AU540016B2 - Process for preparing spherical and porous vinyl resin particles - Google Patents

Process for preparing spherical and porous vinyl resin particles

Info

Publication number
AU540016B2
AU540016B2 AU71758/81A AU7175881A AU540016B2 AU 540016 B2 AU540016 B2 AU 540016B2 AU 71758/81 A AU71758/81 A AU 71758/81A AU 7175881 A AU7175881 A AU 7175881A AU 540016 B2 AU540016 B2 AU 540016B2
Authority
AU
Australia
Prior art keywords
monomer
polyoxyethylene
polymer
weight
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU71758/81A
Other versions
AU7175881A (en
Inventor
Kornelius Dinbergs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodrich Corp
Original Assignee
BF Goodrich Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BF Goodrich Corp filed Critical BF Goodrich Corp
Priority claimed from PCT/US1981/000612 external-priority patent/WO1981003334A1/en
Publication of AU7175881A publication Critical patent/AU7175881A/en
Application granted granted Critical
Publication of AU540016B2 publication Critical patent/AU540016B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

- 1 -
"Process For Preparing Spherical and Porous Vinyl Resin Particles"
Background of the Invention Many polymerizable onomeric materials, and par- ticularly vinyl chloride, are being polymerized today on a large scale commercially either in suspension media or in aqueous dispersion or emulsion, i.e., latex form, employing various colloidal suspension agents, emuls- ifiers or soaps, and/or synthetic detergent-type disper- sing agents. In these methods of polymerization, and particularly in suspension polymerization, agitation
(usually vigorous) is depended upon to suspend and/or disperse the monomer particles or droplets throughout the reaction media and to maintain such suspension or dispersion during the polymerization reaction and to assist in heat transfer to the reactor cooling surfaces. However, in most instances, polymer particles produced in accordance with these processes are not uniform in size and shape. In subsequent processing of these poly- mers, such as, for example, polyvinyl chloride (PVC), it is desirable to have uniform size and shape in the polymer particles.
Various polymerization processes and modifications of existing processes have been heretofore proposed to obtain uniform particle size. For example, one very successful method that has been proposed is that des¬ cribed in U.S. Patent No. 3,620,988. In said method a monomeric material, such as vinyl chloride, of low solu¬ bility in water containing a monomer-soluble free radical type catalyst, is suspended as discrete droplets of a desired size in an aqueous medium thickened with a water- insoluble polymeric gellation agent which imparts plas¬ tic flow properties to such medium. The polymerization reaction is then carried out using a batch or continuous process under substantially quiescent conditions., that is, in the absence of turbulence or the absence of shear- ing forces sufficient to deform the suspended droplets of monomer and/or to damage the polymer bead at any stage of conversion. However, when polymerizing vinyl chloride by such a process, the uniform beads of PVC that are formed are normally clear and glassy in nature and do not have the desired porosity.
There are many cases where porous polymer particles or beads are desirable, such as where the polymer, such as PVC, is to be employed in making plastisols and in extrusion operations. Porous beads would also be desir¬ able in the case of PVC where, because of Government regulations, it is necessary to remove substantially all of the unreacted viny-l chloride therefrom. Porous polymer beads or particles would greatly facilitate such removal.
Another real problem in making vinyl resins is polymer buildup on the inner surfaces of the reactor during the polymerization reaction. This is particularly prevalent in the commercial production of vinyl chloride polymers when the same are produced in the form of dis¬ crete particles by polymerization in an aqueous suspen¬ sion system. It should be borne in mind, that the sus¬ pension polymerization system is the most practical, from simplicity of operation, and thus, the most econom- ical. When employing such a system, the monomer(s) are maintained in the form of small discrete droplets by the use of suspending agents and agitation. When the re¬ action is complete, the resultant polymer is washed and - dried. These aqueous suspension system polymerization reactions are usually conducted under pressure in metal reactors equipped with baffles and high speed agitators. However, these suspension systems, under many circumstances, are unstable, and during the polymerization reaction, the polymer builds up on the interior surfaces of the poly- merization reactor, including the surfaces of the baffles and agitator. Obviously, this polymer buildup
^
- t WI must be removed since it results in further formation of polymer buildup on the reactor surfaces which results in a crust that adversely affects heat transfer and contaminates the polymer being produced. Removal of such polymer buildup is difficult and costly and the obvious way of eliminating the polymer buildup is pro¬ viding a means of polymerization which substantially eliminates its formation in the first place.
Thus a process which will produce vinyl resin particles which are spherical, and porous throughout and which will also substantially eliminate polymer buildup in the reactor, is most desirous. Summary of the Invention It has unexpectedly been found that porous, sub- stantially spherical particles of vinyl polymers or resins can be prepared by the suspension polymerization technique by employing a substantially water-insoluble dispersant comprising a substantially unneutralized crosslinked interpolymer of one or more carboxylic acid monomers with a polyunsaturated compound having a plurality of terminally unsaturated polymerizable groups and optionally, a water-solublesurfaσtant with a poly¬ ether type hydrophilic segment using rapid stirring or high agitation while1, employing a monomer-soluble free radical yielding polymerization catalyst. The skin that may be formed on the polymer particles is so thin that it allows plasticizers and other compounding ingredients, to rapidly diffuse therethrough into the porous internal structure of said particles. Further, the polymer build- up in the reactor is substantially reduced, which is particularly significant since no reactor coating is employed nor the addition of any anti-polymer buildup ingredients to the polymerization mixture. Detailed Description The process of the present invention embodies a suspension polymerization procedure wherein the reaction
OMPI
/,- W WIIPPOO medium is stirred rapidly during the entire reaction period. With the proper choice of dispersants and surfactants, there is produced spherical, porous and unagglomerated particles of polymer. In the process, water is the polymerization medium- and a vinyl monomer to water ratio in the range of about 1.0 to 1.0 to about 1.0 to 10.0 is satisfactory. Preferably a ratio in the range of about 1.0 to 1.0 to about 1.0 to about 4.0 is employed. The most important and salient feature of the present invention is the colloidal stabilization, or dispersant system, that is employed in the polymeriz¬ ation reaction for the purpose of stabilizing the dis¬ persed monomer droplets against coalescence. The most important component of this system is the substantially unneutralized crosslinked interpolymer of one or more carboxylic acid monomers with a' polyunsaturated compound having a plurality of terminally unsaturated polymeriz¬ able groups, for example, a crosslinked polyacrylic acid polymer. The crosslinking is necessary in the present invention since an uncrosslinked polyacrylic acid polymer will produce a highly agglomerated charge, or polymerization reaction result, which is most undesirable The crosslinking is also responsible for making the poly- mer incapable of forming a true solution in water. In this regard, these polymers are classified as being sub¬ stantially insoluble in water. Nevertheless, the struc¬ ture of the interpolymer must be such that it has enough affinity for water to swell appreciably in an aqueous medium, thus thickening the water phase, but not to the extent that it cannot be agitated rapidly. Interpolymers that have little or no affinity for water and do not swel to any measurable degree, are not suitable for the pur¬ poses of the present invention. In addition to the crosslinked interpolymers, just described, which act as dispersion stabilizers,
OM there is employed in conjunction therewith, one or more water-soluble surfactants which contain poly- ether-type hydrophilic segments, such as, for example, Tween 80® which is polyoxyethylene (20) sorbitan monooleate. The function of the polyether containing surfactant is to increase the porosity of the polymer particles and, particularly, to increase the colloidal stability of the polymerization mixture. The use of these two ingredients, namely, the crosslinked poly- meric dispersant and the polyether containing surfactant, in conjunction with each other produces a very stable polymerization medium in which the tendency of monomer droplets to coalesce with each other, or stick to the reactor surfaces, is much less than when using either ingredient by itself. That is to say, a synergism is observed between the carboxyl group - containing cross¬ linked dispersants and the polyether-containing surfac¬ tants.
The amount of the water-insoluble substantially unneutralized crosslinked interpolymer useful as a colloidal stabilizer, or dispersant, in the present in¬ vention will vary in the range of about 0.02% to about 2.00% by weight, based on the weight of the monomer or monomers being polymerized. Preferably, the amount will be in the range of about 0.04% to about 0.50% by weight. When a water-soluble polyether containing surfactant is employed, it will be used in the range of about 0.0% to about 1.0% by weight, based on the weight of the monomer or monomers being polymerized, and preferably, in the range of about 0.02% to about 0.20% by weight.
The process of the present invention is conducted at a pH in the range of about 3.0 to about 4.3. Inas¬ much as the dispersant is a substantially unneutralized crosslinked interpolymer of one or more carboxylic acid monomers, the polymerization reaction is conducted on the acid side. - 6 -
With respect to the crosslinked polymeric dis- persants of the present invention, the carboxylic acid monomers utilizable in preparing the same are those which contain at least one active carbon-to-carbon double bond in the α , _3 -position with respect to a car- boxy1 group thusly
R" R' ' ' (1) R' - C = C - COOH wherein R' is hydrogen or a -COOH group, and each of R" and R* ' ' is a hydrogen or a monovalent substituent group which is linked to one of the doubly bonded carbon atoms. Carboxylic acids within this definition include acids, such as acrylic acid, wherein the double bond is terminal thusly (2) CH2 = C - COOH or the dicarboxylic acids such as male/ic acid and other anhydrides of the general structure
0 wherein R and R' are monovalent substituent groups and especially those selected from the group consisting of hydrogen and halogen groups and alkyl, aryl, alkaryl, aralkyl, and cycloaliphatic radicals. Included within the class of carboxylic acids, shown by generic formula (1) above, are widely divergent materials, such as the acrylic acids, such as acrylic acid itself, methacrylic acid, ethacrylic acid, α- and β -chloro and bromo-acrylic acids, crotoiiic acid, maleiσ acid, itaconic acid, and many others.
Polymerizable carboxylic anhydrides include any of the anhydrides of the above acids, including mixed anhydrides, and those shown by generic formula (3) above including male"ic anhydride and others. In many cases it is preferred to copolymerize an anhydride monomer with a comonomer, such as methyl vinyl ether, styrene, and the like. For the purposes of the present invention, it is preferred to employ polymeric dispersants which are de¬ rived from polymers produced by the polymerization of the __ rg-monoolefinically unsaturated carboxylic acids. The preferred carboxylic acids are those derived from the acrylic acids and -substituted acrylic acids having the general formula
(4) CH2 C COOH wherein R is a monovalent substituent selected from the group consisting of hydrogen, halogen, hydroxyl, car- boxyl, amide, ester, lactone, and lactam.
The most preferred polymeric dispersants are those prepared from the lightly crosslinked interpoly¬ mers of acrylic acid. These dispersants are the most efficient. The crosslinking agents which may be em¬ ployed with any of the carboxylic monomers, or mixtures thereof, may be any compound, not necessarily monomeric in nature, containing two or more terminal polymerizable CH2=C<groups per molecule. Examples of this class of materials include polyunsaturated-hydrocarbons, -poly- ethers, -polyesters, -nitriles -acids, -acid anhydrides, -ketones, -alcohols and polyunsaturated compounds of this class incorporating one or more of these and other functional groups. Specifically, there may be utilized divinyl benzene, divinyl naphthalene, low-molecular weight and soluble polymerized dienes, such as poly- butadiene and other soluble homopolymers of open chain aliphatic conjugated dienes, which soluble polymers do not contain any appreciable number of conjugated double
OMPI ° bonds, and other polyunsaturated hydocarbons; poly¬ unsaturated esters, ester-amides and other ester deriv¬ atives, such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, allyl aerylate, methylene bisacr- ylamide, methylene bismethacrylamide, triacrylyl triazine, hexallyl trimethylene trisulfone, and many others; polyunsaturated ethers, such as divinyl ether, diallyl ether, dimethyl allyl ether, diallyl ethylene glycol ether, diallyl, triallyl and other poly- allyl ethers of glycerol, butene -1,2-diol, 1-phenyl-l, 2*3- propanetriol, the polyallyl, -vinyl and -crotyl poly- ethers containing from two to seven or more of these or other alkenyl ether groupings per molecule and made from polyhydric alcohols, such as the carbohydrate sugars, an the so-called "sugar alcohols", including erythritol, pentaerythritol, arabitol, iditol, mannitol, sorbitol, inositol, raffinose, glucose, sucrose, and many others, and other polyhydroxy carbohydrate derivatives, the corresponding polyalkenyl silanes, such as the vinyl and allyl silanes; and others. Of this large class of cross linking agents the polyalkenyl polyethers of the carbo¬ hydrate sugars, sugar alcohols and other polyhydroxy carbohydrate type derivatives containing from two to seven alkenyl ether groups per molecule are particularly useful. Such materials are easily prepared by a
Williamson-type synthesis involving the reaction of an alkenyl halide, such as ally1 chloride, allyl bromide, methallyl chloride, crotyl chloride, and the like, with strongly alkaline solution of one or more of the poly- hydroxy carbohydrate derivatives.
As has been pointed out hereinbefore, the pre¬ sent invention is concerned with using a substantially unneutralized crosslinked interpolymer of one or more carboxylic acid monomers with a polyunsaturated compound having a plurality of terminally unsaturated polymer¬ izable groups as a- dispersant in suspension polymer- ization of vinyl monomers. While the unneutralized crosslinked interpolymers are preferred, it is possible to employ partially or lightly neutralized interpolymers as dispersants in the instant invention. This partial neutralization can be accomplished by adding to the interpolymer, a sufficient amount of an ordinary mon¬ ovalent alkali, such as sodium hydroxide, potassium hydroxideammonium hydroxide, and the like. The amount of neutralization that can be tolerated and still obtain the desirable and beneficial results will be in the range of about 0.0% to about 5.0% by weight, based upon the weight of the dispersant.
In the monomeric mixture, for making the cross¬ linked resins or polymers employed as colloidal stabil- izers or dispersants in the suspension polymerization process of the present invention, the two essential monomeric materials should be present in certain pro¬ portions, although the exact proportions will vary con¬ siderably depending on-the characteristics desired in the polymer. Small amounts of the polyalkenyl polyether copolymerize quite readily withcarboxylic monomers and the crosslinking effect of the polyalkenyl polyether on the carboxylic monomer is so strong that as little as 0.1% by weight thereof, based on the weight of the total mixture, produces a great reduction in the water- and solvent-solubility of the resulting crosslinked polymer. When 0.1% to 4.0%, more preferably 0.20% to 2.5%, by weight of the polyether is utilized, water-insoluble polymers are obtained, especially with acrylic acids, which are extremely water sensitive. Useful dispersants are also obtained when 0.1% to 6.0%, and preferably 0.2% to 5% of the polyether is copolymerized with maleic anhydride. In the dual copolymer, or two-compound inter¬ polymer, this means that the remainder of the monomeric mixture will be the carboxylic monomer.
The monomeric proportions employed in the
O PI
/., W WIIPPOO . - 10 - production of ulti-component interpolymers may vary in a somewhat similar manner. However, it is generally desirable to utilize as much of the carboxylic monomer or monomers and as little of the other monomeric con- stituents as is consistent with the desired water-in¬ solubility and other properties. In these interpolymers, therefore, the carboxylic monomer or monomers should never be less than 25%, and preferably not less than 40%, by weight of the total monomeric mixture. Multi- component interpolymers may be made from monomeric mix¬ tures comprising from 25% to 95% of a carboxylic mono¬ mer, such as acrylic acid, 0.1% to 30% of a polyalkenyl polyether, such as a polyallyl polyether of sucrose, and 5.0% to 74.9% of an additional monomer or monomers. Preferred multi-component interpolymers are the tri- polymers resulting from the polymerization of monomeric mixtures containing, respectively, from 40% to 95% by weight of acrylic acid, 0.20% to 2.5% by weight of poly¬ allyl polyether, such as that of sucrose, and 4% to 59% of an additional monomer or monomers, such as maleic anhydride, N-methyl acrylamide, methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, and the like, and mixtures of maleic anhydride, a vinyl alkyl ether, such as vinyl methyl ether, and a polyallyl polyether, in which the sum of the moles of vinyl ether and polyallyl polyether is substantially equivalent to the molar quantity of maleic anhydride present. It should be borne in mind that in the above proportions, if a maximum amount of two of the monomers are utilized, that somewhat less than maximum amounts of the other monomers must be utilized.
Suitable for use as additional monomers in the production of multi-component interpolymers are mono- olefinic vinylidene monomers containing one terminal CH2=C <^ group, such as styrene, the chloro-and ethoxy- styrenes, etc., acrylamide, N-methyl-acrylamide, N,N- dimethyl acrylamide, acrylonitrile, methacrylonitrile, methyl acrylate, ethyl acrylate, 2-ethylhexylacrylate, methyl methaσrylate, vinyl acetate, vinyl benzoate, vinyl pydridine, vinyl chloride, vinylidene chloride, vinylidene chlorobromide, vinyl carbazole, vinyl pyrro- lidone, methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, methyl vinyl ketone, ethylene, isobutylene, dimethyl maleate, diethyl maleate, and many others. In addition to the above monoolefinic monomers, many of the divinyl dialkenyl or other polyfunctional esters, amides, ethers, ketones, and the like, may be used in the pro¬ duction of multi-component interpolymers, especially those polyfunctional monomers which nominally function as crosslinking or insolubilizing monomers but which are easily saponified and hydrαxzed to additional hydroxyl, carboxyl and other hydrophilic groups. For example, an interpolymer of acrylic acid and divinyl ether is in¬ soluble in water but upon standing gradually goes into solution probably due to hydrolysis and breaking of divinyl ether crosslinks. The.presence of strong alkali or acid speeds dissolution. Spectroscopic analysis con¬ firms the presence in the polymers of non-carbox lic hydroxyls. Similarly, diesters, such as diallyl maleate, ethylene glycol dimethacrylate, acrylic anhydride, beta- allyloxy acrylate, and many others, are readily saponi- fied or hydrolyzed by alkali or acid with the introduc¬ tion of additional hydroxyl and/or carboxyl groups. Of the above additional monomers, N-methyl acrylamide, methyl vinyl ether, ethyl vinyl ether and divinyl ether have been found particularly useful in the production of the substantially unneutralized crosslinked interpoly¬ mers for use as substantially water-insoluble dis¬ persants in the suspension polymerization of vinyl monomers.
As has been pointed out hereinabove, there may be optionally employed, along with the water-insoluble crosslinked polymeric dispersant, a water-soluble, poly¬ ether containing nonionic surfactant. Among the
OMPI
/., WIPO - nonionic surfactants useful for the purposes of the invention are those falling within the following generic classes: (1) polyoxyethylene alkylphenols; (2) polyoxyethylene alcohols; (3) polyoxyethylene esters of fatty acids; (4) polyoxyethylene alkylamines; and (5) polyoxyethylene alkylamides. As examples of sur¬ factants in the above-named classes there may be .named the following: polyoxyethylene (20) sorbitan monooleate polyoxyethylene (20) sorbitan monolaurate, polyoxyethyle (20) sorbitan monopalmitate, polyoxyethylene (20) sor¬ bitan monostearate, polyoxyethylene (40) stearate, poly¬ oxyethylene (50) stearate, polyoxyethylene esters of mixed fatty and resin acids, polyoxyethylene (20) pal- mitate, polyethylene glycol monolaurate, polyethylene glycol monooleate, polyethylene glycol ricinoleate, polyethylene glycol monostearate, polyethylene glycol distearate, polyoxyethylene (25) stearate, polyoxyethy¬ lene (40) stearate, polyoxyethylene (25) castor oil, polyoxyethylene (52) castor oil, polyoxyethylene (9) laurate, polyoxyethylene (15) tallate, polyoxyethylene (9) lauryl ether, polyoxyethylene (12) lauryl ether, polyoxyethylene (23) lauryl ether, polyoxyethylene (6) tridecyl ether, polyoxyethylene (10) tridecyl ether, polyoxyethylene (10) oleyl ether, polyoxyethylene (20) oleyl ether, polyoxyethylene (50) oleyl ether, poly¬ oxyethylene (15) cetyl stearyl ether, polyoxyethylene (20) stearyl ether, polyoxyethylene (30) stearyl ether, polyoxyethylene (8) tridecyl ether, polyoxyethylene (9) nonyl phenyl ether, polyoxyethylene (21) coconut ester, and the like, etc. The above compounds have a multi¬ plicity of functional groups and accordingly, a very large number of modifactions is possible. Mixtures of said compounds can also be used.
In the suspension polymerization procedure, the various ingredients are thoroughly mixed prior to the -13 - start of the reaction. That is, the aqueous medium, preferably distilled water, the monomer to be poly¬ merized, such as vinyl chloride for example, the crosslinked polymeric dispersant and the optional sur- factant when used, and an oil-soluble catalyst are all mixed together at a temperature below that at which the particular catalyst being used becomes active. While this mixing can be done in a vessel apart from the reaction vessel, for convenience and practical reasons the mixing of the ingredients is done in the polymerization reaction vessel under an inert atmos¬ phere, particularly where the monomer or monomers being employed are subject to oxidation.
The monomer-soluble or oil-soluble catalysts that may be used in the polymerization process of the present invention are the alkanoyl, aroyl, alkaroyl, and aralkanoyl diperoxides and monohydroperoxides, azo compounds, peroxy esters, perσarbonates, and other free radical type catalysts. As examples of such catalysts, there may be named benzoyl peroxide, lauryl peroxide, diacetyl peroxide, cumene hydroperoxides, methyl ethyl ketone peroxide, diisopropylbenzene hydroperoxide, 2,4- dichlorobenzoyl peroxide, naphthoyl peroxide, t-butyl perbenzoate, di-t-butyl perphthalate, isopropyl percar- bonate, acetyl cyclohexane. sulfonyl peroxide, di- secondary butyl peroxydicarbonate, t-butyl peroxy- neodecanoate, di-normal propyl peroxydicarbonate, azo- bis -isobutyronitrile, α," α'- azodiisobutyrate, 2,2'- azo-bis-(2,4-dimethyl valeronitrile) ,and many others. The particular free radical catalyst employed will depend upon the monomeric material (s) being polymerized, the molecular weight and color requirements of the polymer, the temperature of polymerization, etc. Insofar as the amount of catalyst employed is concerned, it has been found that an amount in the range of about 0.005% to about 1.00% by weight, based on the weight of the monomer
"£Trø_
OMPI /., WIPO or monomers being polymerized, is satisfactory. How¬ ever, it is preferred to employ an amount of catalyst in the range of about 0.01% to about 0.20% by .weight. While the present invention is specifically illustrated hereinafter with regard to the suspension polymerization of vinyl chloride, it is to be under¬ stood that this is merely for purposes of illustration and convenience since the present process may likewise be employed in the suspension polymerization of any polymerizable ethylenically unsaturated monomer or monomers and particularly where, under normal condi¬ tions, undesirable polymer buildup occurs. As examples of such monomers, there may be named other vinyl halides and vinylidene halides, such as vinyl bromide, vinyl- idene chloride, etc.; vinylidene monomers having at least one terminal CH2=C<. grouping, such as esters of acrylic acid, for example, methyl acrylate, ethyl acry¬ late, butyl acrylate, octyl acrylate, cyanoethylacrylate, and the like; vinyl acetate; esters of methacrylic acid, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like; styrene and styrene deriva¬ tives including α-methyl styrene, vinyl toluene, chlor- ostyrene; vinyl naphthalene; diolefins including buta¬ diene, isoprene, chloroprene, and the like; and mixtures of any of these types of monomers and other vinylidene monomers copolymerizable therewith; and other vinylidene monomers of the types known to those skilled in the art. The present invention, however, is particularly applicable to the suspension polymerization of vinyl chloride, either alone or in admixture with one or more other vinylidene monomers having at least one terminal CH2=C< grouping copolymerizable therewith, in amounts as great as about 80% or more by weight, based on the weight of the monomer mixture, One of the aggravating problems heretofore en¬ countered in the polymerization of unsaturated monoolefinic
OM IP - 15 - monomers, and particularly when using the suspension polymerization technique, has been the undesirable polymer buildup on the interior surfaces of the re¬ actor. This buildup of polymer interferes with heat transfer, decreases productivity, and adversely affects polymer quality. Various means have been proposed to alleviate this polymer buildup, such as coating of the internal surfaces of the polymerization reactor prior to conducting the suspension polymerization process therein. This has proven to be very successful, as witness U.S. Patent No. 4,024,330. However, it has unexpectedly been found that when employing the process of the present invention, polymer buildup is substant¬ ially eliminated, and in many cases entirely eliminated, without the need of coating the reactor surfaces or adding a polymer buildup inhibitor to the polymer¬ ization recipe. It is not known exactly why the use of the crosslinked polymeric dispersant of the present invention reduces the polymer buildup to such an extent, but the advantage thereof will be readily apparent to those skilled in the art.
The suspension polymerization process of the present invention may be carried out at any temperature which is normal for the monomeric material to be poly- merized. Usually, a temperature in the range of 0 C. to about 150 C. will polymerize most known monomeric materials useful in the present invention, as set out hereinabove. Preferably, a temperature in the range of about 25 C. to about 100 C. is employed. In order to facilitate temperature control during the polymerization process, the reaction medium is kept in contact with cooling surfaces cooled by water, brine, evaporation, etc. This is accomplished by employing a jacketed poly¬ merization reactor wherein the cooling material is cir- culated through the jacket throughout the polymerization reaction. This cooling is necessary since most all of the polymerization reactions are exothermic in nature. It is understood, of course, that a heating medium can be circulated through the jacket, if necessary.
One of the most important aspects of the pres- ent invention is the agitation or stirring of the re¬ action medium that is required or necessary during the entire polymerization reaction period. Prior to the start of the polymerization reaction, -the polymeriza¬ tion mixture is agitated with sufficient shear action to disperse or suspend--the monomer(s) in the reaction medium in the form of tiny droplets. These droplets should be of'sϊiσ'Λ. size that when transformed into poly¬ mer particles, which are spherical, and porous, the same will be of the desired size. The polymer particles produced in accordance with the present invention should have a diameter in the range of about 30 microns to about 1000 microns. Preferably, for most end uses, the polymer particles will have a diameter in the range of about 50 microns to about 500 microns. As pointed out above, it is most important to maintain proper and sufficient agitation throughout the entire polymerization reaction in order to produce the spherical and porous particles of polymer having the proper or desired size. Various means can be employed to get and maintain the proper agitation and shearing action. The reaction vessel or polymerizer is made of stainless steel or glass lined and fitted with a heating and cooling jacket and having a rotatable shaft mounted centrally thereof. On said shaft are mounted one or more three-pronged agitator blades, the prongs of which are preferably curved and pitched, that is, are con¬ toured. Of course, blades with more or less than three prongs may be used. Further, baffles are mounted inter¬ nally of the reaction vessel, which gives an up and down, or pumping, action to the reaction medium in addition to the circular motion thereof. One or more
O baffles are employed mounted on the inner wall of the reactor or adjacent thereto.
The amount of agitation desired or necessary to obtain the desired results will vary depending upon the particular monomer or monomers being polymerized. Also, the particular polymer particle size desired in the end product. This means that the rpm. (rotations per minute) of the rotatable shaft carrying the agitator blades must be regulated within certain prescribed limits. There are many variables involved in obtaining the optimum conditions for any particular polymerization recipe, such as for example, the size of the reactor, the number of blades and prongs thereon as well as the shape thereof, which will dictate the rpm. to be em- ployed in obtaining the desirable particle size, as well as the porosity of the polymer particles. In the normal case, using a reactor having a capacity of about 1500 gallons, an rpm. with a plurality of agitator blades in the range of about 65 rpm. to about 250 rpm. is sat- isfactory. It must be borne in mind, however, that as the reactor capacity is increased or decreased, adjust¬ ment in the diameter, width and pitch of the blades must be made in order to achieve, the desired agitation and shear action. This adjustment can be made readily by those skilled in the art without undue difficulty. It should also be noted that the agitation and shear action will also be influenced by the monomer(s) being polymerized and the temperature of the polymerization reaction. While the present invention may utilize any of the conventional suspension polymerization techniques, it is possible to utilize a full reactor technique, particularly for reducing chances of polymer buildup in the reactor. By full reactor technique is meant that the reaction vessel is completely filled with the poly¬ merization medium at the start of the reaction and kept that way throughout the entire period of the reaction by the constant addition thereto of additional reaction medium the ingredients of which are in the same propor¬ tion as at the start-up. Upon the addition of a cer- tain predetermined amount of aqueous polymerization medium, the polymerization reaction is terminated, usually by the addition thereto of a short-stopping agent or by rapid cooling. The necessity for the addition of aqueous polymerization medium is due to the shrinkage in volume of the reaction medium produced by the conversion of the monomer or monomers to the poly¬ meric state.
In order to rate the buildup in the various polymerizations of the present invention, as particu- larly set forth in the specific examples which follow hereinafter, there has been devised a rating scale with respect to paper and sandy buildup. In a regular sus¬ pension polymerization process, where normal amounts of both types of buildup occur, the reactor is given a rating of 1.5. Any rating below 1.0 is good or a def¬ inite improvement. In other words, a rating of 0.0 is perfect, and so on.
To further illustrate the present invention, the following specific examples are given, it being under- stood that this is merely intended in an illustrative and not a limitative sense. In the examples, all parts and percents are by weight unless otherwise indicated.
Example I In this example, a run was made to illustrate the effect of using an uncrosslinked acrylic acid poly¬ mer as the dispersant. The polymerization recipe em¬ ployed was as follows:
Parts Vinyl chloride 100
Water (distilled) 700 Parts
Polyacrylic acid
(unneutralized) 0.67
Tween 80 (1) 0.10 Di-secondary butyl peroxydicarbonate
0.02 Polyoxyethylene (20) sorbitan monooleate In this run, a three liter stainless steel re¬ actor, equipped with an agitator containing a combin- ation of helical and three-pronged blades, was employed. The polyacrylic acid and water was charged to the re¬ actor followed by the Tween 80® as a 10% by weight sol¬ ution in distilled water. The reactor was then closed, swept with nitrogen and evacuated. Then the contents of the reactor were heated and the agitator started and brought to 400 rpm. Then the vinyl chloride, along with the di-secondary butyl peroxydicarbonate as a 10% by weight solution in methenol, was charged to the agitated reaction medium. The temperature in the reactor was adjusted to 55 C. and the reaction started with stirr¬ ing at 400 rpm. throughout. During the course of the reaction, water was continuously added to the reactor to compensate for the shrinkage in volume due to the conversion of monomer to polymer. At 70% conversion the reaction was stopped by rapidly cooling the contents of the reactor and then the reactor was emptied and the polymer recovered in the usual manner. The reactor was then opened and water rinsed and examined for polymer buildup. In this case, however, the charge was a solid chunk and no buildup evaluation nor subsequest tests on the polymer could be run. In fact, the polymer chunk had to be dissolved away in order to clean the reactor. This showed that an uncrosslinked polyacrylic dispersant or colloidal stabilizer does not work to accomplish the objectives of the present invention.
O PI
/,, IPO - 20 -
Example II In this example, three runs were made in a three liter stainless steel reactor using the procedure out¬ lined in Example I. Two different surfactants and a crosslinked polyacrylic acid dispersant were used. Tests were run on the recovered and dried polymers to show the superior results obtained. The temperature of polymerizatio in these runs was 53°C. and the agitator rpm. was varied, as shown in the following table which contains the recipes and test results.
Table I
Run No. > 3 4
Recipe
Vinyl Chloride 100 pts. 100 pts. 100 pts
Water 150 pts. 150 pts. 150 pts
Disper :sant(1) 0.06 0.06 0.06
Tween 80(2) ___ 0.04 0.05
(3) LIPAL-CE-71 0.05
Di-secondary butyl peroxydicarbonate 0.02 0.02 0.02
Reaction Conditions
T-amperature 53°C. 53°C. 53°C.
Agitator Type Pfaudler Helix Helix
RPM 550 400 400 pH 3.75 3.3 3.5
Buildup
Paper 0.2 0.0 0.0
Sandy 0.5 0.3 0.5
Test Results
Average particle size(μ) 147 135 161
Particle size distribution 30.5% 29.9% 31.6%
Porosity (σc./gram) 0.283 0.299 0.324
Apparent bulk density
(gm./ml. ) 0.559 0.548 0.514
Funnel flow-time
(seconds) 19.2 21.9 24.3 21 -
(1) Polyacrylic acid crosslinked with 0.2 - 0.3 part/ 100 monomer of allyl pentaerythritol.
(2) Polyoxyethylene (20) sorbitan monooleate.
(3) Polyoxyethylene (21) coconut ester.
The above results show the greatly improved properties obtained in the polymers produced by the present invention, such as increased porosity. Further, the reduction of polymer buildup is very vivid.
Example III
In this example, a series o.f runs were made using different crosslinked polyacrylic acid disper¬ sants by themselves without^ uάrfactant. The variable results with respect to porosity show the importance of crosslink density. Again the procedure in Example I was used. The following table contains the recipes and test results.
Table II
Run No. 5 6 7 8
Recipe
Vinyl chloride 100 pts. 100 pts. 100 pts. 100 pts
Water 150 150 150 150
Di-secondary butyl peroxydicarbonate 0.02 0.02 0.02 0.02
Dispersant A 0.12 — — — Dispersant B (2) — 0.12 — —
Dispersant C — — 0.12 —
(4) Dispersant D — — — 0.12
Reaction Condition,s
Temperature 55°C. 55°C.' 55°C. 55°C.
Agitator rpm 500 500 500 500
PH — 3.9 4.0 3.75
Buildup
Paper 0.1 0.1 0.1 0.2
Sandy 0.1 0.1 0.1 1.0
OMPI
/., WWIIPPOO Test Results
Average particle size ( μ ) 157 122 149 146 Particle size distribution 27.4% 28.5% 27.7? 27.7% Porosity
(cc./gram) 0.061 0.132 0.094 0.094
(1) Polyacrylic acid crosslinked with 0.2-0.3 part/100 monomer of allyl pentaerythritol.
(2) Polyacrylic acid crosslinked with 1.3 parts/100 mon¬ omer of allyl sucrose.
(3) Polyacrylic acid crosslinked with 0.7 part/100 mon¬ omer of allyl pentaerythritol.
(4) Polyacrylic acid crosslinked with 0.2 part/100 mon¬ omer of allyl pentaerythritol.
As can be seen from the above results, the por¬ osity suffers in the absence of a surfactant. The reduction in polymer buildup is good.
Example IV In this example, a series of 4 runs were made wherein the ingredients in the recipe were varied as was the mixing. The procedure in Example I was followed in each of the runs. The following table contains the recipes and test results.
Table III
Run No. 9 10 11 12
Recipe Parts
Vinvl Chloride 100 100 100 100
Water 150 150 150 150
Dispersant 0.12 0.12 0.06 0.06
Tween 80 (2) 0.10 0.025 0.05 0.05
Di-secondary butyl peroxydicarbonate 0.02 0.02 0.02 0.02 - 23 -
Run No. 9 10 11 12
Reaction Conditions
Temperature 55°C. 55°C. 55°C. 55°C.
Agitator type Helix Helix . Pfaudler Helix
Agitator RPM 400 400 600 400 pH 4.0 3.4 3.9 3.9
Buildup
Paper 0.0 0.1 0.0 0.1
Sandy 0.1 0.1 0.3 0.1
Test Results
Average particle size ( u ) 126 225 134 192 Particle size distribution(%) 37 34 59 23 Porosity
(cc./gram) 0.298 0.308 0.309 0.275 Apparent bulk density (gm./ml)0.554 0.554 0.541 0.566
Funnel flow-time seconds 21.5 18.4 21.2 21.3
(1) Polyacrylic acid crosslinked with 0.2-0.3 part/100 monomer of allyl pentaerythritol.
(2) Polyoxyethylene (20) sorbitan monooleate.
As can be seen from these results, the reduction in buildup was excellent. The polymer particles were spherical and of high porosity. Significantly, the per¬ centage of glassy particles obtained was very low.
There are many advantages in the use of the process of the present invention, such as good agglomer- ation resistance resulting in spherical, porous part¬ icles and clean reactors, that is, greatly reduced poly¬ mer buildup. The process produces particles having fast funnel flow and high apparent bulk density. The polymer particles have high porosity which results in fast plast- icizer uptake. Numerous other advantages will be appar¬ ent to those skilled in the art. While the present invention has been described in terms of its specific embodiments, certain modifi¬ cations and equivalents will be apparent to those skilled in the art and are intended to be included within the scope of the present invention, which is to be limited only by the scope of the appended claims.

Claims (10)

Claims
1. A process for producing spherical particles of polymer having a high porosity which comprises, poly¬ merizing one or more ethylenically unsaturated monomers having a terminal CH-=C<^ grouping in the form of dis¬ crete droplets in an aqueous medium containing a mon¬ omer-soluble free radical yielding catalyst, a disper¬ sant comprising a substantially unneutralized, water- insoluble, crosslinked polymer of one or more carboxylic acid monomers with a polyunsaturated crosslinking mon¬ omer having a plurality of terminally unsaturated poly- •merizable groups, a water-soluble nonionic surfactant selected from the group consisting of polyoxyethylene alkylphenols, polyoxyethylene alcohols, polyoxyethylene esters of fatty acids, polyoxyethylene alkylamines and polyoxyethylene alkylamides, conducting the poly¬ merization at a temperature in the range of about 0 C. to about 150 C. and vigorously agitating said medium throughout the entire polymerization reaction to pro- duce spherical, porous polymer particles having a diameter in the range of about 30 microns to about 1000 microns, and wherein polymer buildup on the surfaces of the reactor is substantially reduced.
2. A process as defined in claim 1 wherein the monomer is vinyl chloride.
3. A process as defined in claim 1 wherein the monomer(s) to water ratio is in the range of about 1.0 to 1.0 to about 1.0 to 10.0.
4. A process as defined in claim 1 wherein the dispersant is employed in the range of about 0.02% to about 2.00% by weight, based on the weight of the mon¬ omer(s) .
5. A process as defined in claim 1 wherein the surfactant (s) is employed in the range of 0.0% to about 1.0% by weight, based on the weight of the on- mer(s) . -26-
6. A process as :defined in claim 1 wherein the polymerization reaction is conducted at a pH in the range of 'about 3.0 to 4.3.
7. A process as defined in claim 1 wherein the crosslinking monomer i "employed in the range of about 0.1% to 4.0% by weight, based on the weight of th monomers used in making thei dispersant.
8. A process as defined in claim 1 wherein the dispersant is a lightly crosslinked interpolymer of acrylic acid.
9. A process as defined in claim 1 wherein the dispersant is polyacrylic acid crosslinked with 0.2 to 0.3 part/100 parts of monomer of allyl pentaery¬ thritol.
10. A process as defined in claim 1 wherein the dispersant is polyacrylic acid crosslinked with 1.3 ' parts/100 parts of monomer of allyl sucrose.
Λ,
AU71758/81A 1980-05-19 1981-05-07 Process for preparing spherical and porous vinyl resin particles Ceased AU540016B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15084180A 1980-05-19 1980-05-19
US150841 1980-05-19
PCT/US1981/000612 WO1981003334A1 (en) 1980-05-19 1981-05-07 Process for preparing spherical and porous vinyl resin particles

Publications (2)

Publication Number Publication Date
AU7175881A AU7175881A (en) 1981-12-07
AU540016B2 true AU540016B2 (en) 1984-10-25

Family

ID=26764542

Family Applications (1)

Application Number Title Priority Date Filing Date
AU71758/81A Ceased AU540016B2 (en) 1980-05-19 1981-05-07 Process for preparing spherical and porous vinyl resin particles

Country Status (3)

Country Link
AU (1) AU540016B2 (en)
DE (1) DE3174297D1 (en)
NO (1) NO157456C (en)

Also Published As

Publication number Publication date
DE3174297D1 (en) 1986-05-15
NO157456B (en) 1987-12-14
NO820140L (en) 1982-01-18
NO157456C (en) 1988-03-23
AU7175881A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
US4458057A (en) Process for producing spherical and porous vinyl resin particles
US4435524A (en) Process for preparing spherical and porous vinyl resin particles
US4360651A (en) Process for preparing spherical and porous vinyl resin particles
US4464517A (en) Process for the suspension polymerization of vinyl chloride
EP0052632B1 (en) Process for preparing spherical and porous vinyl resin particles
KR940006445B1 (en) Process for producing porous spherical polyvinyl chloride particles
EP0051678B1 (en) Process for producing spherical and porous vinyl resin particles
KR940000273B1 (en) Process for preparing high bulk density vinyl resins
AU540016B2 (en) Process for preparing spherical and porous vinyl resin particles
EP1277765B1 (en) Process for making skinless PVC
CA1191983A (en) Emulsion polymerization process with low emulsifier concentration
NO824034L (en) PROCEDURE FOR PREPARING AND USING POLYMERS AND COPOLYMERS OF VINYL CHLORIDE
JP2807526B2 (en) Method for producing vinyl chloride polymer
AU7324581A (en) Process for producing spherical and porous vinyl resin particles
JPH11228606A (en) Suspension polymerization for vinyl chloride-based resin
JPH07107081B2 (en) Method for producing vinyl chloride latex polymer
JPH068329B2 (en) Method for producing vinyl chloride polymer
JPS6289703A (en) Production of chlorinated vinyl chloride resin
JP3419096B2 (en) Method for producing vinyl chloride polymer
JP3232194B2 (en) Method for producing vinyl chloride polymer
KR840001739B1 (en) Process for producing spherical and porous vinyl resin particles
JPH02292310A (en) Production of vinyl chloride polymer
JPH09227607A (en) Suspension polymerization process for vinyl chloride monomer
JPH07216003A (en) Production of vinyl chloride-based polymer
JPH0776602A (en) Production of vinyl chloride-based polymer