JP3508171B2 - Method for producing vinyl chloride resin - Google Patents

Method for producing vinyl chloride resin

Info

Publication number
JP3508171B2
JP3508171B2 JP20537993A JP20537993A JP3508171B2 JP 3508171 B2 JP3508171 B2 JP 3508171B2 JP 20537993 A JP20537993 A JP 20537993A JP 20537993 A JP20537993 A JP 20537993A JP 3508171 B2 JP3508171 B2 JP 3508171B2
Authority
JP
Japan
Prior art keywords
particle size
vinyl chloride
size distribution
latex
chloride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20537993A
Other languages
Japanese (ja)
Other versions
JPH0753627A (en
Inventor
敦 藤野
直悦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20537993A priority Critical patent/JP3508171B2/en
Publication of JPH0753627A publication Critical patent/JPH0753627A/en
Application granted granted Critical
Publication of JP3508171B2 publication Critical patent/JP3508171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乾燥粒子の充填密度が
高く、かつこれと可塑剤等とを配合することによりペー
スト加工法による床材・壁紙等の製造に適した流動性の
良好なプラスチゾルを与えることができる特にペースト
用に好適な塩化ビニル系樹脂の製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention has a high packing density of dry particles, and by mixing this with a plasticizer and the like, it has good fluidity suitable for the production of flooring materials, wallpaper, etc. by a paste processing method. The present invention relates to a method for producing a vinyl chloride resin, which is capable of giving a plastisol and is particularly suitable for a paste.

【0002】[0002]

【従来の技術】ペースト用塩化ビニル系樹脂は、これを
可塑剤等の配合剤と混合したプラスチゾル(以下「ゾ
ル」と略すことがある)の形で、塗布(コーティン
グ)、浸漬(ディッピング)、あるいはスプレー塗装そ
の他の加工方法により成形・加工が行われている。中で
も、床材・壁紙等の製造分野においては、ゾルをナイフ
・コーティング等の方法で基材上に塗布して加工を行う
方法が広く用いられており、その生産速度の向上のた
め、プラスチゾルの低粘度化、とくに102sec-1以上
の、いわゆる「高剪断速度領域」での粘度を低くする事
が望まれている。また、自動車の防錆用のボディ下塗り
(アンダーコート)等にはスプレー塗装法が多用されて
いるが、この際の噴霧の安定化のためにも、高剪断速度
領域での低粘度化が求められている。
2. Description of the Related Art A vinyl chloride resin for paste is applied in a form of plastisol (hereinafter sometimes abbreviated as "sol") in which it is mixed with a compounding agent such as a plasticizer, coating (immersion), dipping (dipping), Alternatively, molding and processing are performed by spray coating or other processing methods. Among them, in the field of manufacturing flooring materials, wallpaper, etc., a method of coating sol on a substrate by a method such as knife coating and processing is widely used, and in order to improve its production speed, plastisol It is desired to lower the viscosity, particularly to lower the viscosity in the so-called "high shear rate region" of 10 2 sec -1 or more. In addition, a spray coating method is often used for the undercoat of the body for automobile rust prevention, etc., but in order to stabilize the spray at this time, lower viscosity in the high shear rate region is required. Has been.

【0003】これまでに、プラスチゾルの流動性を改良
する目的で、二つの集団の粒子を含有する、即ち、粒子
径とその個数頻度との関係で表された粒子径分布のグラ
フ(以下「粒径分布」という)において個数頻度が2点
の極大値を有する塩化ビニル系重合体ラテックスを噴霧
乾燥する方法が、特公昭61−8843号公報に開示さ
れている。しかしながら、該方法で得られた塩化ビニル
系樹脂と、例えば該樹脂100重量部に対して40重量
部の可塑剤を混合して得られるプラスチゾルは、高剪断
速度領域での粘度が十分低くはならず、加工速度の向上
のために一層の低粘度化が望まれていた。
Up to now, in order to improve the fluidity of plastisol, a graph of particle size distribution (hereinafter referred to as "particles") containing two groups of particles, that is, the relationship between the particle size and the number frequency thereof is shown. Japanese Patent Publication No. Sho 61-8843 discloses a method of spray-drying a vinyl chloride polymer latex having a maximum number frequency of 2 points in the "diameter distribution"). However, the plastisol obtained by mixing the vinyl chloride resin obtained by this method with, for example, 40 parts by weight of a plasticizer with respect to 100 parts by weight of the resin does not have a sufficiently low viscosity in the high shear rate region. Therefore, it has been desired to further reduce the viscosity in order to improve the processing speed.

【0004】[0004]

【発明が解決しようとする課題】乾燥粒子の充填密度が
高く、かつ塗布、スプレー等の加工法において高剪断速
度領域においても粘度が低いプラスチゾルを与えること
ができる塩化ビニル系樹脂の製造方法を提供することが
本発明の課題である。
PROBLEM TO BE SOLVED BY THE INVENTION A process for producing a vinyl chloride resin which has a high packing density of dry particles and can give a plastisol having a low viscosity even in a high shear rate region in a processing method such as coating and spraying. This is the subject of the present invention.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高剪断速
度領域で粘度が低く、加工が容易なプラスチゾルを与え
ることのできる塩化ビニル系樹脂の製造方法について鋭
意検討した結果、特定の粒径分布を示す塩化ビニル系重
合体ラテックスを噴霧乾燥することにより、乾燥粒子の
密度(凝集充填密度)が高い塩化ビニル系樹脂が得ら
れ、この樹脂から、可塑剤量が少ない配合においても、
低粘度のプラスチゾルが調製できることを見出し、本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies on a method for producing a vinyl chloride resin capable of giving a plastisol having a low viscosity in a high shear rate region and being easily processed. By spray-drying a vinyl chloride polymer latex exhibiting a diameter distribution, a vinyl chloride resin having a high density of dry particles (aggregation packing density) can be obtained.
The inventors have found that a plastisol having a low viscosity can be prepared, and completed the present invention.

【0006】即ち、本発明の要旨は、粒径分布において
個数頻度が3〜6点の極大値を有する塩化ビニル系重合
体ラテックス(以下「多分散粒径分布ラテックス」とい
う)を、二流体ノズルを用いて、装置出口での乾燥気流
温度が50〜70℃となるように噴霧乾燥することを特
徴とする塩化ビニル系樹脂の製造方法、に存する。以下
に本発明につき詳細に説明する。なお、本明細書にいう
「極大値」とは、粒子径とその個数頻度との関係で表さ
れた粒子径分布のグラフ、即ち「粒径分布」上で個数頻
度が示すもののことである。
That is, the gist of the present invention is to use a vinyl chloride polymer latex (hereinafter referred to as "polydispersed particle size distribution latex") having a maximum number frequency of 3 to 6 in the particle size distribution as a two-fluid nozzle. Using the dry air flow at the device outlet
A method for producing a vinyl chloride resin, which comprises spray-drying at a temperature of 50 to 70 ° C. The present invention will be described in detail below. The “maximum value” referred to in the present specification is a graph of the particle size distribution represented by the relationship between the particle size and the number frequency thereof, that is, what is indicated by the number frequency on the “particle size distribution”.

【0007】粒径分布の測定は、粒子径に関して少なく
とも2桁の有効数字が得られるような方法を用いるのが
よく、また個数頻度を粒子径に対してプロットした粒子
径分布のグラフにおいても、粒子径について2桁以上の
有効数字を与えるような精度で粒子径を横軸として対数
目盛で刻んだものが望ましい。このような条件を満たす
測定方法としては、例えばレーザー回折法、光遠心沈降
法等が挙げられる。
The particle size distribution is preferably measured by a method in which an effective number of at least two digits is obtained for the particle size, and also in the graph of the particle size distribution in which the number frequency is plotted against the particle size. It is desirable that the particle size is engraved on a logarithmic scale with the horizontal axis as the accuracy so as to give an effective number of two digits or more. Examples of the measuring method satisfying such conditions include a laser diffraction method and a photo-centrifugal sedimentation method.

【0008】本発明方法に用いる多分散粒径分布ラテッ
クスは、例えば以下の方法で調製される。 塩化ビニル単量体または塩化ビニル単量体とこれと共
重合可能なコモノマーとの混合物「以下「塩化ビニル系
単量体」と総称する)を水性媒体中で、乳化剤の存在下
で水溶性重合開始剤を用いて重合させる方法(乳化重合
法)によって、あるいは塩化ビニル系単量体を乳化剤の
存在下、ホモジナイザーにより均質化処理を加えて微分
散させた上で、油溶性重合開始剤を用いて重合させる方
法(微細懸濁重合法)によって、単一の極大値を有する
粒径分布を示す塩化ビニル系重合体ラテックスを製造す
る。重合条件を変えることにより、極大値を与える粒子
径の異なる塩化ビニル系重合ラテックスを数種類調製
し、これらのラテックスを混合して多分散粒径分布ラテ
ックスを調製する。 上記で製造した単一の極大値を有する粒径分布を示
す塩化ビニル系重合体ラテックスを種子重合体として更
に塩化ビニル系単量体を乳化重合する、いわゆる播種重
合によって二点の極大値を有する粒径分布の塩化ビニル
系重合体ラテックスを製造し、これに極大値を与える粒
子径が相互に異なるラテックスを1種類もしくは2種類
以上混合して多分散粒径分布ラテックスを調製する。
The polydisperse particle size distribution latex used in the method of the present invention is prepared, for example, by the following method. Water-soluble polymerization of a vinyl chloride monomer or a mixture of a vinyl chloride monomer and a comonomer copolymerizable therewith (hereinafter collectively referred to as "vinyl chloride monomer") in an aqueous medium in the presence of an emulsifier. Polymerization using an initiator (emulsion polymerization method) or homogenization of vinyl chloride monomer with a homogenizer in the presence of an emulsifier to finely disperse the oil-soluble polymerization initiator A vinyl chloride polymer latex showing a particle size distribution having a single maximum value is produced by a polymerization method (fine suspension polymerization method). By changing the polymerization conditions, several kinds of vinyl chloride polymerized latexes having different particle diameters that give maximum values are prepared, and these latexes are mixed to prepare a polydisperse particle size distribution latex. The vinyl chloride polymer latex showing a particle size distribution having a single maximum value produced above is further subjected to emulsion polymerization of a vinyl chloride monomer using a seed polymer, which has two maximum values by so-called seed polymerization. A vinyl chloride polymer latex having a particle size distribution is produced, and one or more kinds of latexes having mutually different particle sizes giving a maximum value are mixed to prepare a polydisperse particle size distribution latex.

【0009】塩化ビニル単量体と共重合可能なコモノマ
ーとしては、酢酸ビニル、プロピオン酸ビニル、ステア
リン酸ビニル等のビニルエステル、アクリル酸、メタク
リル酸、イタコン酸などの一価不飽和酸、これらの一価
不飽和酸のアルキルエステル、メチルビニルエーテル、
エチルビニルエーテル、オクチルビニルエーテル、ラウ
リルビニルエーテル等のビニルエーテル、マレイン酸、
フマル酸などの二価不飽和酸、これらの二価不飽和酸の
アルキルエステル、塩化ビニリデン等のハロゲン化ビニ
リデン、不飽和ニトリルなどの1種または2種以上の混
合物が挙げられる。
Comonomers which can be copolymerized with vinyl chloride monomers include vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate, monounsaturated acids such as acrylic acid, methacrylic acid and itaconic acid. Alkyl ester of monounsaturated acid, methyl vinyl ether,
Vinyl ether such as ethyl vinyl ether, octyl vinyl ether, lauryl vinyl ether, maleic acid,
Examples thereof include diunsaturated acids such as fumaric acid, alkyl esters of these divalent unsaturated acids, vinylidene halides such as vinylidene chloride and unsaturated nitriles, and one or more mixtures thereof.

【0010】重合開始剤としては、乳化重合の場合は、
例えば過硫酸塩(ナトリウム塩、カリウム塩、アンモニ
ウム塩等)、過酸化水素等の水溶性過酸化物、またはこ
れの水溶性過酸化物と水溶性還元剤(例えば亜硫酸ナト
リウム、ピロ亜硫酸ナトリウム、亜硫酸水素ナトリウ
ム、アスコルビン酸、ナトリウムホルムアルデヒドスル
ホキシレートなど)とからなる水溶性レドックス開始
剤、また微細懸濁重合の場合は、アゾビスイソブチロニ
トリル、アゾビス−2,4−ジメチルバレロニトリル、
ラウロイルペルオキシド、t−ブチルペルオキシピバレ
ート等の単量体可溶性(油溶性)開始剤、またはこれら
の油溶性開始剤と前記の水溶性還元剤との組合せからな
るレドックス開始剤が挙げられる。
As the polymerization initiator, in the case of emulsion polymerization,
For example, persulfates (sodium salts, potassium salts, ammonium salts, etc.), water-soluble peroxides such as hydrogen peroxide, or water-soluble peroxides thereof and water-soluble reducing agents (eg sodium sulfite, sodium pyrosulfite, sulfite). Water-soluble redox initiator consisting of sodium hydrogen, ascorbic acid, sodium formaldehyde sulfoxylate, etc., and in the case of fine suspension polymerization, azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile,
Examples thereof include monomer-soluble (oil-soluble) initiators such as lauroyl peroxide and t-butylperoxypivalate, or redox initiators composed of a combination of these oil-soluble initiators and the above water-soluble reducing agent.

【0011】また、乳化剤としては、例えば高級アルコ
ール硫酸エステル塩(アルカリ金属塩、アンモニウム
塩)、アルキルベンゼンスルホン酸塩(アルカリ金属
塩、アンモニウム塩)、高級脂肪酸塩(アルカリ金属
塩、アンモニウム塩)、その他のアニオン系界面活性剤
が挙げられる。これらの界面活性剤は1種類を用いても
よいし、2種以上の併用も可能である。また、ノニオン
系界面活性剤を併用してもよい。
As the emulsifier, for example, higher alcohol sulfate ester salt (alkali metal salt, ammonium salt), alkylbenzene sulfonate (alkali metal salt, ammonium salt), higher fatty acid salt (alkali metal salt, ammonium salt), etc. Anionic surfactants of These surfactants may be used alone or in combination of two or more. Moreover, you may use together a nonionic surfactant.

【0012】さらに、ラテックスの製造においては、重
合度調整剤その他の助剤類を用いてもよい。重合度調整
剤としては、例えばトリクロルエチレン、四塩化炭素、
2−メルカプトエタノール、オクチルメルカプタン等の
連鎖移動剤、フタル酸ジアリル、イソシアヌル酸トリア
リル、エチレングリコールジアクリレート、トリメチロ
ールプロパントリメタクリレートなどの架橋剤が挙げら
れる。
Further, in the production of latex, a polymerization degree adjusting agent and other auxiliaries may be used. As the polymerization degree adjusting agent, for example, trichloroethylene, carbon tetrachloride,
Examples thereof include chain transfer agents such as 2-mercaptoethanol and octyl mercaptan, and crosslinking agents such as diallyl phthalate, triallyl isocyanurate, ethylene glycol diacrylate and trimethylolpropane trimethacrylate.

【0013】他の助剤類としては、上記以外に、例えば
レドックス開始剤の活性化剤として作用する塩化第二
銅、硫酸第一鉄、硝酸第二ニッケル等の水溶性遷移金属
塩、あるいは一又は二水素リン酸アルカリ金属塩、フタ
ル酸水素カリウム、炭酸水素ナトリウムなどのpH調整
剤等が挙げられる。多分散粒径分布ラテックスは、粒径
分布において、個数頻度が3〜6点の極大値を与えるも
のであるが、極大値の点数としては、3〜4点、特に3
点であるのが、多分散粒径分布ラテックスの調製の作業
性から好ましい。また、極大値が7点以上のラテックス
については、一般にはその調製の煩雑さが増大する程に
は乾燥粒子の充填効率は向上しないので、工業的実施に
は不向きである。
In addition to the above, other auxiliaries include, for example, water-soluble transition metal salts such as cupric chloride, ferrous sulfate and nickel (II) nitrate which act as activators of redox initiators, or Alternatively, a pH adjusting agent such as an alkali metal dihydrogen phosphate, potassium hydrogen phthalate, or sodium hydrogen carbonate can be used. The polydisperse particle size distribution latex gives a maximum value with a number frequency of 3 to 6 points in the particle size distribution, but the maximum value score is 3 to 4 points, especially 3 points.
The point is preferable in terms of workability in preparing the polydisperse particle size distribution latex. Further, with respect to a latex having a maximum value of 7 points or more, generally, the packing efficiency of dry particles does not improve to the extent that the complexity of the preparation increases, and therefore it is not suitable for industrial implementation.

【0014】多分散粒径分布ラテックスの極大値を与え
る粒子径は、特に限定されるものではないが、ラテック
スの安定性の面から、0.05〜10μmの範囲内にあ
るのが好ましく、また複数の極大値を示す粒径分布にお
いては、その分布曲線においてそれぞれの極大が相互に
独立しているようなものが、高剪断速度領域における粘
度がより低くなる傾向となり好ましい。なお、ここでい
う、分布曲線において極大が独立している、とは、粒径
分布において、隣接する2つの極大値間に存在する極小
値が個数頻度(絶対値)で2%以下、好ましくは0.5
%以下であることをいう。
The particle size that gives the maximum value of the polydisperse particle size distribution latex is not particularly limited, but it is preferably in the range of 0.05 to 10 μm from the viewpoint of stability of the latex. In the particle size distribution showing a plurality of maximum values, it is preferable that the respective maximums in the distribution curve are independent of each other because the viscosity in the high shear rate region tends to be lower. It should be noted that the term "independent maximums in the distribution curve" means that the minimum value existing between two adjacent maximum values in the particle size distribution is 2% or less in number frequency (absolute value), preferably 0.5
% Or less.

【0015】3点の極大値を有する多分散粒径分布ラテ
ックス、いわゆる三山粒径分布ラテックスの場合、極大
値を与える粒子径が0.05〜3μmの範囲にあるのが
よく、更に極大値を与える3つの粒子径がそれぞれ0.
1μm、0.4μm及び1.3μmを中心値として各々
±20%の範囲内にあるのが、噴霧乾燥時に粒子の充填
効率が高くなる傾向となり好ましい。
In the case of a polydisperse particle size distribution latex having three maximum values, that is, a so-called three-peak particle size distribution latex, the particle size giving the maximum value is preferably in the range of 0.05 to 3 μm, and the maximum value is further increased. The three particle sizes given are 0.
It is preferable that the center values of 1 μm, 0.4 μm, and 1.3 μm are within ± 20%, because the packing efficiency of particles tends to be high during spray drying.

【0016】また、多分散粒径分布ラテックスは、その
固形分濃度が30〜70重量%の範囲内にあるのが望ま
しい。固形分濃度は多分散粒径分布ラテックス調製前
の、前述の及びのラテックス各々の固形分濃度を例
えば限外濾過等の方法により調整しておいても、また多
分散粒径分布ラテックス調製後に同様にして固形分濃度
を高く調整してもよい。固形分濃度を高くすることによ
り、噴霧乾燥時の水分蒸発量を削減でき、エネルギーの
節約になるとともに、乾燥粒子の空隙率が低下し、より
充填密度の高い粒子を得ることができる。
The polydisperse particle size distribution latex preferably has a solid concentration of 30 to 70% by weight. The solid content concentration is the same as before the preparation of the polydisperse particle size distribution latex, even if the solid content concentration of each of the above-mentioned and latexes is adjusted by, for example, a method such as ultrafiltration. The solid content concentration may be adjusted to be high. By increasing the solid content concentration, the amount of water evaporated during spray drying can be reduced, energy can be saved, and the porosity of the dry particles can be reduced to obtain particles with a higher packing density.

【0017】本発明の噴霧乾燥には、ペースト用塩化ビ
ニル系樹脂の製造に使用される通常の噴霧乾燥装置を用
いることができる。噴霧方法としては、例えば回転円盤
式、圧力ノズル式、二流体ノズル式、等の方法を例示す
ることができるが、中でも二流体ノズルを用いて噴霧乾
燥を行うのが、得られる塩化ビニル系樹脂から調製され
るプラスチゾルの高剪断速度領域での粘度が低くなる傾
向となり、好適である。
In the spray drying of the present invention, a usual spray drying apparatus used for producing a vinyl chloride resin for paste can be used. Examples of the spraying method include a rotating disk type, a pressure nozzle type, a two-fluid nozzle type, and the like. Among them, spray drying using a two-fluid nozzle is a vinyl chloride resin obtained. Is preferable because the plastisol prepared from the above tends to have a low viscosity in the high shear rate region.

【0018】噴霧乾燥時の温度は、通常、乾燥気流の乾
燥装置入口での温度が100〜200℃で、かつ出口温
度が45〜80℃の範囲内とする。特に乾燥気流の乾燥
装置出口での温度を50〜70℃の範囲内になるように
ラテックスの供給速度を調節するのが好ましい。上記の
条件で二流体ノズルによる噴霧乾燥を行った場合、得ら
れる塩化ビニル系樹脂と、この樹脂100重量部に対し
て可塑剤として40重量部のジ−2−エチルヘキシルフ
タレート(DOP)とを配合して調製されるプラスチゾ
ルは、高剪断速度領域での粘度の指標であるシーバース
流出量(測定方法は後述する)が、通常、100秒当た
り100〜180g程度と、良好な流動性を示す傾向と
なる。
The temperature at the time of spray drying is usually such that the temperature of the drying air stream at the inlet of the drying device is 100 to 200 ° C and the temperature of the outlet is 45 to 80 ° C. In particular, it is preferable to adjust the latex supply rate so that the temperature of the drying air stream at the outlet of the drying device is in the range of 50 to 70 ° C. When spray drying with a two-fluid nozzle is performed under the above conditions, the vinyl chloride resin obtained and 40 parts by weight of di-2-ethylhexyl phthalate (DOP) as a plasticizer are mixed with 100 parts by weight of this resin. The plastisol prepared as described above has a tendency to exhibit good fluidity, with a seabass outflow rate (measuring method described later) being an index of viscosity in a high shear rate region being usually about 100 to 180 g per 100 seconds. Become.

【0019】[0019]

【実施例】以下に本発明の具体的態様を実施例を用いて
更に詳細に説明するが、本発明はその要旨を越えないか
ぎり、以下の実施例によって限定されるものではない。
例中の「部」及び「%」は、特記する以外はそれぞれ
「重量部」及び「重量%」を表す。
EXAMPLES Specific embodiments of the present invention will be described below in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.
"Parts" and "%" in the examples mean "parts by weight" and "% by weight", respectively, unless otherwise specified.

【0020】<実施例1(塩化ビニル樹脂Aの製造)> (1)塩化ビニル系重合体ラテックス1の製造 攪拌機を備えた容積300リットルの重合缶に温度54
℃の脱イオン水90kg、過硫酸カリウム10g、ピロ亜
硫酸ナトリウム50g及び初期乳化剤としてラウリル硫
酸ナトリウム18gを仕込み、約20分間攪拌して溶解
させた。次いで重合缶に60kgの塩化ビニル単量体を仕
込み、缶内温度を50℃に調節した。塩化ビニル単量体
の仕込み完了後15分経過してから予め溶解しておいた
0.2%過硫酸カリウム水溶液を重合反応速度が一定に
なるように制御しながら添加し、更に重合率が約15%
に達した時に、別途溶解しておいた10%ラウリル硫酸
ナトリウム水溶液を80ml/10分前後の速度で添加
し、ラウリル硫酸ナトリウムの総添加量が360gにな
るまで続けた。缶内圧力が50℃での塩化ビニル単量体
の飽和圧から1960hPa(2kg/cm2)降下した時に
反応を停止し、未反応塩化ビニル単量体を回収して塩化
ビニル系重合体ラテックスを得た。
<Example 1 (Production of Vinyl Chloride Resin A)> (1) Production of Vinyl Chloride Polymer Latex 1 A polymerization can having a volume of 300 liters equipped with a stirrer and a temperature of 54
90 kg of deionized water at 0 ° C., 10 g of potassium persulfate, 50 g of sodium pyrosulfite and 18 g of sodium lauryl sulfate as an initial emulsifier were charged and dissolved by stirring for about 20 minutes. Then, 60 kg of vinyl chloride monomer was charged into the polymerization vessel, and the temperature inside the vessel was adjusted to 50 ° C. After 15 minutes from the completion of the charging of the vinyl chloride monomer, a 0.2% potassium persulfate aqueous solution previously dissolved was added while controlling the polymerization reaction rate to be constant, and the polymerization rate was about 15%
When the temperature reached 1, the separately dissolved 10% aqueous sodium lauryl sulfate solution was added at a rate of about 80 ml / 10 minutes, and the addition was continued until the total amount of sodium lauryl sulfate added reached 360 g. When the pressure inside the can dropped to 1960 hPa (2 kg / cm 2 ) from the saturation pressure of the vinyl chloride monomer at 50 ° C., the reaction was stopped and the unreacted vinyl chloride monomer was recovered to give a vinyl chloride polymer latex. Obtained.

【0021】ラテックスは、粒径分布において極大値を
与える粒子径が0.43μmのシャープな単分散粒子を
含み、安定性は良好であった。なお、ラテックス中の塩
化ビニル系重合体粒子の粒径分布は、レーザー回折式粒
径分布測定装置(堀場製作所(株)製LA−700)を
用いて測定した。その測定誤差は、通常、測定値に対し
て10%以下である。また、該機器の較正は標準粒子径
のポリスチレン粒子により行い、ラテックスについて
は、透過型電子顕微鏡写真による確認を併せて行った。
The latex contained sharp monodisperse particles having a particle size of 0.43 μm, which gave the maximum value in the particle size distribution, and had good stability. The particle size distribution of the vinyl chloride polymer particles in the latex was measured using a laser diffraction particle size distribution measuring device (LA-700, manufactured by Horiba, Ltd.). The measurement error is usually 10% or less of the measured value. Further, the instrument was calibrated with polystyrene particles having a standard particle diameter, and the latex was also confirmed with a transmission electron microscope photograph.

【0022】(2)塩化ビニル系重合体ラテックス2の
製造 初期乳化剤として用いたラウリル硫酸ナトリウムの量を
8gに変更した以外は、上記「(1)塩化ビニル系重合
体ラテックス1の製造」と同様の方法で重合を行い、粒
径分布が極大値を示す粒子径が1.25μmのシャープ
な単分散粒子を含むラテックスを得た。
(2) Production of vinyl chloride polymer latex 2 Same as "(1) Production of vinyl chloride polymer latex 1" except that the amount of sodium lauryl sulfate used as an initial emulsifier was changed to 8 g. Polymerization was carried out by the above method to obtain a latex containing sharp monodisperse particles having a particle size distribution maximum and a particle size of 1.25 μm.

【0023】(3)塩化ビニル系重合体ラテックス3の
製造 初期乳化剤として用いたラウリル硫酸ナトリウムの量を
40gに変更した以外は、上記「(1)塩化ビニル系重
合体ラテックス1の製造」と同様の方法で重合を行い、
粒径分布が極大値を示す粒子径が0.11μmのシャー
プな単分散粒子を含むラテックスを得た。
(3) Production of vinyl chloride polymer latex 3 Same as "(1) Production of vinyl chloride polymer latex 1" except that the amount of sodium lauryl sulfate used as an initial emulsifier was changed to 40 g. Polymerize by the method of
A latex containing sharp monodisperse particles having a particle diameter of 0.11 μm and having a maximum particle size distribution was obtained.

【0024】(4)多分散粒径分布ラテックスの調製及
び噴霧乾燥 上記方法で得られた塩化ビニル系重合体ラテックス1,
2及び3を、固形分重量として、3/4/3の割合で混
合し、三山粒径分布ラテックスを調製した(混合後のラ
テックスの固形分濃度は38重量%であった)。このラ
テックスに調整用乳化剤として、ポリオキシエチレンノ
ニルフェニルエーテル(エチレンオキシド・ユニットの
平均重合度は10)を固形分に対し1%添加し、均一に
混合した上、二流体ノズルを装着した乾燥装置により、
乾燥気流の装置の入口温度及び出口温度をそれぞれ18
0℃及び65℃に維持して噴霧乾燥を行い、塩化ビニル
樹脂Aを得た。
(4) Preparation of polydisperse particle size distribution latex and spray drying Vinyl chloride polymer latex 1, 1 obtained by the above method
2 and 3 were mixed at a ratio of 3/4/3 as a solid content weight to prepare a triple mountain particle size distribution latex (solid content concentration of latex after mixing was 38% by weight). Polyoxyethylene nonyl phenyl ether (average degree of polymerization of ethylene oxide unit: 10) was added to this latex as an adjusting emulsifier at 1% with respect to the solid content, and the mixture was mixed uniformly and dried by a drying device equipped with a two-fluid nozzle. ,
The inlet temperature and the outlet temperature of the device for the dry air flow are set to 18
Spray-drying was performed while maintaining the temperature at 0 ° C. and 65 ° C. to obtain vinyl chloride resin A.

【0025】<実施例2(塩化ビニル樹脂Bの製造)>
実施例1で調製した三山粒径分布ラテックスを限外濾過
装置を用いて固形分濃度50%まで濃縮した。このラテ
ックスを上記実施例1と同様の条件で噴霧乾燥して塩化
ビニル樹脂Bを得た。
<Example 2 (Production of vinyl chloride resin B)>
The Mitsuyama particle size distribution latex prepared in Example 1 was concentrated to a solid content concentration of 50% using an ultrafiltration device. This latex was spray-dried under the same conditions as in Example 1 above to obtain vinyl chloride resin B.

【0026】<実施例3(塩化ビニル樹脂Cの製造)> (1)塩化ビニル系重合体ラテックス4の調製 攪拌機を備えた容積300リットルの重合缶に脱イオン
水80kg、実施例1で調製した塩化ビニル重合体ラテッ
クス1を種子重合体として固形分量で4.8kgを仕込ん
だ後、脱気して塩化ビニル75.2kgを加えた。缶内温
度を55℃に昇温した後、全量で0.05%(対塩化ビ
ニル単量体)の過酸化水素−ナトリウムホルムアルデヒ
ドスルホキシレートのレドックス開始剤を連続的に添加
した。更に重合率が種子重合体粒子と塩化ビニル単量体
との合計量に対して10%に達した時から乳化剤として
総量500gのラウリル硫酸ナトリウムを塩化ビニル単
量体に対して毎時0.08%の割合で10%水溶液とし
て連続的に添加した。
Example 3 (Production of Vinyl Chloride Resin C) (1) Preparation of Vinyl Chloride Polymer Latex 4 80 kg of deionized water was prepared in Example 1 in a 300 liter capacity polymerization can equipped with a stirrer. A vinyl chloride polymer latex 1 was used as a seed polymer and 4.8 kg of a solid content was charged, followed by deaeration and addition of 75.2 kg of vinyl chloride. After the temperature inside the can was raised to 55 ° C., a redox initiator of hydrogen peroxide-sodium formaldehyde sulfoxylate in a total amount of 0.05% (to vinyl chloride monomer) was continuously added. Further, when the polymerization rate reaches 10% with respect to the total amount of the seed polymer particles and the vinyl chloride monomer, a total amount of 500 g of sodium lauryl sulfate as an emulsifier is 0.08% per hour with respect to the vinyl chloride monomer. Was continuously added as a 10% aqueous solution.

【0027】缶内圧力が55℃での塩化ビニル単量体の
飽和圧から980hPa(1kg/cm2)低下した時に反応
を停止し、未反応塩化ビニル単量体を回収して塩化ビニ
ル系重合体ラテックス4を得た。ラテックス中の塩化ビ
ニル系重合体粒子は、粒径分布において2つの極大値を
示す粒子径0.41μm及び1.30μmを示し、かつ
その分布曲線において2つの極大が独立したいわゆる二
山分布を示した。
The reaction is stopped when the internal pressure of the can decreases from the saturation pressure of the vinyl chloride monomer at 55 ° C. to 980 hPa (1 kg / cm 2 ), and the unreacted vinyl chloride monomer is recovered to recover the vinyl chloride-based heavy polymer. A combined latex 4 was obtained. The vinyl chloride polymer particles in the latex show two maximum values in the particle size distribution, that is, particle diameters of 0.41 μm and 1.30 μm, and in the distribution curve, the two maximums show independent so-called two-peak distribution. It was

【0028】(2)多分散粒径分布ラテックスの調製及
び噴霧乾燥 上記方法で得られた塩化ビニル系重合体ラテックス4及
び実施例1で得られた塩化ビニル系重合体ラテックス3
を、固形分重量として7/3の比率で混合し、三山粒径
分布ラテックスを調製した(混合後のラテックスの固形
分濃度は55重量%であった)。このラテックスに調整
用乳化剤として、ポリオキシエチレンノニルフェニルエ
ーテル(エチレンオキシド・ユニットの平均重合度は1
0)を固形分に対し1%添加し、均一に混合した上、二
流体ノズルを装着した乾燥装置により、乾燥気流の装置
の入口温度及び出口温度をそれぞれ180℃及び65℃
に維持して噴霧乾燥を行い、塩化ビニル樹脂Cを得た。
(2) Preparation of polydisperse particle size distribution latex and spray drying Vinyl chloride polymer latex 4 obtained by the above method and vinyl chloride polymer latex 3 obtained in Example 1
Was mixed at a ratio of 7/3 as a solid content weight to prepare a triple mountain particle size distribution latex (solid content of latex after mixing was 55% by weight). This latex was used as an emulsifying agent for polyoxyethylene nonylphenyl ether (the average degree of polymerization of ethylene oxide units was 1
0) was added to the solid content in an amount of 1% and mixed uniformly, and a drying device equipped with a two-fluid nozzle was used to adjust the inlet temperature and the outlet temperature of the drying air flow device to 180 ° C. and 65 ° C.
Spray-drying was carried out while maintaining the above to obtain a vinyl chloride resin C.

【0029】<比較例1〜3>塩化ビニル系重合体ラテ
ックス1,2及び4に、それぞれラテックス中の固形分
に対し1%のポリオキシエチレンノニルフェニルエーテ
ル(エチレンオキシド・ユニットの平均重合度は10)
を添加した後、実施例1と同様の方法で噴霧乾燥を行い
塩化ビニル樹脂D,E及びFを調製した。
<Comparative Examples 1 to 3> Vinyl chloride polymer latices 1, 2 and 4 were used, each containing 1% of polyoxyethylene nonylphenyl ether (the average degree of polymerization of ethylene oxide units was 10% based on the solid content in the latices). )
Was added and spray-dried in the same manner as in Example 1 to prepare vinyl chloride resins D, E and F.

【0030】<塩化ビニル系樹脂の評価方法>上述のよ
うにして製造した塩化ビニル樹脂のポロシティを測定
し、また塩化ビニル樹脂と、塩化ビニル樹脂100重量
部に対して40重量部及び50重量部の可塑剤(DO
P)とを配合してプラスチゾルを調製し、これらのプラ
スチゾルのB型粘度及びシーバース流出量(表中「S型
流れ」と表記)を以下により測定し、それぞれ表−1に
示した。
<Evaluation Method of Vinyl Chloride Resin> The porosity of the vinyl chloride resin produced as described above was measured, and 40 parts by weight and 50 parts by weight were added to 100 parts by weight of the vinyl chloride resin. Plasticizer (DO
P) was mixed with P) to prepare plastisols, and the B-type viscosities of these plastisols and the outflow amount of seaverses (indicated as “S-type flow” in the table) were measured as follows, and shown in Table 1.

【0031】ポロシティ:ポロシメータ(Carlo
−Erba製、Series200)を使用し、塩化ビ
ニル樹脂1gに、常圧から196MPa(2000kg/c
m2・G)まで昇圧する間に圧入された水銀の容積(cc)
で表した。ポロシティが小さいほど、粒子の充填効率が
高いと判定した。 B型粘度:上記で調製したプラスチゾルを、23℃、
50%RHの室内で2時間熟成した後、同室内でトキメ
ック(株)製のB8H型粘度計(#7ローター)を用い
て、回転速度50rpm にて粘度を測定した。
Porosity: Porosimeter (Carlo
-Using Erba, Series 200), vinyl chloride resin 1g, from normal pressure to 196MPa (2000kg / c
Volume of mercury (cc) injected during pressurization to m 2 · G)
Expressed as It was determined that the smaller the porosity, the higher the particle packing efficiency. B-type viscosity: The plastisol prepared above was treated at 23 ° C.
After aging for 2 hours in a room of 50% RH, the viscosity was measured in the same room using a B8H type viscometer (# 7 rotor) manufactured by Tokimec Co. at a rotation speed of 50 rpm.

【0032】シーバース流出量(S型流れ):上記の
ゾルを、23℃、50%RHの室内で3時間熟成した
後、シーバース型粘度計(Burrel−Severs
Rheometer Model A−120)を使
用し、ノズル口径0.323mm、ノズル長さ5cmで、圧
力620kPa(90psi)の条件(剪断速度約500〜
5000sec -1)での5秒間のゾル流出量を測定し、1
00秒あたりの流出量に換算した。流出量が多いほど、
高剪断速度領域での流動性が良好で、粘度が低いことを
意味している。
Seaverse outflow rate (S-type flow): The above sol was aged in a room at 23 ° C. and 50% RH for 3 hours, and then, a seaber type viscometer (Burrel-Severs).
Rheometer Model A-120) with a nozzle diameter of 0.323 mm, a nozzle length of 5 cm, and a pressure of 620 kPa (90 psi) (shear rate of about 500-
The sol outflow rate for 5 seconds at 5000 sec -1 ) was measured and
It was converted to the outflow rate per 00 seconds. The greater the outflow,
It means that the fluidity in the high shear rate region is good and the viscosity is low.

【0033】表−1に示す結果より、本発明方法により
得られた塩化ビニル樹脂(A,B及びC)は比較例の樹
脂(D,E及びF)に比べてポロシティが小さく、ま
た、これに基づくプラスチゾルの粘度も低く、またシー
バース流出量も多いことが認められる。
From the results shown in Table 1, the vinyl chloride resins (A, B and C) obtained by the method of the present invention have a smaller porosity than the resins (D, E and F) of the comparative examples, and It is recognized that the plastisol based on the above has a low viscosity and a large amount of seabass outflow.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明方法で得られる塩化ビニル系樹脂
は、ポロシティ(空隙率)が小さく、見掛け比重が大き
くなり、従って、重量あたりの体積が小さくなり、輸送
コストや在庫スペースの点で有利である。また、本発明
方法により得られた塩化ビニル系樹脂は可塑剤と混合す
ることにより容易にプラスチゾルとなり、かつ得られた
プラスチゾルは、粘度、特に高剪断速度領域での粘度が
低く、高速での塗工が可能となる。このような特徴を持
つゾルは、天井材、壁紙、床材等の建築用材料の原料や
自動車のアンダーコート、シーラント等の塗料用に好適
に使用される。
INDUSTRIAL APPLICABILITY The vinyl chloride resin obtained by the method of the present invention has a small porosity (porosity) and a large apparent specific gravity. Therefore, the volume per weight is small, which is advantageous in terms of transportation cost and stock space. Is. Further, the vinyl chloride resin obtained by the method of the present invention easily becomes a plastisol by mixing with a plasticizer, and the plastisol obtained has a low viscosity, especially in a high shear rate region, and is applied at a high speed. It becomes possible to work. The sol having such characteristics is suitably used as a raw material for building materials such as ceiling materials, wallpaper and floor materials, and as a paint for automobile undercoats, sealants and the like.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08F 6/00 - 6/28 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C08F 6/00-6/28

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子径とその個数頻度との関係で表され
た粒子径分布のグラフ(以下「粒径分布」という)にお
いて個数頻度が3〜6点の極大値を有する塩化ビニル系
重合体ラテックス(以下「多分散粒径分布ラテックス」
という)を、二流体ノズルを用いて、装置出口での乾燥
気流温度が50〜70℃となるように噴霧乾燥すること
を特徴とする塩化ビニル系樹脂の製造方法。
1. A vinyl chloride polymer having a maximum number frequency of 3 to 6 points in a particle size distribution graph (hereinafter referred to as “particle size distribution”) represented by the relationship between particle size and its number frequency. Latex (hereinafter "polydisperse particle size distribution latex")
Is dried at the device outlet using a two-fluid nozzle.
A method for producing a vinyl chloride-based resin, which comprises spray-drying so that an airflow temperature is 50 to 70 ° C.
【請求項2】 多分散粒径分布ラテックスを、2種以上
の塩化ビニル系重合体ラテックスを混合することにより
調製する請求項1に記載の塩化ビニル系樹脂の製造方
法。
2. The method for producing a vinyl chloride resin according to claim 1, wherein the polydisperse particle size distribution latex is prepared by mixing two or more vinyl chloride polymer latexes.
【請求項3】 混合する塩化ビニル系重合体ラテックス
の少なくとも1種が、播種重合によって製造されかつそ
の粒径分布において2点の極大値を有するものである請
求項2に記載の塩化ビニル系樹脂の製造方法。
3. The vinyl chloride resin according to claim 2, wherein at least one kind of the vinyl chloride polymer latex to be mixed is produced by seeding polymerization and has a maximum value of 2 points in its particle size distribution. Manufacturing method.
【請求項4】 多分散粒径分布ラテックスの粒径分布に
おいて、個数頻度が極大値を示す粒子径が0.05〜1
0μmの範囲にある請求項1、請求項2、または請求項
3に記載の塩化ビニル系樹脂の製造方法。
4. In the particle size distribution of the polydisperse particle size distribution latex, the particle size at which the number frequency has a maximum value is 0.05 to 1
The method for producing a vinyl chloride-based resin according to claim 1, 2, or 3, which is in the range of 0 μm.
【請求項5】 多分散粒径分布ラテックスの粒径分布に
おいて、個数頻度が3点の極大値を有するもの(以下
「三山粒径分布ラテックス」という)である請求項1〜
4のいずれか1つの項に記載の塩化ビニル系樹脂の製造
方法。
5. The particle size distribution of a polydisperse particle size distribution latex having a maximum number frequency of 3 points (hereinafter referred to as “three peak particle size distribution latex”).
5. The method for producing a vinyl chloride resin according to any one of 4 above.
【請求項6】 三山粒径分布ラテックスの粒径分布にお
いて、個数頻度が極大値を示す粒子径が0.05〜3μ
mの範囲にある請求項5に記載の塩化ビニル系樹脂の製
造方法。
6. In the particle size distribution of the Sanyama particle size distribution latex, the particle size at which the number frequency has a maximum value is 0.05 to 3 μm.
The method for producing a vinyl chloride resin according to claim 5, which is in the range of m.
【請求項7】 三山粒径分布ラテックスの粒径分布にお
いて、個数頻度が極大値を示す粒子径が、それぞれ0.
1μm、0.4μm、1.3μmを中心値として、各々
±20%の範囲にある請求項5または請求項6に記載の
塩化ビニル系樹脂の製造方法。
7. In the particle size distribution of the Sanyama particle size distribution latex, the particle size at which the number frequency has a maximum value is 0.
The method for producing a vinyl chloride resin according to claim 5 or 6, wherein each has a center value of 1 µm, 0.4 µm, and 1.3 µm and is within ± 20%.
【請求項8】 多分散粒径分布ラテックスの固形分濃度
が30〜70重量%である請求項1〜7のいずれか1つ
に記載の塩化ビニル系樹脂の製造方法。
8. The method for producing a vinyl chloride resin according to any one of claims 1 to 7, wherein the polydisperse particle size distribution latex has a solid content concentration of 30 to 70% by weight.
JP20537993A 1993-08-19 1993-08-19 Method for producing vinyl chloride resin Expired - Fee Related JP3508171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20537993A JP3508171B2 (en) 1993-08-19 1993-08-19 Method for producing vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20537993A JP3508171B2 (en) 1993-08-19 1993-08-19 Method for producing vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPH0753627A JPH0753627A (en) 1995-02-28
JP3508171B2 true JP3508171B2 (en) 2004-03-22

Family

ID=16505857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20537993A Expired - Fee Related JP3508171B2 (en) 1993-08-19 1993-08-19 Method for producing vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP3508171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO310365B1 (en) 1997-07-18 2001-06-25 Norsk Hydro As PVC mixture, its use and method for its preparation
EP1379563A2 (en) * 2001-01-10 2004-01-14 Solvay (Societe Anonyme) Method for preparing halogenated polymers and resulting halogenated polymers
JP4526843B2 (en) * 2004-03-19 2010-08-18 新第一塩ビ株式会社 Vinyl chloride resin particles for paste and composition thereof

Also Published As

Publication number Publication date
JPH0753627A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP3298321B2 (en) Aqueous dispersion of vinylidene fluoride-based copolymer, aqueous dispersion of vinylidene fluoride-based seed polymer and methods for producing them
US4017442A (en) Structured-particle latexes
JPS5823801A (en) Suspension polymerization
JP4084302B2 (en) High solid content ethylene-vinyl acetate latex
JP3508171B2 (en) Method for producing vinyl chloride resin
JPS6339606B2 (en)
JP3101232B2 (en) Latex based on vinyl chloride copolymer having special structure, method for producing the same, and use thereof
JP3419098B2 (en) Method for producing vinyl chloride polymer
KR930003103B1 (en) Process for the preparation of vinyl chloride homo and copolymers in seeded microsuspension
CA1191983A (en) Emulsion polymerization process with low emulsifier concentration
WO1981003334A1 (en) Process for preparing spherical and porous vinyl resin particles
JPH05271313A (en) Production of vinyl chloride polymer
JP2576926B2 (en) Method for producing vinyl chloride resin for paste
JPS628441B2 (en)
CA1206298A (en) Process for producing spherical and porous vinyl resin particles
JP3610179B2 (en) Method for producing vinyl chloride polymer latex
JP2782805B2 (en) Method for producing vinyl chloride copolymer
JPS60235807A (en) Production of vinyl chloride polymer
JP3344031B2 (en) Method for producing vinyl chloride resin
JPH0578540A (en) Film formed from water-base resin dispersion
JPH11228606A (en) Suspension polymerization for vinyl chloride-based resin
JP3419096B2 (en) Method for producing vinyl chloride polymer
JPH10279629A (en) Production of vinyl chloride polymer
JPH1067807A (en) Production of vinyl chloride resin by suspension polymerization
AU540016B2 (en) Process for preparing spherical and porous vinyl resin particles

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees