JPH0210870B2 - - Google Patents

Info

Publication number
JPH0210870B2
JPH0210870B2 JP7957885A JP7957885A JPH0210870B2 JP H0210870 B2 JPH0210870 B2 JP H0210870B2 JP 7957885 A JP7957885 A JP 7957885A JP 7957885 A JP7957885 A JP 7957885A JP H0210870 B2 JPH0210870 B2 JP H0210870B2
Authority
JP
Japan
Prior art keywords
layer
thermite
ceramic
metal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7957885A
Other languages
Japanese (ja)
Other versions
JPS61238975A (en
Inventor
Osamu Odawara
Yasumasa Ishii
Hiroshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7957885A priority Critical patent/JPS61238975A/en
Publication of JPS61238975A publication Critical patent/JPS61238975A/en
Publication of JPH0210870B2 publication Critical patent/JPH0210870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はテルミツト反応と遠心力とを利用して
母管内面に金属層を介してセラミツク層を強固に
被覆形成した複合管の製造方法の改良に係り、詳
しくは、セラミツク層に生じるクラツクの発生を
防止する方法に関する。 (従来の技術) 管内面にセラミツク層を被覆形成せしめてなる
複合管は、セラミツク層が耐熱性、耐摩耗性、耐
食性等に良好な特性を発揮するため、各種流体の
輸送管や工業用配管部材として広汎な適用用途を
有している。 この種複合管の製造手段としては、従来種々の
方法が実施されてきているが、最近ではその好適
な製造手段として、特公昭57−40219号公報、特
公昭59−27747号公報に開示の如く、遠心力とテ
ルミツト反応を利用するいわゆる遠心テルミツト
法が提起されている。すなわち、この方法は第3
図に示すように、鋼管等の母管11内に、例えば
AlとFe2O3の如き金属還元剤と金属酸化物との一
定比率の混合物からなるテルミツト剤を装填しテ
ルミツト剤層12を形成し、これを高速回転によ
る遠心力場内で着火して、下記式に例示する如き
テルミツト反応を行わしめ、この発熱反応により
生成される溶融金属と溶融セラミツクとを比重分
離して、第4図に示すように母管11の内面に金
属層13を介して所望のセラミツク層14を被覆
形成するものである。 Fe2O3+2Al→Al2O3+2Fe +199Kcal/Al2O31モル また、テルミツト剤にテルミツト反応に寄与し
ないSiO2等を添加してセラミツク層の緻密さ、
層間の接合性を改善することも特公昭57−40219
号公報において提案されている。 (発明が解決しようとする問題点) しかしながら、テルミツト剤にSiO2を添加し
てテルミツト反応を起こさせても、溶融セラミツ
クの凝固収縮に起因するクラツクの発生を完全に
は防止することができない。 すなわち、既述の酸化鉄−アルミニウム系のテ
ルミツト反応では、理論的には3000℃を越える高
温状態が得られ、生成金属や生成セラミツクは、
溶融状態から凝固状態への一途を辿り、セラミツ
ク層に縦横無規律の引張り割れが生じ問題となつ
ていた。 本発明は叙上の問題に鑑みなされたものであつ
て、製造過程においてクラツクが生じ難いうえ
に、セラミツク層が緻密な複合管の製造方法を提
供することを目的とする。 (問題点を解決するための手段) 上記目的を達成するための本発明の手段とする
ところは、遠心テルミツト法を実施するに当り、
母管内面にSiO2とB2O3を主成分としたホウケイ
酸系のガラス粉粒層を形成し、その上にテルミツ
ト剤層を形成する点にある。 (作 用) 本発明によれば、母管の内面にSiO2とB2O3
主成分としたホウケイ酸系のガラス粉粒層を形成
し、その上にテルミツト剤層を形成してテルミツ
ト反応を起こさせるので、ガラス粉粒層がテルミ
ツト反応に際して断熱、保温層として作用して溶
融金属と溶融セラミツクとの比重分離を促進し、
また溶融セラミツク中に溶け込んでセラミツクの
流動性を増して気泡の排出を促進させセラミツク
を緻密化する。また、溶融セラミツク中に溶け込
んで微細分散したホウケイ酸系のガラス成分はセ
ラミツクに対して融点が相当低く、溶融セラミツ
クの凝固後も溶融状態で止まるが、このガラス成
分は粘性がSiO2に比べて極めて低いので、セラ
ミツクの凝固収縮に伴う微細クラツクに追随して
充填状態を維持することができ、クラツクの顕在
化を防止することができる。 (実施例) 本発明は、第1図のように、母管1の内面に予
めホウケイ酸系のガラス粉粒層2を形成してお
き、その上にテルミツト剤を散布等によつて装填
してテルミツト剤層3を形成し、該テルミツト剤
層3に着火してテルミツト反応を起こさせ、生成
した溶融金属と溶融セラミツクとを遠心力の作用
で比重分離すると共に前記ガラス粉粒層2のガラ
ス成分をセラミツク中に溶け込ませて、第2図の
如く、母管1の内面に金属層4を介してセラミツ
ク層5を被覆形成する方法である。 本発明に使用するテルミツト剤は、金属酸化物
と金属還元剤との混合物であり、金属酸化物とし
てはFe2O3、Fe3O4、Cr2O3、NiO、MnO2
CoO、CuO、SiO2等が用いられ、一方金属還元
剤としては、強還元性金属であるAl、Mg、Siな
どが用いられる。 これらの混合比は、原則的にはテルミツト反応
式から化学量論的に決定される。また、使用する
酸化物と還元剤の組み合わせは、目的とする複合
管の金属層おびセラミツク層に要求される機能や
性能を考慮して決定される。例えば、金属層に
Ni、セラミツク層にMgO(マグネシア)が要望
される場合では、NiOとMgとの組み合わせとな
る。また、複数種類の金属酸化物と複数種類の金
属還元剤との組み合わせによつて、多成分のセラ
ミツク層や金属層を得ることができる。 テルミツト剤の使用量は、ライニング厚さに比
例し、目的とする複合管の必要厚さによつて決定
される。製造容易な条件は、経験的には金属層及
びセラミツク層の合計厚さが7mm前後となる量で
ある。 前記ガラス粉粒層2を形成するホウケイ酸系の
ガラス粉粒体は、SiO2とB2O3とを主成分とした
ものであり、例えば、SiO2:95〜35%、B2O3
2〜20%、その他の塩基性酸化物の不純物45%以
下のものが挙げられ、特にSiO2:70〜85%、
B2O3:13〜5%程度が好適である。B2O3を2〜
20%に調整するのはこの組成範囲が、一般のガラ
ス材料のホウケイ酸ガラスのB2O3の組成に近い
からである。すなわち、セラミツク層5を、反応
生成物のAl2O3と、ホウケイ酸ガラスから成る材
料とする目的で、ガラス粉粒体が添加される。こ
の際、B2O3を2〜20%含んだホウケイ酸系のガ
ラスとなるためには、他の主成分としてSiO2
95〜35%含有されるものとなる。 尚、ガラス粉粒層2の形成に用いる粉粒体は、
単一成分のSiO2やB2O3の混合粉末ではなく、上
記組成のガラス材の粉粒を用いることが肝要であ
る。これは、粉末混合では、反応熱で溶融しても
均一溶融体とならないおそれがあり、組成の均一
性を確保するために、すでに粉粒体レベルで、均
一な組成のものとなつている必要があるからであ
る。但し、前記ガラス粉粒体にSiO2単一成分の
粉末を混合してもよい。これは、ホウケイ酸系の
ガラス粉粒体にSiO2成分が多い場合(50%以上)
は、SiO2粉末を混合しても、組成むらがあまり
生じることがないからである。 前記ガラス粉粒体は、母管の回転中にその内面
にそのまま散布されてガラス粉粒層2が形成され
るほか、前記粉粒体にバインダーを添加したもの
を母管内面に塗着してガラス粉粒層2としてもよ
い。この場合、バインダーとしてはベントナイト
や水ガラス等の無機物が望ましく、結晶水を含ま
ず、また十分乾燥できるものが好ましい。尚、少
量であれば有機バインダーの使用も可能である。 前記ガラス粉粒体の使用量(割合)は、テルミ
ツト剤に対して2〜25%ぐらいの範囲で設定する
ことができる。これは、25%以上であるとテルミ
ツト反応熱に対して、ガラス粉粒体を溶融生成物
に溶かし込むことができず、また2%以下では、
添加の効果が顕著に現れないからである。現実に
最もガラス成分の添加効果がよく現れるのは10%
前後である。7〜12%前後が無理なくガラス成分
を溶融できかつ効果が大きい。 本発明に適用する母管としては鋼管等の金属管
に限らず、コンクリート管等の非金属管であつて
もよい。もつとも、金属管はテルミツト反応に耐
えるものでなければならないことは当然である。 以上説明したガラス粉粒層2及びテルミツト剤
層3が形成された母管1は、遠心機金枠にセツト
され、所期の回転(GNo.10〜200)にした後、前
記テルミツト剤層3に着火し、テルミツト反応を
生起させる。 該テルミツト反応に際して、前記ガラス粉粒層
2は、断熱、保温層として作用し、テルミツト反
応により生じた溶融金属及びセラミツクの比重分
離を促進し、更に該溶融セラミツク中に溶け込ん
でセラミツクの流動性を増して、セラミツク中の
気泡の排出を促進する。また、溶融セラミツク中
に微細分散したホウケイ酸系のガラス成分は、セ
ラミツクに対して融点が相当低く(例えば、
Al2O3が2050℃であるのに対し、本発明に係るガ
ラス材では1000℃前後)、アルミナが析出しても
溶融状態で止まり粒界をうめ、しかも該ガラス成
分の粘性はSiO2単独のガラス材に比べて極めて
低いので、セラミツクの凝固収縮に伴う微細クラ
ツクに追随して充填状態を維持することができ、
クラツクの顕在化を防止することができる。 このように溶融金属と溶融セラミツクとは遠心
力の作用で比重分離すると共に、クラツクの発生
が抑えられながら生成金属層の上に緻密なセラミ
ツク層が強固に被覆形成される。 次に、具体的な実施例について説明する。 (1) 第1表に掲げた実施例1及び2は、同表中の
母管を遠心機金枠にセツトした後、ガラス粉粒
体及びテルミツト剤を散布して、母管を同表の
回転数に上げてテルミツト反応を起こさせた。 実施例3は、同表のガラス粉粒体に水2及
び無機バインダーとしてベントナイトや水ガラ
スを微量添加してスラリー状とし、これを母管
に流し込んでスラリー層を形成した後、乾燥固
化してガラス粉粒層(層厚約1.5mm)を形成し
た。そして、このガラス粉粒層が予め形成され
た母管を金枠にセツトし、同表中の回転数にし
た後、テルミツト反応を生起させた。
(Industrial Application Field) The present invention relates to an improvement in a method for manufacturing a composite tube in which a ceramic layer is firmly coated on the inner surface of a main tube via a metal layer using thermite reaction and centrifugal force. This invention relates to a method for preventing cracks from occurring in ceramic layers. (Prior art) Composite pipes made by coating the inner surface of the pipe with a ceramic layer are used as transportation pipes for various fluids and industrial piping because the ceramic layer exhibits good properties such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications as a member. Conventionally, various methods have been used to manufacture this type of composite pipe, but recently, as a suitable manufacturing method, methods as disclosed in Japanese Patent Publication No. 57-40219 and Japanese Patent Publication No. 59-27747 have been proposed. The so-called centrifugal thermite method, which utilizes centrifugal force and thermite reaction, has been proposed. In other words, this method is the third
As shown in the figure, in the main pipe 11 such as a steel pipe, for example,
A thermite layer 12 is formed by loading a thermite agent consisting of a mixture of a metal reducing agent such as Al, Fe 2 O 3 , and a metal oxide at a certain ratio, and ignites it in a centrifugal force field due to high speed rotation. A thermite reaction as exemplified in the formula is carried out, and the molten metal and molten ceramic produced by this exothermic reaction are separated by specific gravity, and a desired amount is formed on the inner surface of the main tube 11 via a metal layer 13 as shown in FIG. A ceramic layer 14 is formed over the ceramic layer. Fe 2 O 3 +2Al→Al 2 O 3 +2Fe +199Kcal/Al 2 O 3 1 mol In addition, SiO 2 , etc., which do not contribute to the thermite reaction, can be added to the thermite agent to improve the density of the ceramic layer.
Special Publication No. 57-40219 also improves bonding between layers.
It is proposed in the publication No. (Problems to be Solved by the Invention) However, even if SiO 2 is added to the thermite agent to cause a thermite reaction, it is not possible to completely prevent the occurrence of cracks due to solidification shrinkage of molten ceramic. In other words, in the iron oxide-aluminum-based thermite reaction described above, a high temperature state of over 3000°C can be theoretically obtained, and the produced metals and produced ceramics are
As the ceramic layer progresses from a molten state to a solidified state, tensile cracks occur in the ceramic layer in an irregular manner both vertically and horizontally, which has become a problem. The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for manufacturing a composite pipe in which cracks are less likely to occur during the manufacturing process and in which the ceramic layer is dense. (Means for solving the problems) The means of the present invention to achieve the above object is that when carrying out the centrifugal thermite method,
A borosilicate glass powder layer containing SiO 2 and B 2 O 3 as main components is formed on the inner surface of the mother tube, and a thermite layer is formed on top of the borosilicate glass powder layer. (Function) According to the present invention, a borosilicate-based glass powder layer containing SiO 2 and B 2 O 3 as main components is formed on the inner surface of the main tube, and a thermite agent layer is formed thereon to form thermite layer. As the reaction occurs, the glass powder particle layer acts as a heat insulating layer during the thermite reaction and promotes specific gravity separation between the molten metal and molten ceramic.
It also dissolves into the molten ceramic, increases the fluidity of the ceramic, promotes the evacuation of air bubbles, and densifies the ceramic. In addition, the borosilicate-based glass component that is dissolved and finely dispersed in molten ceramic has a considerably lower melting point than that of ceramic, and remains in a molten state even after the molten ceramic solidifies, but this glass component has a viscosity that is lower than that of SiO 2 . Since it is extremely low, it is possible to maintain the filled state by following the minute cracks caused by the solidification and shrinkage of the ceramic, and it is possible to prevent the cracks from becoming obvious. (Example) As shown in FIG. 1, the present invention involves forming a borosilicate-based glass powder layer 2 on the inner surface of a main tube 1 in advance, and then loading a thermite agent thereon by spraying or the like. The thermite agent layer 3 is ignited to cause a thermite reaction, and the produced molten metal and molten ceramic are separated by specific gravity by the action of centrifugal force, and the glass of the glass powder particle layer 2 is In this method, the components are dissolved in ceramic, and a ceramic layer 5 is coated on the inner surface of the main tube 1 with a metal layer 4 interposed therebetween, as shown in FIG. The thermite agent used in the present invention is a mixture of a metal oxide and a metal reducing agent, and the metal oxides include Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 , NiO, MnO 2 ,
CoO, CuO, SiO 2 , etc. are used, while strong reducing metals such as Al, Mg, and Si are used as the metal reducing agent. These mixing ratios are basically determined stoichiometrically from the Thermite reaction equation. The combination of oxide and reducing agent to be used is determined in consideration of the functions and performance required of the metal layer and ceramic layer of the intended composite pipe. For example, on a metal layer
If Ni and MgO (magnesia) are required for the ceramic layer, a combination of NiO and Mg is used. Further, by combining multiple types of metal oxides and multiple types of metal reducing agents, a multi-component ceramic layer or metal layer can be obtained. The amount of thermite used is proportional to the lining thickness and is determined by the required thickness of the intended composite tube. According to experience, the conditions for easy production are such that the total thickness of the metal layer and ceramic layer is approximately 7 mm. The borosilicate-based glass powder forming the glass powder layer 2 has SiO 2 and B 2 O 3 as main components, for example, SiO 2 :95-35%, B 2 O 3 :
2 to 20%, other basic oxide impurities up to 45%, especially SiO2 : 70 to 85%,
B2O3 : Approximately 13 to 5 % is suitable. B 2 O 3 from 2 to
The reason why it is adjusted to 20% is that this composition range is close to the B 2 O 3 composition of borosilicate glass, which is a general glass material. That is, glass powder is added for the purpose of making the ceramic layer 5 a material consisting of the reaction product Al 2 O 3 and borosilicate glass. At this time, in order to obtain a borosilicate glass containing 2 to 20% B 2 O 3 , SiO 2 must be added as another main component.
The content will be 95-35%. The powder used to form the glass powder layer 2 is as follows:
It is important to use powder particles of a glass material having the above composition, rather than a mixed powder of SiO 2 or B 2 O 3 as a single component. This is because when mixing powders, there is a risk that a homogeneous melt may not be obtained even if melted by the reaction heat, so in order to ensure uniformity of composition, it is necessary to have a uniform composition already at the powder/granule level. This is because there is. However, SiO 2 single component powder may be mixed with the glass powder. This occurs when the borosilicate-based glass powder contains a large amount of SiO2 component (50% or more).
This is because even if SiO 2 powder is mixed, compositional unevenness does not occur much. The glass powder particles are directly scattered on the inner surface of the mother tube while the mother tube is rotating to form the glass powder layer 2, or the powder particles added with a binder are applied to the inner surface of the mother tube. It may also be a glass powder particle layer 2. In this case, the binder is preferably an inorganic material such as bentonite or water glass, which does not contain water of crystallization and can be sufficiently dried. Incidentally, it is also possible to use an organic binder in a small amount. The amount (ratio) of the glass powder to be used can be set in a range of about 2 to 25% based on the thermite agent. If it is more than 25%, the glass powder cannot be dissolved into the molten product against thermite reaction heat, and if it is less than 2%,
This is because the effect of addition is not noticeable. In reality, the effect of adding glass components is most visible at 10%.
Before and after. A concentration of around 7 to 12% allows the glass component to be melted without difficulty and is highly effective. The main pipe applicable to the present invention is not limited to metal pipes such as steel pipes, but may also be non-metallic pipes such as concrete pipes. Of course, the metal tube must be resistant to thermite reaction. The mother tube 1 on which the glass powder particle layer 2 and thermite agent layer 3 described above are formed is set in the centrifuge frame, and after the desired rotation (G No. 10 to 200), the thermite agent layer 3 is formed. ignites and causes a thermite reaction. During the thermite reaction, the glass powder particle layer 2 acts as a heat insulating and heat retaining layer, promotes the specific gravity separation of the molten metal and ceramic produced by the thermite reaction, and further dissolves into the molten ceramic to improve the fluidity of the ceramic. In addition, it promotes the evacuation of air bubbles in the ceramic. In addition, the borosilicate-based glass component finely dispersed in molten ceramic has a considerably lower melting point than that of ceramic (for example,
(Al 2 O 3 has a temperature of 2050°C, whereas the glass material according to the present invention has a temperature of around 1000°C), even if alumina precipitates, it stays in a molten state and fills the grain boundaries, and the viscosity of the glass component is that of SiO 2 alone. Because it is extremely low compared to glass materials, it is possible to maintain the filled state by following the fine cracks caused by solidification shrinkage of ceramic.
It is possible to prevent cracks from becoming apparent. In this way, the molten metal and molten ceramic are separated by specific gravity due to the action of centrifugal force, and a dense ceramic layer is formed firmly covering the formed metal layer while suppressing the occurrence of cracks. Next, specific examples will be described. (1) In Examples 1 and 2 listed in Table 1, after setting the mother tube in the centrifuge frame, glass powder and thermite were sprinkled on the mother tube. The rpm was increased to cause a thermite reaction. In Example 3, water 2 and a small amount of bentonite or water glass as an inorganic binder were added to the glass powder shown in the same table to form a slurry, which was poured into a main tube to form a slurry layer, and then dried and solidified. A glass powder particle layer (layer thickness approximately 1.5 mm) was formed. Then, the mother tube in which the glass powder particle layer had been formed in advance was set in a metal frame, and after the rotation speed was set to the number shown in the table, a thermite reaction was caused.

【表】 (2) テルミツト反応終了後冷却した後、金枠の回
転を止め、得られた複合管を金枠から取り出し
て断面を観察した。その結果を第2表に示す。
[Table] (2) After the thermite reaction was completed and cooled, the rotation of the metal frame was stopped, and the resulting composite tube was taken out from the metal frame and its cross section was observed. The results are shown in Table 2.

【表】 (発明の効果) 以上説明した通り、本発明によれば、母管内面
にSiO2とB2O3を主成分としたホウケイ酸系のガ
ラス粉粒層を形成し、その上にテルミツト剤層を
形成して遠心力場内でテルミツト反応を起こさせ
るので、該反応により生じた溶融金属と溶融セラ
ミツクとの比重分離を促進させ、かつ前記ガラス
粉粒層が溶融セラミツク中に溶け込むことによつ
て、セラミツク層に割れが発生するのを防止しつ
つ、緻密なセラミツク層を、母管内面に金属層を
介して容易に形成することができる。
[Table] (Effects of the Invention) As explained above, according to the present invention, a borosilicate-based glass powder particle layer containing SiO 2 and B 2 O 3 as main components is formed on the inner surface of the main tube, and a Since a thermite agent layer is formed to cause a thermite reaction in a centrifugal force field, specific gravity separation between the molten metal and molten ceramic produced by the reaction is promoted, and the glass powder particle layer is dissolved into the molten ceramic. Therefore, a dense ceramic layer can be easily formed on the inner surface of the main tube with the metal layer interposed therebetween while preventing cracks from occurring in the ceramic layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の製造過程の母管の
状態を示す断面図であり、第1図はテルミツト反
応前、第2図はテルミツト反応後の状態を示し、
第3図及び第4図は従来の遠心テルミツト法の製
造過程における母管の状態を示す断面図であり、
第3図はテルミツト反応前、第4図はテルミツト
反応後の状態を示す断面図である。 1……母管、2……ガラス粉粒層、3……テル
ミツト剤層、4……金属層、5……セラミツク
層。
1 and 2 are cross-sectional views showing the state of the main tube in the manufacturing process of the present invention, FIG. 1 showing the state before the thermite reaction, and FIG. 2 showing the state after the thermite reaction,
FIGS. 3 and 4 are cross-sectional views showing the state of the main tube in the manufacturing process of the conventional centrifugal thermite method,
FIG. 3 is a sectional view showing the state before the thermite reaction, and FIG. 4 is a sectional view showing the state after the thermite reaction. DESCRIPTION OF SYMBOLS 1...Mother pipe, 2...Glass powder particle layer, 3...Thermite layer, 4...Metal layer, 5...Ceramic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 母管内に金属還元剤と金属酸化物とからなる
テルミツト剤を装填してテルミツト剤層を形成
し、遠心力場内で該テルミツト剤に着火してテル
ミツト反応を起こさせ、該反応により溶融金属と
溶融セラミツクとを生成させ、前記母管内面に金
属層を介してセラミツク層を被覆形成する方法に
おいて、母管内面にSiO2とB2O3を主成分とした
ホウケイ酸系のガラス粉粒層を形成し、その上に
前記テルミツト剤層を形成することを特徴とする
複合管の製造方法。
1 A thermite agent consisting of a metal reducing agent and a metal oxide is loaded into the main tube to form a thermite agent layer, the thermite agent is ignited in a centrifugal force field to cause a thermite reaction, and the reaction causes a thermite reaction to occur with the molten metal. In the method of forming a ceramic layer on the inner surface of the mother tube via a metal layer, a layer of borosilicate-based glass powder particles mainly composed of SiO 2 and B 2 O 3 is formed on the inner surface of the mother tube. 1. A method for manufacturing a composite pipe, comprising: forming a thermite layer thereon, and forming the thermite agent layer thereon.
JP7957885A 1985-04-15 1985-04-15 Manufacture of composite pipe Granted JPS61238975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7957885A JPS61238975A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7957885A JPS61238975A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Publications (2)

Publication Number Publication Date
JPS61238975A JPS61238975A (en) 1986-10-24
JPH0210870B2 true JPH0210870B2 (en) 1990-03-09

Family

ID=13693867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7957885A Granted JPS61238975A (en) 1985-04-15 1985-04-15 Manufacture of composite pipe

Country Status (1)

Country Link
JP (1) JPS61238975A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105834402A (en) * 2016-05-05 2016-08-10 宁夏常天环保科技有限公司 Ceramic metal anti-corrosion pipe and forming technology
CN110756759B (en) * 2018-07-28 2022-03-29 泰安特夫德新材料科技有限公司 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe

Also Published As

Publication number Publication date
JPS61238975A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
Taira et al. Kinetic behavior of dissolution of sintered alumina into CaO-SiO2-Al2O3 slags
JPS6018726B2 (en) Coated powder for continuous casting
CN106238670A (en) Foundry facing and preparation method and application
EP0137734B1 (en) Fluxes for casting metals
JPH0210870B2 (en)
JP2006218540A (en) Heat insulating material for molten steel
JPH02175047A (en) Treatment of molten steel for casting by high-purity magnesium
JP5292960B2 (en) Centrifugal casting flux
JP2000051998A (en) Method for continuously casting lead-containing steel
JPH0113950B2 (en)
JP2826012B2 (en) Heat insulation material for molten metal and heat insulation method
JP2000072534A (en) Large scale fire brick, especially brick for bottom of tin bath, and its production
JPH0545675B2 (en)
JPH022954B2 (en)
JPS60191645A (en) Molten metal surface protective agent for continuous casting of molten steel
JP7269344B2 (en) Mold powder and mold coating
JPS61215268A (en) Monolithic refractories for molten metal vessel
JPH0445339B2 (en)
JPS6047223B2 (en) Manufacturing method of immersion nozzle for continuous casting
JPH0586460B2 (en)
JP7219854B2 (en) Flux added to molten steel contained in a container
JPH0649501A (en) Encapsulated fine metal powder
JPS6158867A (en) Flame spray material for furnace wall maintenance
JPS5910862B2 (en) Mold additive for continuous casting
SU1087493A1 (en) Method for making molten and cast refractories

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term