JPS628441B2 - - Google Patents

Info

Publication number
JPS628441B2
JPS628441B2 JP53010773A JP1077378A JPS628441B2 JP S628441 B2 JPS628441 B2 JP S628441B2 JP 53010773 A JP53010773 A JP 53010773A JP 1077378 A JP1077378 A JP 1077378A JP S628441 B2 JPS628441 B2 JP S628441B2
Authority
JP
Japan
Prior art keywords
polymerization
viscosity
polymer latex
latex
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53010773A
Other languages
Japanese (ja)
Other versions
JPS54103497A (en
Inventor
Shinsuke Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1077378A priority Critical patent/JPS54103497A/en
Publication of JPS54103497A publication Critical patent/JPS54103497A/en
Publication of JPS628441B2 publication Critical patent/JPS628441B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は超微粒子ポリマーラテツクスを工業的
に有利に製造する方法に関するものである。粒子
経が0.005〜0.05μ程度の超微粒子ポリマーラテ
ツクスは、粒子径が0.05〜0.4μくらいの白色不
透明の通常のポリマーラテツクスとは異なり、反
射光に対し青白色で透過光に対しては黄赤色にみ
える透明ないし半透明の粘稠を帯びたもので、溶
剤揮発型の溶液タイプのポリマーに匹敵する光沢
を持つた緻密で透明性の良い皮膜の形成が可能で
あり、さらに比較的高粘性のポリマーラテツクス
が容易に得られるなどの優れた物性と作業性を備
えていることから、ラテツクス工業面においては
その重要性を増してきている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing ultrafine particle polymer latex. Ultrafine particle polymer latex with a particle diameter of about 0.005 to 0.05μ differs from ordinary polymer latex, which is white and opaque with a particle size of about 0.05 to 0.4μ, to be blue-white to reflected light and transparent to transmitted light. It has a transparent or semi-transparent viscosity that appears yellow-red, and it is possible to form a dense and transparent film with a gloss comparable to that of solvent-volatile solution-type polymers. It is becoming increasingly important in the latex industry because it has excellent physical properties and workability, such as the ability to easily obtain viscous polymer latex.

従来、超微粒子ポリマーラテツクスの製造法と
しては、アルカリ膨潤させたカルボン酸変性のア
クリル系ポリマーラテツクスを高温下で激しくか
きまぜることによつて粒子を微細に分割する方法
(デユポン社のハイドロゾル)が知られている
が、この方法はその操作が複雑な上、共重合成分
のカルボン酸モノマー量やアルカリ中和度、平均
分子量などを極めて限定された範囲に保持しなけ
ればならず、その製造に大きな制約が伴なつた。
Conventionally, the method for producing ultrafine polymer latex is to divide alkali-swollen carboxylic acid-modified acrylic polymer latex into fine particles by stirring vigorously at high temperatures (DuPont Hydrosol). However, this method is complicated to operate, and the amount of carboxylic acid monomer, degree of alkali neutralization, and average molecular weight of the copolymer components must be kept within extremely limited ranges, making it difficult to manufacture. It came with major constraints.

一方、良く知られているように、通常の乳化重
合では生成するポリマーラテツクスの粒子数は乳
化剤濃度の0.6乗に比例して増加し、粒子径は乳
化剤濃度とともに減少するが、粒子径を0.05μ以
下の超微粒子を生成させるためには非常に多量の
乳化剤を必要として実用的でない。またポリマー
ラテツクスの粒子径が微小となると重合の経過と
ともにポリマー濃度が高い場合は、生成ポリマー
ラテツクスの粘度が著しく高くなり、重合操作、
殊に撹拌に著しい障害を与えるとともに、未重合
の単量体が層状に分離して水相内に分散できず工
業的製法は実際上不可能である。
On the other hand, as is well known, in normal emulsion polymerization, the number of particles of the polymer latex produced increases in proportion to the 0.6th power of the emulsifier concentration, and the particle size decreases with the emulsifier concentration, but when the particle size is 0.05 In order to produce ultrafine particles of micron size or less, a very large amount of emulsifier is required, which is impractical. Furthermore, as the particle size of the polymer latex becomes minute, the viscosity of the resulting polymer latex increases significantly as the polymer concentration progresses and the polymerization process becomes more difficult.
In particular, it seriously impedes stirring, and unpolymerized monomers separate into layers and cannot be dispersed in the aqueous phase, making industrial production practically impossible.

本発明者らは前記した従来法における欠点を克
服し、超微粒子ポリマーラテツクスを工業的に有
利に製造し得る方法を開発すべく鋭意研究を重ね
た結果、乳化重合反応を特定の条件下で行なうと
ともに、この重合系には、あらかじめ粘度低下剤
としてある限定された範囲の量のイオン性電解質
を添加することにより、重合系の粘度上昇を生起
することなく、高品質の超微粒子ポリマーラテツ
クスが得られることを見出し、本発明を完成する
に到つた。
The present inventors have conducted extensive research to overcome the drawbacks of the conventional methods described above and to develop an industrially advantageous method for producing ultrafine polymer latex. As a result, the emulsion polymerization reaction can be carried out under specific conditions. At the same time, by adding a limited amount of ionic electrolyte as a viscosity reducing agent to the polymerization system, high quality ultrafine particle polymer latex can be produced without increasing the viscosity of the polymerization system. The present inventors have discovered that the following can be obtained, and have completed the present invention.

すなわち、本発明は、アクリル酸低級アルキル
エステル、メタクリル酸低級アルキルエステル、
および酢酸ビニルからなる群から選ばれた少くと
も1種の親水性単量体、またはこの親水性単量体
と共重合可能な疎水性単量体と前記親水性単量体
とからなる単量体混合物を、過硫酸塩とスルホキ
シ化合物とからなるレドツクス重合開始剤、遷移
金属イオンからなるレドツクス重合開始剤、アニ
オン系界面活性剤、および低粘度化有効範囲量の
イオン性電解質からなる粘度低下剤の存在下に、
少くとも重合開始時のPHを2〜7に保持しながら
水質媒体中で乳化重合せしめることを特徴とする
超微粒子ポリマーラテツクスの製造方法である。
That is, the present invention provides lower alkyl acrylates, lower alkyl methacrylates,
and at least one hydrophilic monomer selected from the group consisting of vinyl acetate, or a monomer consisting of the hydrophilic monomer and a hydrophobic monomer copolymerizable with this hydrophilic monomer. A redox polymerization initiator consisting of a persulfate and a sulfoxy compound, a redox polymerization initiator consisting of a transition metal ion, an anionic surfactant, and a viscosity reducing agent consisting of an ionic electrolyte in an effective amount for reducing viscosity. In the presence of
This is a method for producing ultrafine particle polymer latex, which is characterized in that emulsion polymerization is carried out in an aqueous medium while maintaining the pH at least at 2 to 7 at the start of polymerization.

本発明において撹拌操作を容易にし、工業的製
法を可能にするためには重合系の粘度上昇を抑制
することが不可欠であり、本発明者らは有効な減
粘方法について種々の検討を重ねた結果、種々の
イオン性電解質のある限定された狭い濃度範囲の
量添加された場合に著しく超微粒子ポリマーラテ
ツクスの粘度を低下させるという意外な事実を認
めた。
In the present invention, it is essential to suppress the increase in viscosity of the polymerization system in order to facilitate the stirring operation and enable industrial production, and the present inventors have conducted various studies on effective viscosity reduction methods. As a result, we discovered the surprising fact that when various ionic electrolytes were added in amounts within a limited narrow concentration range, the viscosity of ultrafine particle polymer latex was significantly reduced.

本発明でいうイオン性電解質とは、著しいPH値
の変動を起こしたり、重合反応を抑制もしくは禁
止させたり、複分解で水不溶性の塩を析出するよ
うな重金属などの塩を除いた水溶性の有機、無機
性の広い範囲の電解質が使用可能であるが、一般
的には次のような種類のものが望ましい。
The ionic electrolyte used in the present invention is a water-soluble organic electrolyte excluding salts such as heavy metals that cause significant fluctuations in PH value, suppress or inhibit polymerization reactions, or precipitate water-insoluble salts during double decomposition. Although a wide range of inorganic electrolytes can be used, the following types are generally preferred:

(1) 塩化カリウム、リン酸二アンモニウムなど、
アルカリ塩もしくはアンモニウム塩からなる各
種のリン酸塩、硫酸塩、塩酸塩、炭酸塩、酢酸
塩、過硫酸塩、イミド硫酸塩、スルホン酸塩 (2) アンモニア水(28%)、メチルジエチルアミ
ノアルコール、モルホリン、パラトルエンスル
ホン酸ナトリウム などである。
(1) Potassium chloride, diammonium phosphate, etc.
Various phosphates, sulfates, hydrochlorides, carbonates, acetates, persulfates, imidosulfates, and sulfonates consisting of alkali salts or ammonium salts (2) Aqueous ammonia (28%), methyldiethylaminoalcohol, Morpholine, sodium paratoluenesulfonate, etc.

本発明においてはこのようなイオン性電解質
は、重合時におけるポリマーラテツクスの粘度上
昇を防止するためには、重合系の成分組成に応じ
てその添加量を適当な範囲に制限することが必要
であり、添加量が多すぎても少なすぎても生成ポ
リマーラテツクスの粘度は著しく高くなつて不都
合である。換言すれば、その量を適当な範囲に制
限すると、その種類にかかわらず重合時における
ポリマーラテツクスの粘度の上昇を効果的に防止
することができる。したがつて本発明におけるイ
オン性電解質の添加量は、このようなポリマーラ
テツクスの粘度上昇を有効に防止し得る範囲であ
つて、“低粘度化有効範囲量”と定義される。
In the present invention, in order to prevent an increase in the viscosity of the polymer latex during polymerization, it is necessary to limit the amount of the ionic electrolyte added to an appropriate range depending on the component composition of the polymerization system. However, if the amount added is too large or too small, the viscosity of the resulting polymer latex will become extremely high, which is disadvantageous. In other words, by limiting the amount to an appropriate range, it is possible to effectively prevent the viscosity of the polymer latex from increasing during polymerization, regardless of its type. Therefore, the amount of ionic electrolyte added in the present invention is within a range that can effectively prevent such an increase in the viscosity of the polymer latex, and is defined as the "effective range for reducing viscosity."

本発明において定義される電解質の“低粘度化
有効範囲量”はその電解質の種類及び重合系の成
分組成に応じて異なり一義的には定めることはで
きないが、一般的には水性媒体100重量部に対し
て0.2〜0.3重量部の範囲であ、その好ましいイオ
ン性電解質の具体的な低粘度化有効範囲量は、当
業者であれば数回の予備実験によつて容易に定め
ることができる。
The "effective range for reducing viscosity" of the electrolyte defined in the present invention varies depending on the type of electrolyte and the component composition of the polymerization system and cannot be unambiguously determined, but is generally 100 parts by weight of the aqueous medium. The specific viscosity-lowering effective range of the preferred ionic electrolyte can be easily determined by those skilled in the art through several preliminary experiments.

本発明で用いる重合性単量体は、親水性を有
し、水性媒体中に乳化分散可能のものであれば任
意であるが、一般的には、アクリル酸やメタクリ
ル酸の低級アルキルエステル、たとえばメチル、
エチルが好ましく適用され、また酢酸ビニルも好
適である。スチレン、アクリル酸ブチル、ブタジ
エンなどの疎水性の単量体は比較的粒子径が大き
いポリマーラテツクスを生成したが、前記親水性
単量体との混合物の形で用いる時には超微粒子の
共重合体ラテツクスが生成し、本発明の重合性原
料として適用可能である。この場合、疎水性単量
体は親水性単量体との混合物中50重量%以下の割
合で用いるのが良い。
The polymerizable monomer used in the present invention is arbitrary as long as it has hydrophilicity and can be emulsified and dispersed in an aqueous medium, but generally lower alkyl esters of acrylic acid or methacrylic acid, such as methyl,
Ethyl is preferably applied, also vinyl acetate being suitable. Hydrophobic monomers such as styrene, butyl acrylate, and butadiene produce polymer latexes with relatively large particle sizes, but when used in the form of mixtures with the hydrophilic monomers mentioned above, copolymers with ultrafine particles are produced. Latex is produced and can be used as a polymerizable raw material in the present invention. In this case, the hydrophobic monomer is preferably used in a proportion of 50% by weight or less in the mixture with the hydrophilic monomer.

本発明の方法における重合開始剤は、過硫酸塩
にチオ硫酸塩、亜硫酸塩などの還元性スルホキシ
化合物を組み合せたレドツクス開始剤に、さらに
微量の(重合系中濃度5.0×10-6〜5.0×10-4
ル/)遷移金属イオンをレドツクス重合促進剤
として加えたものを用いる。この場合、遷移金属
としては銅イオン、鉄イオン、コバルトイオンな
どがあるが2価の銅イオンの使用が好ましい。こ
のような遷移金属イオンをレドツクス重合促進剤
としたレドツクス開始剤の使用は生成ポリマーラ
テツクスの粒子径を著しく微小化するとともに、
アニオン界面活性剤の使用量をより低下させ得る
ことができるという効果を示す。レドツクス開始
剤の実施しやすい濃度は重合系中の濃度で5.0×
10-4〜7×10-3モル/、好ましくは1.0×10-3
5×10-3モル/の等モル量の組み合せであつ
た。
The polymerization initiator used in the method of the present invention is a redox initiator that is a combination of persulfate and a reducing sulfoxy compound such as thiosulfate or sulfite, and a trace amount (concentration in the polymerization system of 5.0×10 -6 to 5.0× 10 -4 mol/) transition metal ions are added as a redox polymerization accelerator. In this case, transition metals include copper ions, iron ions, cobalt ions, etc., but divalent copper ions are preferably used. The use of a redox initiator using such a transition metal ion as a redox polymerization accelerator not only significantly reduces the particle size of the resulting polymer latex, but also
This shows the effect that the amount of anionic surfactant used can be further reduced. The concentration of the redox initiator that is easy to implement is 5.0× in the polymerization system.
10 -4 to 7 x 10 -3 mol/, preferably 1.0 x 10 -3 to
The combination was in equimolar amounts of 5 x 10 -3 mol/.

本発明における重合系のPH値は、中性ないし酸
性条件、すなわち、PH2〜7、好ましくはPH3〜
5の条件が採用される。PH条件がアルカリ性側に
なると、生成するラテツクス中のポリマー粒径が
大きくなるので好ましくない。但し、このPH条件
は重合開始時に必要であつて、ある程度重合が進
行し、超微粒子ポリマーが形成された後では、こ
れが核種となつて重合が進行するのでPH10以下の
アルカリ性側でも制約を受けない。
The PH value of the polymerization system in the present invention is set under neutral to acidic conditions, that is, PH2 to 7, preferably PH3 to
Condition 5 is adopted. If the pH condition becomes alkaline, the polymer particle size in the produced latex will increase, which is not preferable. However, this PH condition is necessary at the start of polymerization, and after the polymerization has progressed to a certain extent and ultrafine particle polymers have been formed, this becomes a nuclide and the polymerization progresses, so there are no restrictions even on the alkaline side of PH10 or less. .

本発明における乳化剤としては、アニオン系界
面活性剤の使用が必要であるが、脂肪酸石ケン、
ロジン酸石ケンなどのアルカリ性の強いアニオン
活性剤と、ポリオキシエチレンノニルフエノール
などのノニオン系の界面活性剤を用いた場合は良
好な結果を得ることはできない。本発明に好適な
アニオン系界面活性剤の例としては、アルキル硫
酸塩、アルキルベンゼンスルホン酸塩、ジアルキ
ルスルホコハク酸塩などを挙げることができる。
これらの乳化剤は水性溶媒100重量部に対し、0.3
〜4重量部、好ましくは0.5〜2重量部の割合で
用いられる。乳化剤量は余り多くなると生成ポリ
マーラテツクスに著しい発泡性や、その品質低下
を生じるので可及的少量であることが望ましい。
As the emulsifier in the present invention, it is necessary to use an anionic surfactant, but fatty acid soap,
Good results cannot be obtained when a strongly alkaline anionic surfactant such as rosinate soap and a nonionic surfactant such as polyoxyethylene nonylphenol are used. Examples of anionic surfactants suitable for the present invention include alkyl sulfates, alkylbenzene sulfonates, dialkyl sulfosuccinates, and the like.
These emulsifiers are used in an amount of 0.3 parts by weight per 100 parts by weight of the aqueous solvent.
It is used in a proportion of 4 parts by weight, preferably 0.5 to 2 parts by weight. If the amount of emulsifier is too large, the produced polymer latex will have significant foaming properties and its quality will deteriorate, so it is desirable that the amount is as small as possible.

しかしながら乳化剤量が0.2重量部より少なく
なると、生成するポリマーラテツクスの粒子径が
大きく、たとえば0.1μ以上にもなるので好まし
くない。
However, if the amount of emulsifier is less than 0.2 parts by weight, the particle size of the resulting polymer latex will be large, for example 0.1 μm or more, which is not preferable.

本発明における乳化重合温度は40〜90℃、好ま
しくは50〜80℃であるが重合開始反応時は重合温
度は可及的に低い程好適である。また、著しい重
合熱による昇温を防ぐため単量体は連続的に徐々
に滴下しながら添加することが必要である。
The emulsion polymerization temperature in the present invention is 40 to 90°C, preferably 50 to 80°C, but it is preferable that the polymerization temperature is as low as possible during the polymerization initiation reaction. Further, in order to prevent temperature rise due to significant heat of polymerization, it is necessary to add the monomer continuously and gradually dropwise.

本発明によれば、アニオン系界面活性剤と低粘
度化有効範囲量のイオン性電解質からなる粘度低
下剤の存在下に、少くとも重合開始時のPHを2〜
7に保つて水質媒体中で乳化重合を行なうことに
より、粒子径が0.005〜0.05μ程度の超微粒子ポ
リマーラテツクスを得ることができる。
According to the present invention, in the presence of a viscosity reducing agent consisting of an anionic surfactant and an ionic electrolyte in an effective viscosity reducing amount, the pH at the start of polymerization is at least 2 to 2.
By carrying out emulsion polymerization in an aqueous medium at a temperature of 7.7, an ultrafine polymer latex having a particle size of approximately 0.005 to 0.05 μm can be obtained.

従来技術からすれば、ポリマーラテツクス粒子
径が微少化し、濃度が高くなる程、重合系の粘度
が上昇して撹拌が困難になる。
According to the prior art, as the particle size of the polymer latex becomes smaller and the concentration becomes higher, the viscosity of the polymerization system increases and stirring becomes difficult.

しかし本発明ではイオン性電解質からなる粘度
低下剤を低粘度化有効範囲量で用いているので重
合系の粘度上昇を抑制しながら重合反応を進める
ことができ、生成ポリマーラテツクス濃度が高ま
つても重合系の撹拌が困難になることがなく、ポ
リマーラテツクスの超微粒子化が促進される。こ
のことは本発明を工業的に実施するうえで極めて
有利である。
However, in the present invention, since the viscosity reducing agent consisting of an ionic electrolyte is used in an amount within the effective range for reducing the viscosity, the polymerization reaction can proceed while suppressing the increase in viscosity of the polymerization system, and the concentration of the produced polymer latex increases. However, stirring of the polymerization system does not become difficult, and formation of ultrafine particles of the polymer latex is promoted. This is extremely advantageous when implementing the present invention industrially.

また本発明では、重合系のPHを2〜7、すなわ
ち中性ないし酸性に保つているので、重合系のPH
がアルカリ側になつて、ポリマーラテツクスの粒
子径が増大することが防止される。
In addition, in the present invention, the PH of the polymerization system is maintained at 2 to 7, that is, neutral to acidic, so the PH of the polymerization system is maintained at 2 to 7, that is, neutral to acidic.
becomes alkaline, thereby preventing the particle size of the polymer latex from increasing.

更に本発明はアニオン系界面活性剤を乳化剤と
して用いるので、乳化重合が可能である。
Furthermore, since the present invention uses an anionic surfactant as an emulsifier, emulsion polymerization is possible.

かつ、本発明は前述のようにポリマーラテツク
ス濃度を高めることができるので、実用濃度範囲
のポリマーラテツクスを得ることができる。
Furthermore, since the present invention can increase the concentration of the polymer latex as described above, it is possible to obtain a polymer latex within a practical concentration range.

このように本発明で得られたポリマーラテツク
スは粒子径が0.005〜0.05μ程度の超微粒子なの
で、透明ないし半透明であり、浸透性や“ぬれ”
が良好であり、溶剤揮発型の溶液タイプのポリマ
ーに匹敵する光沢を持つた緻密で透明性の良い皮
膜を形成することができる。
As described above, the polymer latex obtained by the present invention is ultrafine particles with a particle size of about 0.005 to 0.05μ, so it is transparent or semitransparent, and has good permeability and "wetting".
It is possible to form a dense and transparent film with a gloss comparable to that of solvent-volatile solution-type polymers.

したがつて光沢塗料、パフ掛け不要の床磨き用
エマルジヨン、コーテイング剤、皮革の仕上げ
用、紙および繊維加工用ラテツクスなどとして有
利に使用することができる。
Therefore, it can be advantageously used as a glossy paint, an emulsion for floor polishing that does not require puffing, a coating agent, a finishing agent for leather, a latex for paper and textile processing, and the like.

次に本発明を実施例および比較例によりさらに
詳細に説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例 1 ガス導入管、還流冷却器、PH測定用複合ガラス
電極およびかきまぜ装置を備えた1000mlの4つ口
セパラブルフラスコを用い、水媒体100mlに対し
て2.0gの割合でラウリル硫酸ナトリウムを溶か
した蒸留水400ml中に10mlのメタクリル酸メチル
を分散させ、一定のかきまぜ状態(300rpm)に
保ちながら硫酸銅(系中濃度2.5×10-5モル/
)を促進剤とした過硫酸カリウム/チオ硫酸ナ
トリウムの等モル量からなるレドツクス系開始剤
(系中濃度1.0×10-3モル/)で60℃、PH2〜4
で重合を開始させた。ついで重合熱による著しい
昇温を防ぐために290mlのメタクリル酸メチルを
徐々に滴下しながら重合を行なつた。重合の経過
とともに、系の粘度が上昇してきて単量体の分散
など、かきまぜ操作が困難となるが、重合系の粘
度が上昇し始める前に3〜4mlのアンモニア水
(28%)を滴下して系のPHを8.7〜9.0に保つたと
ころ、重合系の粘度の上昇はわずかで単量体の分
散とかきまぜ状態は良好であつた。得られた超微
粒子のポリマーラテツクスは反射光に対しては青
白色で、透過光に対しては黄赤色に見える透明性
のやゝ粘稠なコロイド分散液で分光光度計による
光透過率は55%であつた(800mμ 1cm厚さ)。
ポリマーラテツクスの粘度はB型回転粘度計でス
ピンドル回転数6rpmのとき660センチポイズ、
60rpmのとき600センチポイズであつた。
Example 1 Sodium lauryl sulfate was dissolved at a ratio of 2.0 g per 100 ml of aqueous medium using a 1000 ml four-necked separable flask equipped with a gas introduction tube, a reflux condenser, a composite glass electrode for PH measurement, and a stirring device. Disperse 10 ml of methyl methacrylate in 400 ml of distilled water, and add copper sulfate (concentration in the system: 2.5 x 10 -5 mol/
) as an accelerator and a redox initiator consisting of equimolar amounts of potassium persulfate/sodium thiosulfate (concentration in the system: 1.0 x 10 -3 mol/) at 60°C and pH 2 to 4.
Polymerization was started. Next, polymerization was carried out while gradually dropping 290 ml of methyl methacrylate to prevent a significant temperature rise due to polymerization heat. As the polymerization progresses, the viscosity of the system increases, making stirring operations such as dispersing monomers difficult, but before the viscosity of the polymerization system begins to rise, add 3 to 4 ml of aqueous ammonia (28%) dropwise. When the pH of the system was maintained at 8.7 to 9.0, the viscosity of the polymerization system increased only slightly and the monomers were well dispersed and stirred. The resulting ultrafine particle polymer latex is a transparent, slightly viscous colloidal dispersion that appears blue-white to reflected light and yellow-red to transmitted light, and its light transmittance measured by a spectrophotometer is It was 55% (800mmμ 1cm thick).
The viscosity of the polymer latex is 660 centipoise when the spindle rotation speed is 6 rpm using a B-type rotational viscometer.
It was 600 centipoise at 60 rpm.

ポリマーラテツクスの粒子径は10-2%以下に希
釈したポリマーラテツクス分散液を親水化処理し
たカーボン支持膜上に噴霧して、電子染色後で倍
率20000倍の電子顕微鏡写真から求めた結果168±
7Å(0.0168μ)であつた。
The particle size of the polymer latex was determined by spraying a polymer latex dispersion diluted to 10 -2 % or less onto a hydrophilized carbon support membrane, and using an electron microscope photograph at a magnification of 20,000 times after electron staining168 ±
It was 7 Å (0.0168 μ).

実施例 2 実施例1においてアンモニア水を添加してPH
8.7〜9.0に保つて粘度の上昇を抑制するかわり
に、粘度低下剤として10g/dl濃度のイミドビス
硫酸二アンモニウム水溶液を水媒体400mlに対し
て5ml添加した場合は、生成ポリマーラテツクス
のB型粘度計による粘度はスピンドル回転数
60rpmで2600センチポイズであつた。上述の粘度
低下剤を10ml添加した場合は粘度の低下作用は著
しく重合完了時点までは非常に粘度が低く十分な
流動性を保持していたが経時的に粘度が上昇して
きて1ケ月以上の放置によつて流動性を失なつて
ペースト状となつた。(透明状は保持している) 生成ポリマーラテツクスの外観は実施例1の場
合と同じで透明性のあるコロイド分散液で800m
μの光透過率は50%であつた。またポリマーラテ
ツクスのPH値は2.7〜3.5であつた。
Example 2 In Example 1, ammonia water was added to adjust the pH.
Instead of maintaining the viscosity at 8.7 to 9.0 to suppress the increase in viscosity, if 5 ml of imidobis diammonium sulfate aqueous solution with a concentration of 10 g/dl was added to 400 ml of the aqueous medium as a viscosity reducing agent, the B-type viscosity of the produced polymer latex The viscosity measured by the meter is the spindle rotation speed.
It was 2600 centipoise at 60 rpm. When 10 ml of the above-mentioned viscosity reducing agent was added, the viscosity was significantly lowered until the polymerization was completed, and the viscosity was very low and maintained sufficient fluidity, but the viscosity increased over time and the product was left unused for more than a month. The liquid lost its fluidity and became paste-like. (The transparent state is maintained.) The appearance of the produced polymer latex is the same as in Example 1, and it is a transparent colloidal dispersion.
The light transmittance of μ was 50%. Moreover, the PH value of the polymer latex was 2.7 to 3.5.

次にイミドビス硫酸二アンモニウムと同族のイ
ミドビス硫酸三ナトリウム塩の10g/dl水溶液を
8ml添加した場合は、重合系のPH値は8〜9で生
成ポリマーラテツクスの粘度はスピンドル回転数
60rpmで2900センチポイズであつた。
Next, when 8 ml of a 10 g/dl aqueous solution of diammonium imidobis sulfate and trisodium imidobis sulfate, which is homologous to imidobis sulfate, is added, the pH value of the polymerization system is 8 to 9, and the viscosity of the produced polymer latex is
It was 2900 centipoise at 60 rpm.

また、イミドビス硫酸塩の水溶液を重合開始後
に添加するかわりに、イミドビス硫酸二アンモニ
ウム塩の結晶1.20gを重合開始前に添加しておい
て重合を行なつても重合速度と粒子径には影響が
なくかきまぜ困難などの不都合もなく透明性のあ
る超微粒子ポリマーラテツクスが生成した(800
mμの光透過率55%)。生成ラテツクスのB型粘
度計による粘度は60rpmで1004センチポイズで重
合系のPHは3.0であつた。
Furthermore, instead of adding an aqueous solution of imidobis sulfate after the start of polymerization, adding 1.20 g of imidobis sulfate diammonium salt crystals before starting polymerization will not affect the polymerization rate and particle size. A transparent ultrafine particle polymer latex was produced without any inconvenience such as difficulty in stirring (800
(light transmittance of mμ 55%). The viscosity of the produced latex measured by a B-type viscometer was 1004 centipoise at 60 rpm, and the pH of the polymerization system was 3.0.

実施例 3 実施例1と同様の重合方法と重合条件のもと
で、アンモニア水を添加して粘度を低下させるか
わりに粘度低下剤として塩化カリウムの結晶1.0
gを重合開始前に添加しておいて重合を行なつた
ところ、粘度の上昇はわずかで、かきまぜ困難な
どの不都合はなく25分で重合が完了し透明性のあ
る(800mμの透過率58%)低粘性の超微粒子ポ
リマーラテツクスが得られた。この場合のB型粘
度計による60rpmでの粘度は514センチポイズで
あつた。また同様に粘度低下剤として塩化カリウ
ムの結晶1.50gを重合開始前に添加しておき重合
を行なつたところ塩化カリウム1g添加した場合
よりも粘度は一層低く良好なかきまぜ状態で重合
が行なわれたが重合完了後経時的に粘度は上昇し
てきて長期間の放置によりペースト状となつて流
動性を失なつた。
Example 3 Under the same polymerization method and polymerization conditions as in Example 1, 1.0% potassium chloride crystals were added as a viscosity reducing agent instead of adding aqueous ammonia to reduce the viscosity.
When polymerization was carried out with the addition of 50 g before the start of polymerization, there was only a slight increase in viscosity, there were no inconveniences such as difficulty in stirring, and the polymerization was completed in 25 minutes, resulting in a transparent product (transmittance of 58% at 800 mμ). ) A low viscosity ultrafine particle polymer latex was obtained. In this case, the viscosity at 60 rpm measured by a B-type viscometer was 514 centipoise. Similarly, when 1.50 g of potassium chloride crystals were added as a viscosity reducing agent before the polymerization started, the viscosity was lower than when 1 g of potassium chloride was added, and the polymerization was carried out with good stirring. However, the viscosity increased over time after the polymerization was completed, and when left for a long period of time, it became paste-like and lost fluidity.

比較例 1 実施例1〜3においてアンモニア水もしくはイ
オン性電解質からなる粘度低下剤を用いないでそ
のまま重合を行なつたところ、重合の経過ととも
に、重合系の粘度が急速に上昇して、高粘性の半
透明なゲル状とり、全単量体量の約1/2の添加の
時点で実質的に均一な撹拌が不可能となり、連続
的に滴下されつつある単量体は、ゲル状の相の上
部に分離して重合が不可能となつた。
Comparative Example 1 In Examples 1 to 3, when polymerization was carried out without using a viscosity reducing agent consisting of ammonia water or an ionic electrolyte, the viscosity of the polymerization system rapidly increased as the polymerization progressed, resulting in a high viscosity. When approximately 1/2 of the total amount of monomer is added, it becomes impossible to stir substantially uniformly, and the monomer that is being continuously added drops into a gel-like phase. Separation occurred on the upper part of the membrane, making polymerization impossible.

実施例 4 ガス導入管、還流冷却器、PH測定用複合ガラス
電極およびかきまぜ装置を備えた1000mlの4つ口
セパラブルフラスコを用い水媒体100mlに対して
0.50gのラウリル硫酸ナトリウム(水媒体400ml
では2.0g)と粘度低下剤のリン酸二アンモニウ
ム0.125g(400mlの水媒体中では0.50g)を溶か
した蒸留水400ml中にアクリル酸エチルとメタク
リル酸メチルの組成比が7:3の混合単量体50ml
を乳化分散させ、一定のかきまぜ状態
(300rpm)に保ちながら硫酸銅(系中濃度2.5×
10-5モル/)を促進剤とした過硫酸カリウム〜
チオ硫酸ナトリウムの等モル量からなるレドツク
ス開始剤(系中濃度1.0×10-3モル/)で60
℃、PH2〜4で重合を開始させた。ついで重合熱
による著しい昇温を防ぐために250mlのアクリル
酸エチルとメタクリル酸メチルからなる混合単量
体(組成比7:3)を滴下しながら共重合を行な
つた。重合は60分以内に完了し、重合完了時まで
重合系の粘度は低く十分に流動性を保持し、かき
まぜ困難などの不都合はなく透明性の超微粒子ポ
リマーラテツクスが生成した。(800mμの光透過
率40.5%)B型回転粘度計による粘度はスピンド
ル回転数60rpmで77センチポイズであつた。また
ラテツクスのPH値は7であつた。得られたアクリ
ル酸エチル〜メタクリル酸メチル共重合体ラテツ
クス30mlを11×15cm四方のガラス板上に流延させ
室温で自然通風下で乾燥すると透明性の良い光沢
に富んだラテツクス皮膜が生成した。
Example 4 For 100 ml of aqueous medium using a 1000 ml four-necked separable flask equipped with a gas introduction tube, a reflux condenser, a composite glass electrode for PH measurement, and a stirring device.
0.50g sodium lauryl sulfate (400ml water medium)
A mixture of ethyl acrylate and methyl methacrylate with a composition ratio of 7:3 was added to 400 ml of distilled water in which 2.0 g of ethyl acrylate and methyl methacrylate were dissolved and 0.125 g of diammonium phosphate (0.125 g in 400 ml of aqueous medium) as a viscosity reducing agent (0.50 g in 400 ml of aqueous medium) was dissolved. volume 50ml
Copper sulfate (concentration in the system 2.5×
Potassium persulfate with 10 -5 mol/) as accelerator
60 with a redox initiator consisting of an equimolar amount of sodium thiosulfate (concentration in the system: 1.0 x 10 -3 mol/).
Polymerization was initiated at ℃ and pH 2-4. Next, copolymerization was carried out while dropping 250 ml of a mixed monomer consisting of ethyl acrylate and methyl methacrylate (composition ratio 7:3) to prevent a significant rise in temperature due to polymerization heat. The polymerization was completed within 60 minutes, and the viscosity of the polymerization system was low until the completion of the polymerization, maintaining sufficient fluidity, and a transparent ultrafine particle polymer latex was produced without any inconveniences such as difficulty in stirring. (Light transmittance at 800 mμ: 40.5%) The viscosity measured by a B-type rotational viscometer was 77 centipoise at a spindle rotation speed of 60 rpm. The pH value of the latex was 7. 30 ml of the obtained ethyl acrylate-methyl methacrylate copolymer latex was cast onto a 11 x 15 cm square glass plate and dried at room temperature under natural ventilation, producing a highly transparent and glossy latex film.

比較例 2 実施例4において粘度の低下剤として作用する
リン酸二アンモニウムの結晶0.50gを添加しない
で共重合を行なつたところ、重合開始後20分位か
ら粘度が高くなつて全単量体量の1/2の150ml滴下
した段階で高速でかきまぜても単量体はラテツク
ス相から分離した状態となり、重合継続が困難と
なり中止せざるを得なかつた。この場合生成した
ラテツクスの粘度はスピンドル回転数60rpmで
8960センチポイズ、6rpmでは66000センチポイズ
のゲル状であつた。
Comparative Example 2 In Example 4, when copolymerization was carried out without adding 0.50 g of diammonium phosphate crystals that acted as a viscosity reducing agent, the viscosity increased from about 20 minutes after the start of polymerization and all monomers were absorbed. When 150 ml, which is half the amount, was added dropwise, the monomers separated from the latex phase even when stirred at high speed, making it difficult to continue the polymerization and had to be discontinued. In this case, the viscosity of the latex produced is at a spindle rotation speed of 60 rpm.
It was gel-like with 8960 centipoise and 66000 centipoise at 6 rpm.

比較例 3 実施例1において乳化剤としてノニオン系界面
活性剤のポリオキシエチレンノニルフエニルエー
テル(エチレンオキシド50モル付加)を用いた場
合は、生成ラテツクスは白色不透明となり生成ポ
リマーラテツクスの粒子径は2026±221Åとかな
り大きくなつた。
Comparative Example 3 In Example 1, when polyoxyethylene nonyl phenyl ether (added with 50 moles of ethylene oxide), a nonionic surfactant, was used as the emulsifier, the latex produced was white and opaque, and the particle size of the polymer latex produced was 2026±. It became quite large at 221 Å.

比較例 4 実施例1と5においてラウリル硫酸ナトリウム
使用量を水媒体100mlに対して0.2g(水媒体400
mlに対して0.8g)用いた場合は、生成ポリマー
ラテツクスは白色不透明となり、電子顕微鏡によ
る粒子径は706±58Åであつた。
Comparative Example 4 In Examples 1 and 5, the amount of sodium lauryl sulfate used was 0.2 g per 100 ml of aqueous medium (400 ml of aqueous medium).
When 0.8 g/ml was used, the resulting polymer latex was white and opaque, and the particle size measured by electron microscopy was 706±58 Å.

比較例 5 実施例1において重合開始時に重合系のPHをア
ンモニア水などで7以下のアルカリ性に保持した
場合は、重合の初期から生成ポリマーラテツクス
は白色不透明となつて得られたポリマーラテツク
スの粒子径は753±63Åとなつた。また重合開始
前に結晶体のピロリン酸ナトリウムや酢酸ナトリ
ウムなどの弱酸−強塩基からなる塩を粘度低下剤
として添加した場合も同様で生成ラテツクスは白
色不透明となつた。しかしこれらの塩を10g/dl
位の濃度の水溶液として重合開始後ポリマー粒子
が生成した後に添加した場合は透明性のある超微
粒子状のポリマーラテツクスが生成し有効な減粘
効果を示した。
Comparative Example 5 In Example 1, when the pH of the polymerization system was maintained at an alkaline level of 7 or less using aqueous ammonia or the like at the beginning of polymerization, the polymer latex produced became white and opaque from the early stage of polymerization, and the resulting polymer latex The particle size was 753±63 Å. Similarly, when a salt consisting of a weak acid and a strong base such as crystalline sodium pyrophosphate or sodium acetate was added as a viscosity reducing agent before the start of polymerization, the resulting latex became white and opaque. However, 10g/dl of these salts
When it was added as an aqueous solution with a concentration of about 100 mL after polymer particles were formed after polymerization had started, a transparent ultrafine particle-like polymer latex was produced and exhibited an effective viscosity-reducing effect.

実施例 5 実施例4と同じ方法と重合条件において組成比
1:1のメタクリル酸メチルとアクリル酸ブチル
の共重合を行なつた結果粘度の上昇はなく、光透
過率16%、回転粘度計による粘度135センチポイ
ズの半透明の共重合体ラテツクスが得られた。
Example 5 Copolymerization of methyl methacrylate and butyl acrylate at a composition ratio of 1:1 was carried out using the same method and polymerization conditions as in Example 4. As a result, there was no increase in viscosity, and the light transmittance was 16%, as measured by a rotational viscometer. A translucent copolymer latex with a viscosity of 135 centipoise was obtained.

実施例 6 実施例4と同じ方法と重合条件において酢酸ビ
ニルの重合を行なつたところ、生成ラテツクスの
粘度の上昇はわずかで、B型回転粘度計によるス
ピンドル60rpmでの粘度は172センチポイズであ
り800mμの光透過率39%の超微粒子ポリマーラ
テツクスが生成した。生成ポリマーラテツクスは
室温で造膜性があり、自然乾燥によつて比較的硬
い透明で光沢性のある皮膜が生成した。
Example 6 When vinyl acetate was polymerized using the same method and polymerization conditions as in Example 4, there was only a slight increase in the viscosity of the produced latex, and the viscosity measured by a B-type rotational viscometer at a spindle of 60 rpm was 172 centipoise and 800 mμ. An ultrafine polymer latex with a light transmittance of 39% was produced. The resulting polymer latex had film-forming properties at room temperature, and a relatively hard, transparent, and glossy film was formed by air drying.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリル酸低級アルキルエステル、メタクリ
ル酸低級アルキルエステル、および酢酸ビニルか
らなる群から選ばれた少なくとも1種の親水性単
量体と共重合可能な疎水性単重体と前記親水性単
重体とからなる単重体混合物を、過硫酸塩とスル
ホキシ化合物とからなるレドツクス重合開始剤、
遷移金属イオンからなるレドツクス重合促進剤、
水媒体100重量部に対して0.3〜4重量部のアニオ
ン系界面活性剤、および低粘度化有効範囲量のイ
オン性電解質からなる粘度低下剤の存在下に、少
なくとも重合開始時のPHを2〜7に保持しながら
水質媒体中で乳化重合せしめることを特徴とする
超粒子ポリマーラテツクスの製造方法。
1 Consisting of a hydrophobic monomer copolymerizable with at least one hydrophilic monomer selected from the group consisting of acrylic acid lower alkyl ester, methacrylic acid lower alkyl ester, and vinyl acetate, and the hydrophilic monomer. A redox polymerization initiator consisting of a persulfate and a sulfoxy compound,
Redox polymerization accelerator consisting of transition metal ions,
In the presence of a viscosity reducing agent consisting of an anionic surfactant in an amount of 0.3 to 4 parts by weight per 100 parts by weight of the aqueous medium and an ionic electrolyte in an effective amount for reducing viscosity, the pH at the start of polymerization is at least 2 to 2. 7. A method for producing an ultra-particle polymer latex, which comprises carrying out emulsion polymerization in an aqueous medium while maintaining a temperature of 7.
JP1077378A 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization Granted JPS54103497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077378A JPS54103497A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077378A JPS54103497A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Publications (2)

Publication Number Publication Date
JPS54103497A JPS54103497A (en) 1979-08-14
JPS628441B2 true JPS628441B2 (en) 1987-02-23

Family

ID=11759640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077378A Granted JPS54103497A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Country Status (1)

Country Link
JP (1) JPS54103497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368997U (en) * 1989-10-26 1991-07-08

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226509A (en) * 1984-04-25 1985-11-11 Nippon Carbide Ind Co Ltd Preparation of vinyl acetate based emulsion
US4812510A (en) * 1986-04-17 1989-03-14 The Glidden Company Small particle size latex based on vinyl acetate polymers
DE4407069A1 (en) * 1994-03-03 1995-09-07 Basf Ag Molding compound
ATE493446T1 (en) 2006-07-05 2011-01-15 Solvay METHOD FOR PRODUCING A LATEX OF A VINYL CHLORIDE POLYMER
JP6233886B2 (en) * 2014-08-06 2017-11-22 関西ペイント株式会社 Hydrophilic coating composition and aluminum fin material for heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061484A (en) * 1973-10-03 1975-05-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061484A (en) * 1973-10-03 1975-05-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368997U (en) * 1989-10-26 1991-07-08

Also Published As

Publication number Publication date
JPS54103497A (en) 1979-08-14

Similar Documents

Publication Publication Date Title
US5496882A (en) Aqueous polymer dispersion
JP4880853B2 (en) Polymerizable compounds and uses thereof
IE57180B1 (en) Crotonate-containing copolymers,processes for their preparation and their use as thickeners in aqueous systems and as sizing agents
JPS61136502A (en) Emulsifying agent for polymerization
JPS5838445B2 (en) Acrylate Bunsan Eki no Seihou
EP0120265A1 (en) High-solid self-adhesive and process for the production thereof
JPH0250923B2 (en)
JPS628441B2 (en)
EP0784060B1 (en) Copolymer latex and process for producing the same
JPS6254806B2 (en)
JPS6334196B2 (en)
JP3429062B2 (en) Method for producing copolymer latex for paper coating and composition for paper coating
JP3508171B2 (en) Method for producing vinyl chloride resin
JP3153570B2 (en) Method for producing copolymer latex
JP2001049038A (en) Copolymer latex and paper coating composition
JPS63175057A (en) Vinyl chloride based polymer composition
JPH0445102A (en) Production of emulsion polymer and emulsion polymer obtained by the same production
JP4228203B2 (en) Method for producing copolymer latex
JPS6011987B2 (en) Method for producing Sachin White aqueous dispersion
JPS6157439B2 (en)
JP3417583B2 (en) Method for producing high acid value acrylic resin
JPH02184332A (en) Dispersant
JPS6353202B2 (en)
JPS60203603A (en) Preparation of emulsified polymer in high concentration
JPH10139801A (en) Polymerization of vinyl chloride