JPS63254525A - Dividing device - Google Patents

Dividing device

Info

Publication number
JPS63254525A
JPS63254525A JP62089457A JP8945787A JPS63254525A JP S63254525 A JPS63254525 A JP S63254525A JP 62089457 A JP62089457 A JP 62089457A JP 8945787 A JP8945787 A JP 8945787A JP S63254525 A JPS63254525 A JP S63254525A
Authority
JP
Japan
Prior art keywords
multiplication
divisor
arithmetic
register
dividend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62089457A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakakura
中倉 康浩
Yuji Tanigawa
裕二 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62089457A priority Critical patent/JPS63254525A/en
Publication of JPS63254525A publication Critical patent/JPS63254525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the division at high speed by using a squaring circuit which can be designed more easily than a dividing circuit of a shift subtraction system with a comparatively small circuit scale and high executing speed. CONSTITUTION:When the arithmetic data to be used has a format using the mean expression, a multiplier 5 always applies (1+M) to the input data M(0<M<1) for multiplication. Therefore the arithmetic is not required for (1+Xn-1) and both multiplication and addition are attained just with a single arithmetic operation. For the square calculation, a divisor stored in a register 2 and a dividend stored in a register 3 are supplied to an arithmetic and logic unit ALU6 and the exponent parts of both the divisor and the dividend are updated with the matissa part of the divisor converted into X even with the arithmetic of a fixed decimal point. Then an arithmetic operation is carried out by the multiplier 5 by means of the values of both registers 2 and 3 storing the converted divisor and dividend. Simultaneously, an arithmetic operation of the fixed decimal point is carried out by a squaring means 4. Thus the arithmetic operations are sequentially carried out and the quotient is obtained in the (n) multiplication frequency. That is, the multiplication frequency is halved compared with the conventional frequency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、浮動小数点演算形式の乗算器、算術論理演算
器及び固定小数点二乗演算器を用いて収束型除算を実行
する除算装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a division device that performs convergent division using a floating-point type multiplier, an arithmetic logic unit, and a fixed-point squaring unit.

従来の技術 従来の除算装置として、例えば特開昭61−20132
7号公報があるが、収束型除算法というのは、 Q=ム/B   ・・・・・・・・・・・・・・・・・
・・・・(1)と表わし、Qは商、Aは被除数、Bは除
数とする。
2. Description of the Related Art As a conventional division device, for example, Japanese Patent Application Laid-Open No. 61-20132
There is a publication No. 7, but the convergent division method is as follows: Q=Mu/B ・・・・・・・・・・・・・・・・・・
...(1) where Q is the quotient, A is the dividend, and B is the divisor.

ここでBが2 ≦B〈1に正規化されているとするとB
=−+−XとしてXを求め(1)式を変形すると次の様
になる。
Here, if B is normalized to 2 ≦ B < 1, then B
If X is determined as =-+-X and the equation (1) is transformed, the following is obtained.

・・・・・・・・・・・・・・・・・・・・・(2)と
表わせる。ここで分母は(I  X 52 )  とな
り、o (X < 2−1     ・・・・・・・・
・・・・・・・・・・・・・・・・・・・(3)より 
0(X32(2”   ・・・・・・・・・・・・・・
・・・・・・・・・・・・・(4)となり仮数部データ
が32ピツト以下の場合(1152)中1 と表わせ、
従って商Qは次の様に表わされる。
It can be expressed as (2). Here, the denominator is (I X 52), and o (X < 2-1...
・・・・・・・・・・・・・・・・・・ From (3)
0(X32(2”)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(4) If the mantissa data is 32 pits or less, it is expressed as 1 in (1152),
Therefore, the quotient Q can be expressed as follows.

Q=A・ (1+x)(1+x2)(1+x4)(1+
x8)(1+x16)・・・・・・(5)ここでX(、
=1−B  被除数AO= Aとし、(5)式を変形す
ると、 Q= (Ao +Ao 4o)(1+Xo2)(1+X
o’)(1+Xo8)(1+xo16)      ・
・・・・・・・・・・・・・・・・・・・・・・・・・
・(6)A+ =Ao+Ao  Xo 、 Xt =X
oとすると(6)式はQ= (A1+A+ 41)(1
+X+2)(1+X1’)(1+X+8)”47)とな
る。つまシ、(5)式は次の様な順化式で表わされる。
Q=A・ (1+x)(1+x2)(1+x4)(1+
x8)(1+x16)...(5)Here, X(,
= 1-B Let the dividend AO = A and transform equation (5), Q = (Ao +Ao 4o) (1+Xo2) (1+X
o') (1+Xo8) (1+xo16) ・
・・・・・・・・・・・・・・・・・・・・・・・・
・(6) A+ = Ao + Ao Xo, Xt = X
o, equation (6) becomes Q= (A1+A+ 41)(1
+X+2)(1+X1')(1+X+8)''47) Equation (5) can be expressed as the following adaptation expression.

除算装置内では、(9)(101式の演算をくシ返し行
なうこととなる。ここで演算回数nは、除数又は、被除
数の仮数部データ語長から決定される演算回数を示す。
In the division device, the calculations of equations (9) and (101) are repeated. Here, the number of calculations n indicates the number of calculations determined from the divisor or the mantissa data word length of the dividend.

所定の演算回数を行なった演算結果Anが商Qとなる。The calculation result An obtained by performing a predetermined number of calculations becomes the quotient Q.

又、その他の除算演算回路の実施例としては、カイ ワ
ング著堀越他訳「コンピュータの高速演算方式」近代科
学柱(昭59 9 1)P251〜P283に示される
ような、シフト減算をくシ返す事により1マシンサイク
ルで商を求める回路等がある。
In addition, as an example of other division calculation circuits, there is a shift subtraction calculation circuit as shown in "High-speed calculation method for computers" by Kai Wang, translated by Horikoshi et al. In some cases, there are circuits that calculate the quotient in one machine cycle.

発明が解決しようとする問題点 しかしながら、上記収束型除算法では1回の除数、被除
数更新演算に(9)式(1(11式の様に2回乗算器に
よる演算が必要であシ、計2n回の乗算演算を行なわな
ければならなかった。又、(9)式に示される様に1回
の演算サイクル内に乗算と和算を行なう過程が存在した
。この様に従来の収束型の除算装置には高速化に問題が
あった。
Problems to be Solved by the Invention However, in the above-mentioned convergent division method, calculations using multipliers are required twice as in equation (9) (1 (11) for one divisor and dividend update operation, and It was necessary to perform 2n multiplication operations.Also, as shown in equation (9), there was a process of performing multiplication and summation within one operation cycle.In this way, the conventional convergence type There was a problem with speeding up the division device.

又、シフト減算方式の除算演算回路では、乗算器の様に
Boothのアルゴリズムの様な演算速度を早めたシ、
回路縮少の手段がなく、大規模で演算速度が遅くなると
いう問題点を有していた。
In addition, in the division calculation circuit of the shift subtraction method, the calculation speed is increased like Booth's algorithm like a multiplier.
There was no means to reduce the circuit size, and the problem was that the scale was large and the calculation speed was slow.

本発明は、かかる点に鑑み、乗算器及び固定小数点二乗
回路(又は固定小数点乗算器)を用いる事により高速の
除算装置を提供する事を目的とするものである。
In view of this point, it is an object of the present invention to provide a high-speed division device by using a multiplier and a fixed-point squaring circuit (or a fixed-point multiplier).

問題点を解決するための手段 本発明は、除数または乗算係数を格納する第1のレジス
タと、この第1のレジスタの出力を一方の入力とする第
1のセレクタと、前記第1のレジスタの出力を一方の入
力とする算術論理手段と、この算術論理手段の出力を一
方の入力とする第2のセレクタと、この第2のセレクタ
の他方の入力と結合される浮動小数点乗算演算を行なう
乗算手段と、前記第2のセレクタの出力を入力する第2
のレジスタと第1のレジスタを有し、前記第1のセレク
タの出力を一方の入力とする乗算手段と固定小数点二乗
演算を行なう二乗手段とを有し、この二乗手段の出力は
前記第1のセレクタの他方の入力と結合して、前記第2
のレジスタの出力が前記乗算手段の他方の入力と前記算
術論理手段の他方の入力と結合し、制御手段によシ前記
乗算手段と二乗手段、算術論理手段及び第1第2のセレ
クタを制御し、収束型除算を行なう除算装置である。
Means for Solving the Problems The present invention provides a first register that stores a divisor or a multiplication coefficient, a first selector that takes the output of the first register as one input, and a first register that stores a divisor or a multiplication coefficient. an arithmetic logic means having an output as one input; a second selector having an output of the arithmetic logic means as one input; and a multiplier performing a floating point multiplication operation coupled to the other input of the second selector. a second selector inputting the output of the second selector;
and a first register, a multiplication means using the output of the first selector as one input, and a squaring means for performing a fixed-point squaring operation, and the output of the squaring means is the same as the first register. said second input in combination with the other input of the selector.
The output of the register is coupled to the other input of the multiplication means and the other input of the arithmetic logic means, and the control means controls the multiplication means, the squaring means, the arithmetic logic means and the first and second selectors. , is a division device that performs convergent division.

作用 本発明は前記した構成により収束型除算を行なう。action The present invention performs convergent division using the above-described configuration.

使用する演算データがケチ表現を使用したフォーマット
の場合は、乗算器では常に入力データM(0<Mく1 
)に対して(1+M)で乗算が行なわれる。従って、(
9)式に於ける(1+xn−1)の演算が不用となシ、
1回の演算で乗算と和算が行なわれる。また、(1[1
1式の二乗計算においては固定小数点の演算に関しても
、まず第1のレジスタに格納された除数と第2のレジス
タに格納された被除数を前記算術論理手段(以下ムLU
)に入力し、除数及び被除数の指数部を更新し、除数の
仮数部を(9)式で用いるXになる様に変換する。その
後変換された除数及び被除数の格納された第1及び第2
のレジスタの値を用い(9)式の演算を前記乗算器で口
0式の固定小数点の演算を二乗器で行なうことによシ演
算を逐次性ない、9回の乗算回数で商が求まり従来のも
のの半分の乗算回数で演算が行なえ、シフト減算方式の
除算回路より、比較的小さく演算速度の速い二乗手段を
用いる事によシ、前記従来の問題点が解決できる。
If the calculation data used is in a format using stingy expression, the multiplier always uses input data M (0<M
) is multiplied by (1+M). Therefore, (
9) The operation of (1+xn-1) in the formula is unnecessary,
Multiplication and addition are performed in one operation. Also, (1[1
In the square calculation of Equation 1, also regarding fixed point operations, the divisor stored in the first register and the dividend stored in the second register are first calculated by the arithmetic logic means (hereinafter referred to as MLU).
), update the exponent parts of the divisor and dividend, and convert the mantissa part of the divisor to become X used in equation (9). After that, the converted divisor and dividend are stored in the first and second
Using the value of the register, the calculation of equation (9) is performed using the multiplier, and the fixed-point calculation of the 0-formula is performed using the squarer. The above-mentioned problems of the conventional method can be solved by using a squaring means which is relatively small and has a faster calculation speed than a shift-subtraction type division circuit, which can perform calculations with half the number of multiplications.

実施例 本発明は収束型除算法に基づき構成されている。Example The present invention is constructed based on a convergent division method.

基本的演算法は式(1)〜01)に示した様になるが、
ここでは演算データの形式をケチ表現、例えばEEEI
Cのフォーマットに基いた第3図のデータを使用した場
合の演算方式を述べる。
The basic calculation method is shown in formulas (1) to 01),
Here, the format of the calculation data is expressed stingily, for example, EEEI
The calculation method when using the data shown in FIG. 3 based on the C format will be described.

Q=人/B      ・・・・・・・・・・・・・・
・・・・・・・t131と表わし、Qは商、人は被除数
、Bは除数とする。
Q=person/B ・・・・・・・・・・・・・・・
It is expressed as t131, where Q is the quotient, person is the dividend, and B is the divisor.

今データ形式を第3図の様に考えると、つまり、 となる。00式の様に表わすことにより、除数の仮数部
は2 ’(OjMa(1となり(1)〜(111式の様
な収束法による演算が可能になる。ここで1−〇、1M
B−〇、rと表わすと、G印式は次の様に変形できる。
Now, if we consider the data format as shown in Figure 3, we get: By expressing it as in the equation 00, the mantissa part of the divisor becomes 2'(OjMa(1), which makes it possible to perform calculations using convergence methods such as equations (1) to (111).Here, 1-〇, 1M
When expressed as B-〇 and r, the G-mark type can be transformed as follows.

・・・・・・・・・・・・・・・・・・・・・・・・(
171仮数部データが32ビツト以下の場合I  X5
2−!;−1と表わされるので(171式は次の様に表
わされる。
・・・・・・・・・・・・・・・・・・・・・・・・(
171 If the mantissa data is 32 bits or less, I
2-! ;-1, so (Equation 171 is expressed as follows.

Q = 11MaX(1+o、r)(1+(o、r)2
)(1+(o、r)4)又、指数部の演算については 2FA/2FB+1= 2FA−(Fa+1)= 2F
A+FB    、、、、、、(19)と計算できる。
Q = 11MaX(1+o,r)(1+(o,r)2
)(1+(o,r)4) Also, regarding the calculation of the exponent part, 2FA/2FB+1= 2FA-(Fa+1)= 2F
It can be calculated as A+FB , , , , (19).

ここで九はFBの1の補数を表わす。Here, nine represents the one's complement of FB.

又、(181式を(8)〜(111式の様な順化式で表
わすと次の様に表わせる。
Also, if formula (181) is expressed as acclimatization formulas such as formulas (8) to (111), it can be expressed as follows.

ここでnは仮数部データ長から決定される値であわ、例
えば32ピツトの場合n=4となる。
Here, n is a value determined from the mantissa data length; for example, in the case of 32 pits, n=4.

ところで乗算器ではI EEF、の演算データ形式等の
ケチ表現に対応しているためQ、rのデータが入力され
ても1.rの形式で乗算を行なうこととなる。つまシ、
I21)式において(1+o、r)の演算が不用となる
By the way, the multiplier supports stingy expressions such as the IEEF calculation data format, so even if Q and r data are input, 1. Multiplication is performed in the form r. Tsumashi,
In formula I21), the calculation of (1+o, r) becomes unnecessary.

又、■式の乗算は固定小数点の二乗演算であるため、同
じ乗算器を用いて演算すると固定小数点と浮動小数点の
演算のきりかえを行なわなくてはならない。そこで固定
小数点二乗器を導入すれば、固定小数点、浮動小数点の
演算が分離でき、又、121) 、■式の演算が同時に
行なえるため、従来の除算装置にくらべ乗算回数を半分
にへらすことができる。
Furthermore, since the multiplication in equation (2) is a fixed-point squaring operation, if the same multiplier is used for the operation, the fixed-point and floating-point operations must be switched. Therefore, by introducing a fixed-point squarer, fixed-point and floating-point operations can be separated, and operations on expressions 121) and (1) can be performed simultaneously, reducing the number of multiplications by half compared to conventional division devices. can.

これを本発明の基本概念として、本発明の実施例を第1
図を用いて説明する。第1図は本発明による除算装置の
一実施例を示すブロック図である。
Taking this as the basic concept of the present invention, the first embodiment of the present invention will be described below.
This will be explained using figures. FIG. 1 is a block diagram showing an embodiment of a division device according to the present invention.

除算装置は浮動小数点乗算を行なう乗算器5゜1LU6
 、仮数部の固定小数点二乗演算を行なう二乗器(又は
固定小数点乗算器)4.レジスタ2゜3、二乗器4又は
レジスタ2からのデータ入力を切り変えるセレクタ1.
ALU6又は乗算器5からのデータ入力を切9変えるセ
レクタ8各部を制御する制御部7から構成される。
The division device is a multiplier 5゜1LU6 that performs floating point multiplication.
, a squarer (or fixed-point multiplier) that performs fixed-point squaring of the mantissa part4. Selector 1 for switching data input from register 2.3, squarer 4 or register 2.
It is composed of a control section 7 that controls each section of a selector 8 that changes the data input from the ALU 6 or the multiplier 5.

以上のように構成された本実施例の除算装置について第
1図、第2図を用いて、その動作を説明する。第2図は
演算の実行手順を示すフローチャートである。
The operation of the division device of this embodiment configured as described above will be explained with reference to FIGS. 1 and 2. FIG. 2 is a flowchart showing the procedure for performing calculations.

まず、ステップのでレジスタ2とレジスタ2に格納され
た除数データB及び被除数データAをALU6に入力し
、被除数の指数部に除数の指数部の1の補数を那算し被
除数の指数部を更新し、セレクタ8を通りレジスタ3へ
設定される。ステツブ■ではALU6に除数を読み出し
除数の指数部を0にリセットし、除数の指数部を更新し
前記指数部の更新された除数の仮数部を1ビツト左ヘシ
フトし、MSBに1を立て、その結果の2の補数をレジ
スタ2に設定する。この結果が■式の0、roつまり乗
算係数となる。(ステップ■■はそれぞれt18) 、
 側式に対応する。)次にステップ0ではレジスタ2よ
υ乗算係数0、rOを読み出し、セレクタ1を通じて乗
算器5に入力し、又レジスタ3より更新された被除数を
読み出し乗算器5に入力し、それらの積をレジスタ3に
更新された被除数として設定する。この時乗算係数0.
roは乗算器内では、工EEEの演算データ形式に対応
しているために1.rQの形式で乗算することになる。
First, in step 2, input the divisor data B and dividend data A stored in register 2 to the ALU 6, subtract the 1's complement of the exponent part of the divisor to the exponent part of the dividend, and update the exponent part of the dividend. , and is set in the register 3 through the selector 8. In step ①, the divisor is read out to ALU 6, the exponent part of the divisor is reset to 0, the exponent part of the divisor is updated, the mantissa part of the updated divisor in the exponent part is shifted to the left by 1 bit, 1 is set in the MSB, and the exponent part of the divisor is reset to 0. Set the two's complement of the result in register 2. This result becomes 0, ro, or the multiplication coefficient of equation (2). (Step ■■ is t18 respectively),
Compatible with side type. ) Next, in step 0, read the υ multiplication coefficient 0 and rO from register 2 and input them to the multiplier 5 through the selector 1. Also, read the updated dividend from the register 3 and input it to the multiplier 5, and input their product to the register. 3 as the updated dividend. At this time, the multiplication coefficient is 0.
In the multiplier, ro corresponds to the calculation data format of EEE, so 1. It will be multiplied in the form rQ.

つま930式での(1−4−o、ro)の演算が不用と
なる。又、乗算器5でこれらの乗算を行なっている時、
セレクタ1から出た乗算係数は、二乗器4に入力され仮
数部のみの二乗演算を行ないセレクタ1にもどる。この
時二乗器4では固定/J%数点演算を行なうため前記乗
算器6の様に(1+o、ro)の二乗とはならず0.r
Oの二乗が求まる。
Finally, the calculation of (1-4-o, ro) in the formula 930 becomes unnecessary. Also, when performing these multiplications in the multiplier 5,
The multiplication coefficient output from the selector 1 is input to the squarer 4, which performs a squaring operation on only the mantissa part, and returns to the selector 1. At this time, the squarer 4 performs a fixed/J% several-point operation, so unlike the multiplier 6, it does not square (1+o, ro), but 0. r
Find the square of O.

次に、ステップ■では、ステップ0で更新された被除数
をレジスタ3から読み出し乗算器5に入力し、又セレク
タ1Vi二乗器4からのデータを選択し、この更新され
た乗算係数を乗算器5に入力し、被除数との積を求める
。この時、同時に二乗器4では乗算係数0.roの更新
を行なう。
Next, in step (2), the dividend updated in step 0 is read out from the register 3 and inputted into the multiplier 5, the data from the selector 1Vi squarer 4 is selected, and this updated multiplication coefficient is inputted into the multiplier 5. Input and calculate the product with the dividend. At this time, at the same time, the squarer 4 has a multiplication coefficient of 0. Update ro.

以下、この乗算係数と被除数の更新を、仮数ビット数よ
り決定される回数だけ行ない、最終回のレジスタ3に格
納された被除数Amが求める商となる。(ステップ■) 以上のように本実施例によれば被除数及び乗算係数の更
新が1ステツプで実行する事ができる。
Thereafter, the multiplication coefficient and the dividend are updated a number of times determined by the number of mantissa bits, and the dividend Am stored in the register 3 at the final time becomes the quotient to be obtained. (Step ■) As described above, according to this embodiment, the dividend and the multiplication coefficient can be updated in one step.

なお、ステップ■で行なった指数部処理はステップ0〜
■中に並列に演算を行なってもよい。
Note that the exponent part processing performed in step ■ is performed from step 0 to
(2) Operations may be performed in parallel.

発明の詳細 な説明したように、本発明によれば、シフト減算方式の
除算回路よシ設計が容易で、回路規模が比較的小さく実
行速度の速い二乗回路“(第二の乗算器)を用いる事に
よシ、除算スピードを従来の収束法に比べ約半分にする
事ができ、除算スピードの高速化を実現できる。
As described in detail, the present invention uses a squaring circuit (second multiplier) that is easier to design than a shift-subtraction type division circuit, has a relatively small circuit scale, and has a high execution speed. As a matter of fact, the division speed can be reduced to about half compared to the conventional convergence method, and the division speed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明における実施例の除算装置のブ
ロック図及びフローチャート図、第3図は浮動小数点表
示のデータ形式図を示す。 1.8・・・・・・セレクタ、2.3・・・・・・レジ
スタ、4・・・・・・固定小数点二乗器、6・・・・・
・乗算器、6・・・・・・・・・ALU17・・・・・
・制御部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
1 and 2 show a block diagram and a flowchart of a division device according to an embodiment of the present invention, and FIG. 3 shows a data format diagram of floating point representation. 1.8...Selector, 2.3...Register, 4...Fixed-point squarer, 6...
・Multiplier, 6...ALU17...
・Control unit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] すくなくとも、除数又は乗算係数を格納する第1のレジ
スタと、この第1のレジスタの第1の出力を一方の入力
とする第1のセレクタと、前記第1の出力を一方の入力
とする算術論理手段と、この算術論理手段の出力を一方
の入力とする第2のセレクタと、この第2のセレクタの
他方の入力と結合される浮動小数点乗算演算を行なう乗
算手段と、前記第2のセレクタの出力を第1の入力とす
る第2のレジスタと、前記第1のレジスタを有し、前記
第1のセレクタの出力を一方の入力とする前記乗算手段
と固定小数点二乗演算を行なう二乗手段とを有し、この
二乗手段の出力は、前記第1のセレクタの他方の入力と
結合して、前記第2のレジスタの出力が前記乗算手段の
他方の入力と前記算術論理手段の他方の入力と結合し、
制御手段により前記乗算手段、前記二乗手段、前記算術
論理手段及び前記第1のセレクタ、前記第2のセレクタ
を制御することを特徴とした除算装置。
At least a first register that stores a divisor or a multiplication coefficient, a first selector that takes the first output of the first register as one input, and an arithmetic logic that takes the first output as one input. a second selector having one input as the output of the arithmetic logic means; a multiplication means for performing a floating point multiplication operation coupled to the other input of the second selector; a second register having the output as a first input; the multiplication means having the first register and having the output of the first selector as one input; and squaring means for performing a fixed-point squaring operation. the output of the squaring means is coupled to the other input of the first selector, and the output of the second register is coupled to the other input of the multiplication means and the other input of the arithmetic logic means. death,
A division device characterized in that the multiplication means, the squaring means, the arithmetic logic means, the first selector, and the second selector are controlled by a control means.
JP62089457A 1987-04-10 1987-04-10 Dividing device Pending JPS63254525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089457A JPS63254525A (en) 1987-04-10 1987-04-10 Dividing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089457A JPS63254525A (en) 1987-04-10 1987-04-10 Dividing device

Publications (1)

Publication Number Publication Date
JPS63254525A true JPS63254525A (en) 1988-10-21

Family

ID=13971230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089457A Pending JPS63254525A (en) 1987-04-10 1987-04-10 Dividing device

Country Status (1)

Country Link
JP (1) JPS63254525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229312A (en) * 2004-02-12 2005-08-25 Daihen Corp Adaptive digital filter
CN102460424A (en) * 2009-06-10 2012-05-16 新思科技有限公司 Multiplicative division circuit with reduced area
WO2012105089A1 (en) * 2011-01-31 2012-08-09 三菱重工業株式会社 Safety device, and safety device computation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229312A (en) * 2004-02-12 2005-08-25 Daihen Corp Adaptive digital filter
CN102460424A (en) * 2009-06-10 2012-05-16 新思科技有限公司 Multiplicative division circuit with reduced area
JP2012529718A (en) * 2009-06-10 2012-11-22 シノプシス, インコーポレイテッド Multiplication divider circuit with reduced area
KR101411683B1 (en) * 2009-06-10 2014-06-25 시놉시스, 인크. Multiplicative division circuit with reduced area
US8819094B2 (en) 2009-06-10 2014-08-26 Synopsys, Inc. Multiplicative division circuit with reduced area
WO2012105089A1 (en) * 2011-01-31 2012-08-09 三菱重工業株式会社 Safety device, and safety device computation method
CN103238122A (en) * 2011-01-31 2013-08-07 三菱重工业株式会社 Safety device, and safety device computation method
US9753437B2 (en) 2011-01-31 2017-09-05 Mitsubishi Heavy Industries, Ltd. Safety device and computation method for safety device

Similar Documents

Publication Publication Date Title
US6138135A (en) Propagating NaNs during high precision calculations using lesser precision hardware
EP0136834A2 (en) A digital circuit performing an arithmetic operation with an overflow
JPH02196328A (en) Floating point computing apparatus
JPS6347874A (en) Arithmetic unit
JPH05250146A (en) Arithmetic operation circuit executing integer involution processing
JP2511527B2 (en) Floating point arithmetic unit
JPH0568725B2 (en)
JPS63254525A (en) Dividing device
JP3660075B2 (en) Dividing device
KR100481586B1 (en) Apparatus for modular multiplication
JPH04172526A (en) Floating point divider
JPH0831024B2 (en) Arithmetic processor
JP2951685B2 (en) Fixed-point arithmetic unit
JPH0251732A (en) Floating point computing element
JP2972326B2 (en) Square root calculator
JPS5938849A (en) Arithmetic circuit
JPH04314126A (en) Inverse number generating device
JPS6285333A (en) Round-off processing system for floating point multiplier
JPS59136849A (en) Dividing device
JPH01300338A (en) Floating point multiplier
Vidyasagar et al. A Fast Binary to BCD Conversion for Binary/Decimal Multi-Operand Adder.
JPH0285922A (en) Arithmetic circuit
Jackson The Maniac
JPH01161437A (en) Divider
JPS6149234A (en) Multiplier circuit for floating point