave cooler
JPS591655A (en) High-strength heat exchanger