JPS6285333A - Round-off processing system for floating point multiplier - Google Patents
Round-off processing system for floating point multiplierInfo
- Publication number
- JPS6285333A JPS6285333A JP60224674A JP22467485A JPS6285333A JP S6285333 A JPS6285333 A JP S6285333A JP 60224674 A JP60224674 A JP 60224674A JP 22467485 A JP22467485 A JP 22467485A JP S6285333 A JPS6285333 A JP S6285333A
- Authority
- JP
- Japan
- Prior art keywords
- multiplication
- rounding
- multiplier
- mantissa
- round
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はディジタル信号処理における浮動小数点演算方
式の並列乗算器に関し、更に詳細には、並列乗算器の仮
数部データに対する丸め処理方式(従来の技術)
従来の浮動小数点演算方式の機能ブロック図を第3図に
示す。同図において、正規化された入力データXと正規
化された入力データYとが、演算部1に入力される。演
算部1は浮動小数点形式の演算、例えば加減算や乗算を
行なう。演算結果は正規化処理部2により必要により正
規化処理される。正規化処理部2の出力は丸め処理部3
により丸め処理さね、最終演算結果Zとして出力される
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a parallel multiplier using a floating point arithmetic method in digital signal processing. Technology) Figure 3 shows a functional block diagram of a conventional floating-point arithmetic system. In the figure, normalized input data X and normalized input data Y are input to a calculation unit 1. The calculation unit 1 performs floating-point calculations, such as addition, subtraction, and multiplication. The calculation results are normalized by the normalization processing section 2 as necessary. The output of the normalization processing unit 2 is sent to the rounding processing unit 3.
After rounding, the final calculation result Z is output.
このように、演算部1→正規化処理部2→丸め処理部3
という処理シーケンスは、演算部1のSi算結果が仮数
部の正規化データ範囲内(2進数表現ではKZをZの仮
数部とすると、くKZ<1゜−1くKz(−−)にある
かどうか不明なため、正規化動作を行って必ず正規化デ
ータとなるような処理を行なってからでないと正確な丸
め処理ができないという観点から決められている。この
内容は、例えば“日経エレクトロニクス”、v0132
7.1983年10月10日、p129−152に、:
己1V1.されている。In this way, calculation section 1 → normalization processing section 2 → rounding processing section 3
In this processing sequence, the Si calculation result of calculation unit 1 is within the normalized data range of the mantissa (in binary representation, if KZ is the mantissa of Z, then KZ<1°-1 Kz(--) The decision was made from the perspective that accurate rounding cannot be performed unless a normalization operation is performed to ensure that the data is normalized. ,v0132
7. October 10, 1983, p129-152:
Self 1V1. has been done.
上記文献に示されている従来の浮動小数点乗算器の丸め
処理方式について、第4図のブロー/り図に基づいて説
明する。正規化された入力データXとYの仮数部を各々
KX、KYとし、指数部をEX、EYとすると、KXと
KYが仮数部乗算回路5■に入力して仮数部の乗算を行
なってKX・KY=KKを出力し、一方EXとEYが指
数部加算回路52に入力して指数部の加算を行なってE
X+EY=EEを出力する。該演算結果KKとEEとか
正規化処理回路53に入力して、正規化浮動小数点デー
タに変換されると、仮数部KS、指数部ESとなる。次
の丸め処理回路54には、該正規化処理出力KSとES
とが入力し、さらに仮数部の丸めデータKMが入力して
、仮数部の丸め演算KS+KM=KZを行なう。註丸め
演算で指数部の補正か生じると、指数部の丸め処理結果
はEXに変換されて出力される。The rounding processing method of the conventional floating-point multiplier shown in the above-mentioned document will be explained based on the blow/roll diagram of FIG. If the mantissa parts of normalized input data X and Y are KX and KY, respectively, and the exponent parts are EX and EY, then KX and KY are input to the mantissa multiplication circuit 5■, and the mantissa parts are multiplied to obtain KX.・KY=KK is output, while EX and EY are input to the exponent part addition circuit 52 to perform addition of the exponent parts, and E
Outputs X+EY=EE. When the calculation results KK and EE are input to the normalization processing circuit 53 and converted into normalized floating point data, they become a mantissa part KS and an exponent part ES. The next rounding processing circuit 54 has the normalized processing outputs KS and ES.
is input, and the mantissa rounding data KM is further input, and the mantissa rounding operation KS+KM=KZ is performed. Note: If the exponent part is corrected in the rounding operation, the rounding result of the exponent part is converted to EX and output.
例えば、乗算データとして、符号付2進数で仮数部5ビ
ツト、指数部3ビツトの場合を考える。For example, consider the case where the multiplication data is a signed binary number with a mantissa part of 5 bits and an exponent part of 3 bits.
−例トシテ、KX、EX、KY、EYは次のとおりとす
る。-Example Toshite, KX, EX, KY, EY are as follows.
KX=01010 、 EY=000(10進数テL
tX=o、625 x 2°)にY=01001 、
EY=001(10進数ではY =0.5625X
2 ’ )まず、これらの乗算を行なうと
KK=KXXKY=001011010 、 EE=0
01(10進数では0J515625 x 2 ’ )
となる。仮数部が正規化範囲をはずれているので、
K S = 01.0110100 、 E S =
000(10進数では0.703125)
とする正規化動作を行なっている。更に、仮数部の出力
データ・ビット数を入力データ・ビ・クト数と合うよう
に丸め処理を行なうと、にM = 0000010算f
6′ニー′1″9゛ 。1,1T、幌にS
= 010110100
K M = 000001
■ 切捨て
KZ=01011 、 EZ=ES
となり、結局
KZ=01011 、 EZ=000
(10進数では0.6875)
として出力される。KX=01010, EY=000 (decimal number
tX=o, 625 x 2°) and Y=01001,
EY=001 (Y=0.5625X in decimal
2') First, by performing these multiplications, KK=KXXKY=001011010, EE=0
01 (0J515625 x 2' in decimal)
becomes. Since the mantissa is outside the normalization range, K S = 01.0110100, E S =
A normalization operation is performed to set the value to 000 (0.703125 in decimal). Furthermore, if the number of output data bits of the mantissa part is rounded to match the number of input data bits, then M = 0000010 f
6'knee'1''9゛.1,1T, S on the hood
= 010110100 K M = 000001 ■ Rounding down KZ=01011, EZ=ES, and eventually output as KZ=01011, EZ=000 (0.6875 in decimal).
(発明が解決しようとする問題点)
しかしながら、」二記従来の方式では/7動小数点乗算
器のθi算処理内容が乗算処理→正規化処理→丸め処理
というシーケンスで固定されているため、最終の乗算器
出力を得るための全体の演算処理時間が長くなり、また
前記文献に記載のように乗算器をパイプライン処理方式
で構成するときに、バイブラ・rン1段当りの処理て終
了せず、多段バイブライン構成となってしまい、丸めへ
11算部の加算回路のハート量が多いという問題点があ
った。(Problem to be Solved by the Invention) However, in the conventional method described in Section 2, the θi calculation processing content of the /7 dynamic point multiplier is fixed in the sequence of multiplication → normalization → rounding, so the final The overall calculation processing time to obtain the multiplier output becomes long, and when the multiplier is configured in the pipeline processing method as described in the above-mentioned document, the processing per stage of the Vibler rn is completed. First, it has a multi-stage vibe line configuration, and there is a problem that the number of hearts in the adder circuit of the rounding and 11 arithmetic section is large.
従って、本発明はこれらの問題点を解決し、実用上充分
に使用に耐える精度の丸め演算を行なうことにより、演
算処理時間を短縮させかつハード量を減少させることが
できる浮動小数点乗算器丸め処理方式を提供することを
目的と′1−る。Therefore, the present invention solves these problems and performs rounding operations with a precision sufficient for practical use, thereby shortening calculation processing time and reducing the amount of hardware required for floating-point multiplier rounding. The purpose is to provide a method.
(問題点を解決するための手段)
本発明は、浮動小数点表示された乗数及び被乗数に対し
て並列乗算を行なう乗算器であって、仮数部データの乗
算を行なう乗算セルを乗数仮数部及び被乗数仮数部のビ
ット数に基づき複数段設けて構成される乗算器を対象と
する。(Means for Solving the Problems) The present invention is a multiplier that performs parallel multiplication on a multiplier and a multiplicand that are displayed in floating point numbers, and in which a multiplication cell that multiplies mantissa data is The target is a multiplier that is configured with multiple stages based on the number of bits in the mantissa.
本発明は、この乗算器の出力に対し正規化シフトがある
場合の丸め指定ビット位置における乗算セルのいずれか
に丸めデータを入力することにより構成される。The present invention is constructed by inputting rounded data to any of the multiplication cells at rounding designated bit positions when there is a normalization shift for the output of this multiplier.
(作用)
本発明の対象とする乗算器は、乗数と被乗数との乗算と
下位からの桁上げとを加算して部分和を求め、次段へ桁
上げを送り出す(この作用は各乗算セルによる)演算仮
定が繰り返し行なわわて動作する。(Operation) The multiplier that is the object of the present invention calculates a partial sum by adding the multiplication of the multiplier and the multiplicand and the carry from the lower order, and sends the carry to the next stage (this operation depends on each multiplication cell). ) The operational assumptions are repeated and operated.
この場合、本発明によれば、この乗算器の出力に対し正
規化シフトがある場合の丸め指定ビット位置における乗
算セルのいずれかに丸めデータが入力されるので、上記
部分和を求める際に丸めデータが加算される。すなわち
、乗算セルの加算機能に丸め処理演算が吸収された形に
なる。このようにして乗算器から出力された演算結果は
、正規化処理され、最終的に丸め処理された正規化デー
タが得られる。In this case, according to the present invention, rounding data is input to one of the multiplication cells at the rounding designated bit position when there is a normalization shift for the output of this multiplier, so rounding is performed when calculating the partial sum. Data is added. In other words, the rounding operation is absorbed into the addition function of the multiplication cell. The operation result outputted from the multiplier in this manner is normalized, and finally rounded normalized data is obtained.
(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の構成を示すブロック図であ
る。同図は入力データXとYとの仮数部が以下のとおり
、それぞれ符号付2進数の4ビツトのデータに通用され
る並列乗算器である。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. This figure shows a parallel multiplier that can be used for signed binary 4-bit data, where the mantissa parts of input data X and Y are as shown below.
X→X、X3 X2 xt
Y+y3y3y2yI
(MSB) (LSB)
この構成の乗算器の乗算結果は符号付2進数の7ビツト
のデータ
P、P6P5 P4P3 P2 P。X→X, X3
として求められる。It is required as.
図中、参照番号IOないし29はそれぞれ乗算セルであ
る。各乗算セルは第2図に示すように、アンド回路40
と全加算器41とで構成される。図中、kは部分和、C
2は桁上げ入力、coは桁上げ出力、Sは和出力である
。この乗算セルはS=x・y+に+cHの演算を行なう
。In the figure, reference numbers IO to 29 are multiplication cells, respectively. Each multiplication cell is connected to an AND circuit 40 as shown in FIG.
and a full adder 41. In the figure, k is the partial sum, C
2 is a carry input, co is a carry output, and S is a sum output. This multiplication cell performs an operation of +cH on S=x·y+.
通常、このような構成の乗算器にあっては、乗算結果P
に対して正規化シフトがある場合は1ビツトのシフトが
行なわれて、正規化データT(t、t6t5t4t3t
2t+ )が次のとおり得られる。Normally, in a multiplier with such a configuration, the multiplication result P
If there is a normalization shift for
2t+) is obtained as follows.
乗算結果 p、p6p5p4p3p2p。Multiplication result p, p6p5p4p3p2p.
正規化シフト有 P、P5P4P3P2P、O−,7↓
己4t3t2t、。With normalization shift P, P5P4P3P2P, O-, 7↓
Self 4t3t2t.
* *
正規化シフト無 ’−PePsP4P3PzP+=ts
tetst4t3t2t+ 。* * No normalization shift '-PePsP4P3PzP+=ts
tetst4t3t2t+.
* *
*:出力ビツト部分
ここで、従来は上記正規化処理後に確定したビット位置
t3に対して0捨1人の加算処理を行ない、乗算結果を
入力データのビット数4に合わせるという丸め処理が行
なわれていた。* * *: Output bit part Here, conventionally, rounding processing was performed in which addition processing was performed on the bit position t3 determined after the above normalization processing, and the multiplication result was adjusted to the number of bits of the input data, which was 4. It was being done.
この丸め処理に対応する本実施例による丸め処理は、次
のとおり行なわれる。第1図において、正規化シフトが
ある場合の丸め指定ビットt3、すなわちP2 (乗
算出力LSBの下位2ビツト目に相当)の列の最上段の
乗算セル12の部分和kが入力される端子MDを丸めデ
ータ入力端子とする。そして、丸め処理を行なう場合に
は、丸めデータ入力端子MDに論理1を入力する。従っ
て、丸め処理を行なうときは、乗算セル12の加算時に
丸めデータも加算される。換言すれば、丸め処理は乗算
器の演算に吸収された形となる。従って、丸めデータ入
力端子MDに論理“1”を入力した場合の乗算結果p、
p6p5p4p3p2p、は、すでに丸め処理用の演算
が行なわわた形で出力される。このようにして得られた
乗算結果は正規化シフトがある場合にはシフトされ(P
−P6P4P3P2P、Oとなる)、このうち上位4ビ
ツトが取り出されて最終的な仮数部の演算結果が得られ
る。The rounding process according to this embodiment corresponding to this rounding process is performed as follows. In FIG. 1, the rounding designation bit t3 when there is a normalization shift, that is, the terminal MD to which the partial sum k of the multiplication cell 12 at the top of the column of P2 (corresponding to the second least significant bit of the multiplication output LSB) is input. Let be the rounding data input terminal. When rounding is to be performed, a logic 1 is input to the rounding data input terminal MD. Therefore, when rounding is performed, rounded data is also added at the time of addition in the multiplication cell 12. In other words, the rounding process is absorbed into the multiplier operation. Therefore, the multiplication result p when logic “1” is input to the rounding data input terminal MD,
p6p5p4p3p2p is output after the rounding operation has already been performed. The multiplication result obtained in this way is shifted if there is a normalization shift (P
-P6P4P3P2P, O), of which the upper 4 bits are extracted to obtain the final mantissa calculation result.
ここで、本実施例では従来とは異なり乗算結果を知る前
に、すなわち上記例の場合ビット位置t3の値が確定す
る前に丸め処理用の演算が行なわれるので、最終的な仮
数部の演算結果に多少の精度の劣化がみられる。Here, unlike the conventional case, in this embodiment, the rounding operation is performed before knowing the multiplication result, that is, before the value of bit position t3 is determined in the above example, so the final mantissa operation is There is some deterioration in accuracy in the results.
第1表は乗算結果Pに対して正規化シフトがある場合の
ビット位置t4への丸め処理時の加算量を示し、第2表
は乗算結果Pに対して正規化シフトがない場合のビット
位置t4への丸め処理時の加算量を示す。これらの表中
、Aは従来の丸め処理の場合、Bは本実施例の丸め処理
の場合、Cは切捨て処理(丸め量“0”に相当)の場合
を示す。Table 1 shows the amount added during rounding to bit position t4 when there is a normalization shift for the multiplication result P, and Table 2 shows the bit position when there is no normalization shift for the multiplication result P. The amount added to t4 during rounding processing is shown. In these tables, A indicates the conventional rounding process, B indicates the rounding process of this embodiment, and C indicates the rounding process (corresponding to the rounding amount "0").
(以下余白)
第 1 表
第 2 表
まず、第1表に示す正規化シフトがある場合、本実施例
Bが従来方式Aと異なる割合は、データ内容が0か1か
に分れる確率(−)と、t3=i。(Leaving space below) Table 1 Table 2 First, when there is a normalization shift shown in Table 1, the difference between this embodiment B and the conventional method A is the probability that the data content is divided into 0 and 1 (- ) and t3=i.
1=0の場合の差異とから、次のとおりである。The difference from the case where 1=0 is as follows.
本実施例B : l/4x 1/2x 100=1
2.5 (%)同様に切捨ての場合Cは、
切捨てC: l/2X l/2x 1oo=25
.0(%)一方、乗算結果に対して正規化シフトがない
場合の従来方式Aと異なる割合は、
本実施例B: o(%)切捨てC:
l/2X l/2x 100=25 (%)とな
る。従フて、両者の場合を加算すわば、Aに対してBで
は12.5%、Cでは50%だけ加算計が少なくなって
いる。従って、有限語長演算での誤差の累積に対する丸
め処理の効果としては、従来方式より本発明では12.
5%程度の変動を生ずるだけで、まフたく丸め処理を行
なわない切捨ての場合の50%変動よりは、かなり改善
されていると言える。また、この変動ff112.5%
については、仮数部の語長を充分長くとれば、実川下、
問題とならないとM″える。Example B: l/4x 1/2x 100=1
2.5 (%) Similarly, in the case of rounding down, C is rounded down: l/2X l/2x 1oo=25
.. 0 (%) On the other hand, the percentage difference from conventional method A when there is no normalization shift for the multiplication result is as follows: Example B: o (%) Rounding down C:
1/2X 1/2x 100=25 (%). Therefore, if we add up both cases, the total number of adders is 12.5% smaller in B than A, and 50% smaller in C. Therefore, the effect of rounding processing on the accumulation of errors in finite word length calculations is 12.
It can be said that a variation of only about 5% is considerably improved over the 50% variation in the case of truncation without further rounding. Also, this fluctuation ff112.5%
For, if the word length of the mantissa is made long enough, the actual downstream,
If it doesn't become a problem, I'll say M''.
以上述べた実施例では、データ幅が4ビツト長のアレイ
方式の乗算構成について適用したが、データ幅がより大
きくなって、8ビツトや16ビツト、32ビツト等にな
った場合や、他の乗算方式、例えば、ブース・アルゴリ
ズム方式等になった場合についても、本発明の丸め処理
方式が行動であることは明らかである。In the embodiments described above, the data width is applied to an array-type multiplication configuration with a length of 4 bits, but it is also possible to apply it to cases where the data width becomes larger, such as 8 bits, 16 bits, 32 bits, etc., or to other multiplication configurations. It is clear that the rounding method of the present invention is a behavior even when a method such as the Booth algorithm method is adopted.
(発明の効果)
以北、述べたように本発明によ打ば、浮動小数点乗算器
の仮数部乗算セルに、乗算機能と部分積加算機能とがあ
ることを利用して、該部分積加算を行なう部分に丸め処
理用加算を含ませたので、乗算時間の高速化が期待でき
る。さらに、従来必按であった丸め処理(V用の加算回
路か省略できるので、浮動小数点乗算器の小型化・経済
化かはかれる利点がある。(Effects of the Invention) As described above, according to the present invention, by utilizing the fact that the mantissa multiplication cell of the floating-point multiplier has a multiplication function and a partial product addition function, the partial product addition is performed. Since the rounding addition is included in the part that performs the calculation, it is expected that the multiplication time will be faster. Furthermore, since the rounding process (addition circuit for V) which was conventionally necessary can be omitted, there is an advantage that the floating point multiplier can be made smaller and more economical.
第1図は本発明の一実施例を示すブロック図、第2図は
乗算セルの具体的構成のブロック図、第3図は従来の浮
動小数点演算の機能ブロック図、及び第4図は従来の浮
動小数点乗算器の構成例を示す図である。
IO〜29−・・乗算セル、 40・・・アンド回路、
41・・・全加算器。FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of a specific configuration of a multiplication cell, FIG. 3 is a functional block diagram of a conventional floating-point operation, and FIG. 4 is a block diagram of a conventional floating-point operation. FIG. 2 is a diagram illustrating a configuration example of a floating-point multiplier. IO~29-...Multiplication cell, 40...AND circuit,
41...Full adder.
Claims (1)
を行なう乗算器であって、仮数部データの乗算を行なう
乗算セルを乗数仮数部及び被乗数仮数部のビット数に基
づき複数段設けて構成される乗算器において、 乗算器の出力に対し正規化シフトがある場合の丸め指定
ビット位置における乗算セルのいずれかに丸めデータを
入力することを特徴とする浮動小数点乗算器丸め処理方
式。[Scope of Claim] A multiplier that performs parallel multiplication on a multiplier and a multiplicand expressed in floating point numbers, the multiplier having a plurality of multiplication cells that perform multiplication of mantissa data based on the number of bits of the multiplier mantissa and the multiplicand mantissa. A floating-point multiplier rounding process characterized in that, in a multiplier configured in stages, rounding data is input to one of the multiplication cells at a rounding designated bit position when there is a normalization shift for the output of the multiplier. method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224674A JPS6285333A (en) | 1985-10-11 | 1985-10-11 | Round-off processing system for floating point multiplier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224674A JPS6285333A (en) | 1985-10-11 | 1985-10-11 | Round-off processing system for floating point multiplier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6285333A true JPS6285333A (en) | 1987-04-18 |
Family
ID=16817438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60224674A Pending JPS6285333A (en) | 1985-10-11 | 1985-10-11 | Round-off processing system for floating point multiplier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6285333A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331243U (en) * | 1989-07-31 | 1991-03-27 | ||
JPH06348455A (en) * | 1993-06-14 | 1994-12-22 | Matsushita Electric Ind Co Ltd | Rounding method for multiplication and multiplying circuit |
US6167420A (en) * | 1997-04-01 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Multiplication method and multiplication circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582354A (en) * | 1978-12-06 | 1980-06-21 | American Micro Syst | Digital multiplier |
JPS584441A (en) * | 1981-04-23 | 1983-01-11 | デ−タ−・ゼネラル・コ−ポレ−シヨン | Data processing system |
JPS608933A (en) * | 1983-06-28 | 1985-01-17 | Nec Corp | Arithmetic processing unit |
-
1985
- 1985-10-11 JP JP60224674A patent/JPS6285333A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5582354A (en) * | 1978-12-06 | 1980-06-21 | American Micro Syst | Digital multiplier |
JPS584441A (en) * | 1981-04-23 | 1983-01-11 | デ−タ−・ゼネラル・コ−ポレ−シヨン | Data processing system |
JPS608933A (en) * | 1983-06-28 | 1985-01-17 | Nec Corp | Arithmetic processing unit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331243U (en) * | 1989-07-31 | 1991-03-27 | ||
JPH06348455A (en) * | 1993-06-14 | 1994-12-22 | Matsushita Electric Ind Co Ltd | Rounding method for multiplication and multiplying circuit |
US6167420A (en) * | 1997-04-01 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Multiplication method and multiplication circuit |
US6167419A (en) * | 1997-04-01 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Multiplication method and multiplication circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5220524A (en) | Machine method to perform newton iterations for reciprocals | |
US6233597B1 (en) | Computing apparatus for double-precision multiplication | |
US5206823A (en) | Apparatus to perform Newton iterations for reciprocal and reciprocal square root | |
US5157624A (en) | Machine method to perform newton iterations for reciprocal square roots | |
US4866652A (en) | Floating point unit using combined multiply and ALU functions | |
JPH10214176A (en) | Device for quickly calculating transcendental function | |
JPH09269891A (en) | Method and device for adding partial product, method and device for multiplying floating point, and method and device for floating point product-sum operation | |
JPS6347874A (en) | Arithmetic unit | |
JPH0612229A (en) | Multiplication and accumulation circuit | |
EP2435904B1 (en) | Integer multiply and multiply-add operations with saturation | |
KR20220031098A (en) | Signed Multi-Word Multiplier | |
CN102004627B (en) | Multiplication rounding implementation method and device | |
JPH0250492B2 (en) | ||
US4823300A (en) | Performing binary multiplication using minimal path algorithm | |
JPS6285333A (en) | Round-off processing system for floating point multiplier | |
JPH11296346A (en) | Device for instructing multiplication of floating point binary four times length word format | |
JPH04172526A (en) | Floating point divider | |
KR20040033198A (en) | Floating point with multiply-add unit | |
JP3137131B2 (en) | Floating point multiplier and multiplication method | |
KR100315303B1 (en) | Digital signal processor | |
KR19980084342A (en) | Method and apparatus for multiplying floating point data in a two cycle pipeline | |
KR100251547B1 (en) | Digital signal processor | |
JPS63254525A (en) | Dividing device | |
JPH01233520A (en) | High cardinal number irreparable type dividing device | |
JPH01300338A (en) | Floating point multiplier |