JPH0445102A - Production of emulsion polymer and emulsion polymer obtained by the same production - Google Patents

Production of emulsion polymer and emulsion polymer obtained by the same production

Info

Publication number
JPH0445102A
JPH0445102A JP15300590A JP15300590A JPH0445102A JP H0445102 A JPH0445102 A JP H0445102A JP 15300590 A JP15300590 A JP 15300590A JP 15300590 A JP15300590 A JP 15300590A JP H0445102 A JPH0445102 A JP H0445102A
Authority
JP
Japan
Prior art keywords
emulsion
polymerizable unsaturated
polymer
unsaturated monomer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15300590A
Other languages
Japanese (ja)
Inventor
Kazuo Nomoto
一夫 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP15300590A priority Critical patent/JPH0445102A/en
Publication of JPH0445102A publication Critical patent/JPH0445102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject polymer, having a high elongation ratio at low temperatures and useful for coatings, etc., by using a monomer capable of providing a polymer having a low glass transition point thereof in the initial period of polymerization and further a monomer capable of affording a polymer having a high glass transition point in the end of the polymerization, enhancing the weight ratio of an emulsifying agent with time and carrying out emulsion polymerization. CONSTITUTION:(A) A polymerizable unsaturated monomer capable of providing a polymer having -60 to +10 deg.C glass transition temperature (Ta) thereof is fed to a reaction system in the initial period of polymerization reaction and (B) a polymerizable unsaturated monomer capable of affording a polymer having 0-100 deg.C glass transition temperature (Tb) and (Tb-Ta)>=10 deg.C is further fed to the reaction system in the end of the polymerization reaction. The polymerizable unsaturated monomers are subjected to emulsion polymerization in the presence of water and an emulsifying agent. In the process, the polymerization is carried out under conditions such that the weight ratio of the emulsifying agent to the sum thereof and the polymers of the polymerizable unsaturated monomers in the reaction system may be enhanced with the elapsed time of the polymerization reaction. Thereby, the objective polymer composed of particles having a soft inner layer and a rigid surface layer with a particle diameter within the range of 0.3-3.0mu, is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、乳化重合体の製造方法に関し、さらに詳しく
は、粒子のモルホロジーおよび大きさを制御することに
よって、低温下で相当な伸び率を示し、かつ耐汚染性に
すぐれた塗料組成物の材料として適した乳化重合体を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing emulsion polymers, and more particularly, to a method for producing emulsion polymers, and more particularly, by controlling the morphology and size of the particles, a considerable elongation rate can be achieved at low temperatures. The present invention relates to a method for producing an emulsion polymer suitable as a material for a coating composition that exhibits the same properties and has excellent stain resistance.

(従来の技術) 現在、種々の乳化重合体が広範囲の用途に用いられてい
るが、被覆用材料としての乳化重合体は、近年その使用
量が増大しており、また、同重合体に対して各種の高度
な要求が強まっている。
(Prior art) Currently, various emulsion polymers are used for a wide range of purposes, but the amount of emulsion polymers used as coating materials has increased in recent years, and Various advanced requirements are becoming stronger.

例えば、建築用の単層弾性塗料においては、−10℃程
度の低温下においてフィルムが相当の伸び率を有し、か
つ常温下においてはフィルム表面に粘着性が少なくほこ
り等の汚れが付着しにくいことが要求されており、かか
る要求を満足する乳化重合体の開発が望まれている。
For example, in the case of single-layer elastic paints for construction, the film has a considerable elongation rate at low temperatures of around -10°C, and the film surface has low stickiness at room temperature, making it difficult for dust and other dirt to adhere to it. Therefore, it is desired to develop an emulsion polymer that satisfies this requirement.

従来、一般に、合成樹脂エマルション塗料において低温
での伸び率を高めるには、ガラス転移温度の低い樹脂組
成をもった乳化重合体を用いるか、または可塑剤を大量
に配合することが行なわれているが、これらの場合には
、耐汚染性に関して満足な品質が得られず、結局、これ
らの方法によっては、低温での伸び率と耐汚染性とを同
時に満足することは困難であった。
Conventionally, in order to increase the elongation rate at low temperatures in synthetic resin emulsion paints, it has been common practice to use emulsion polymers with a resin composition with a low glass transition temperature, or to incorporate large amounts of plasticizers. However, in these cases, satisfactory quality in terms of stain resistance cannot be obtained, and in the end, depending on these methods, it is difficult to simultaneously satisfy elongation at low temperatures and stain resistance.

この問題を解決するための工夫として、内部層の樹脂組
成と表面層の樹脂組成の異なる粒子からなる乳化重合体
を作成することが考えられ、その手段として、多段階重
合法やパワーフィード重合法(特公昭5l−46555
)などの従来公知の方法を応用した乳化重合法が考えら
れる。これらの重合法によっていわゆる複層構造の粒子
から成る乳化重合体を合成する場合に、従来は造膜性を
良くするために、粒子の内部層に硬質成分、表面層に軟
質成分が分布するように反応系に供給する成分を調整す
ることが行なわれている。
One possible way to solve this problem is to create an emulsion polymer consisting of particles with different resin compositions in the inner layer and the surface layer. (Tokuko Showa 5l-46555
Emulsion polymerization methods applying conventionally known methods such as ) can be considered. When synthesizing emulsion polymers consisting of particles with a so-called multilayer structure using these polymerization methods, conventional methods have been used to distribute hard components in the inner layer of the particles and soft components in the surface layer in order to improve film-forming properties. The components supplied to the reaction system are often adjusted.

ところが、この方法で合成した乳化重合体から得られる
乾燥フィルムは、軟質成分が表面に現われるため、耐汚
染性が十分でない。また、十分な耐汚染性をもつフィル
ムを得ることを意図して、内部層に軟質成分、表面層に
硬質成分が分布するように反応系に供給する成分を調整
する方法で乳化重合体を合成しても、得られる乳化重合
体は、最低造膜温度(MFT)が相当に高(、コーティ
ング用途に使用する場合には多量の造膜助剤を必要とす
るため、実用上満足なフィルムを作成することは困難で
ある。
However, the dry film obtained from the emulsion polymer synthesized by this method does not have sufficient stain resistance because soft components appear on the surface. In addition, with the intention of obtaining a film with sufficient stain resistance, an emulsion polymer was synthesized by adjusting the components supplied to the reaction system so that the soft component was distributed in the inner layer and the hard component was distributed in the surface layer. However, the resulting emulsion polymer has a considerably high minimum film forming temperature (MFT) (and requires a large amount of coalescent when used in coating applications, making it difficult to form a film that is practically satisfactory). It is difficult to create.

(問題点を解決するための手段) 本発明者らは以上の点に鑑みて、鋭意研究した結果、内
部層が軟質、表面層が硬質で、粒子径が0.3〜3.0
μmの範囲にあるいわゆる大粒子径の乳化重合体は、■
MFTが、通常の粒子径のものに比べて低く、造膜に関
する間圧を解消できること、■低温下での伸び率が太き
(、かつ常温下で耐汚染性に優れたフィルムを得ること
ができることを見出した。また、下記に示す方法によっ
てこれらの特徴を備えた乳化重合体を製造することがで
きることを見出し、本発明を完成させるに至った。
(Means for Solving the Problems) In view of the above points, the present inventors conducted intensive research and found that the inner layer is soft, the surface layer is hard, and the particle size is 0.3 to 3.0.
Emulsion polymers with so-called large particle diameters in the μm range are
The MFT is lower than that of normal particle sizes, which eliminates the interpressure associated with film formation, and the elongation rate is high at low temperatures (and it is possible to obtain a film with excellent stain resistance at room temperature). The inventors also discovered that emulsion polymers having these characteristics can be produced by the method described below, leading to the completion of the present invention.

すなわち本発明は、 水および乳化剤の存在下で、重合性不飽和単量体を乳化
重合させることによる、内部層が軟質、表面層が硬質で
粒子径が0.3〜3.0μmの範囲にある粒子から成る
乳化重合体の製造方法であって、 (a)重合反応の初期に反応系に供給する重合性不飽和
単量体(A)が、(A)の重合体のガラス転移温度(T
a)が−60〜10℃のものであり、重合反応の後期に
反応系に供給する重合性不飽和単量体(B)が、(B)
の重合体のガラス転移温度(Tb)が0〜100℃のも
のであり、かつTb−Ta210℃であり、がっ (b)反応系への乳化剤の供給に関して、反応系中での
重合性不飽和単量体の重合物との和に対する乳化剤の重
量比率が重合反応経時とともに高められること を特徴とする乳化重合体の製造方法ならびにその製造方
法によって得られる乳化重合体である。
That is, the present invention emulsion polymerizes a polymerizable unsaturated monomer in the presence of water and an emulsifier, so that the inner layer is soft, the surface layer is hard, and the particle size is in the range of 0.3 to 3.0 μm. A method for producing an emulsion polymer consisting of certain particles, comprising: (a) a polymerizable unsaturated monomer (A) supplied to the reaction system at the initial stage of the polymerization reaction; T
a) is -60 to 10°C, and the polymerizable unsaturated monomer (B) supplied to the reaction system in the latter stage of the polymerization reaction is (B)
The glass transition temperature (Tb) of the polymer is 0 to 100°C, and Tb-Ta is 210°C. The present invention relates to a method for producing an emulsion polymer, characterized in that the weight ratio of the emulsifier to the sum of the saturated monomers and the polymer increases as the polymerization reaction progresses, and an emulsion polymer obtained by the method.

ここで、特に断わらないかぎり、「粒子径」とは、つぎ
の方法によって測定されるものを言う。すなわち、Jo
yce−Loeb1社製のDiskCentrifug
e  (M K −m型)粒度分布測定機を用いて粒子
径分布を測定し、得られた粒子径分布曲線において最大
ピークが現われるところの粒子径の値を、ここでの「粒
子径」として扱う。
Here, unless otherwise specified, "particle diameter" refers to what is measured by the following method. That is, Jo
Disk Centrifug manufactured by yce-Loeb1
Measure the particle size distribution using an e (MK-m type) particle size distribution analyzer, and the value of the particle size where the maximum peak appears in the obtained particle size distribution curve is defined as the "particle size" here. handle.

ここで、重合性不飽和単量体(A)の重合体のガラス転
移温度(Ta)を、より詳しく説明すると、重合性不飽
和単量体(A)が単量体M。
Here, to explain the glass transition temperature (Ta) of the polymer of the polymerizable unsaturated monomer (A) in more detail, the polymerizable unsaturated monomer (A) is monomer M.

M z 、 M s・・・よりなり、それぞれの重量分
率がC,、C,、C,・・・であり、それぞれの単量体
の単独重合体P+ 、P2 、Ps・・・の、絶対温度
で表したガラス転移温度をそれぞれT、、T、。
Consisting of Mz, Ms..., the weight fraction of each is C,, C,, C,..., and the homopolymers of the respective monomers P+, P2, Ps..., The glass transition temperatures expressed in absolute terms are T, , T, respectively.

Ta・・・とすると、Taは(1)式で表される。Ta..., Ta is expressed by equation (1).

I   C,C2C3 = −十−十−+・・・・・ (1) Ta  TI   T2  Ta 単量体(A)の重合体とは詳しくは単量体MI  M2
 、Ms・・・の共重合体であり、Taはその共重合体
のガラス転移温度をいう。Taを単量体(A)のガラス
転移温度ということがある。
I C, C2C3 = -10-10-+... (1) Ta TI T2 Ta The polymer of monomer (A) is monomer MI M2
, Ms..., and Ta indicates the glass transition temperature of the copolymer. Ta is sometimes referred to as the glass transition temperature of the monomer (A).

単量体(B)の重合体のガラス転移温度(Tb)につい
ても上記と同様である。
The glass transition temperature (Tb) of the polymer of monomer (B) is also the same as above.

本発明方法のうちの(a)は、内部層が軟質、表面層が
硬質のモルホロジーの重合体粒子を作成するための手段
である。すなわち、重合の初めの段階において比較的低
いガラス転移温度をもつ重合性不飽和単量体を供給し、
このときに重合体粒子の中心層成分となるべき軟質の重
合体を生成させる。その後に、より高いガラス転移温度
をもつ重合性不飽和単量体を供給し、このときに硬質の
重合体を生成させ、この硬質の重合体が先に生成した軟
質の重合体の領域の外殻部に配置した構造をもつ重合体
粒子を生成させことが出来る。
Among the methods of the present invention, (a) is a means for producing polymer particles having a morphology in which the inner layer is soft and the surface layer is hard. That is, supplying a polymerizable unsaturated monomer with a relatively low glass transition temperature at the initial stage of polymerization,
At this time, a soft polymer that is to become the center layer component of the polymer particles is produced. Subsequently, a polymerizable unsaturated monomer with a higher glass transition temperature is supplied to form a hard polymer, and this hard polymer extends outside the region of the previously formed soft polymer. It is possible to produce polymer particles with structures arranged in the shell.

るための手段である。このような比較的大粒径の重合体
粒子は、通常の乳化重合によって得ることが困難である
が、本発明方法の(b)は、通常の場合よりも大きな重
合体粒子を生成させることができる乳化重合法であり、
しかも、内部層が軟質、表面層が硬質のモルホロジーの
重合体粒子を生成させるための方法と両立しつるもので
ある。
It is a means to Although it is difficult to obtain such relatively large polymer particles by normal emulsion polymerization, method (b) of the present invention makes it possible to produce larger polymer particles than in the normal case. It is an emulsion polymerization method that allows
Moreover, it is compatible with a method for producing polymer particles having a soft internal layer morphology and a hard surface layer morphology.

すなわち、重合の初めの段階において、反応系中での重
合性不飽和単量体と不飽和単量体の和に対する乳化剤の
重量比率を比較的低く抑えることにより、生成する重合
体粒子数を少なくし、最終的に生成する重合体粒子のサ
イズを大きくすることができる。また、反応経時ととも
に反応系中における乳化剤の比率を高めていくことによ
り、粒子相分率が高くなるに伴って懸念される重合体粒
子の分散安定性の低下を防止することができる。
In other words, by keeping the weight ratio of the emulsifier to the sum of the polymerizable unsaturated monomer and the unsaturated monomer in the reaction system relatively low at the initial stage of polymerization, the number of polymer particles produced can be reduced. However, the size of the finally produced polymer particles can be increased. Furthermore, by increasing the ratio of the emulsifier in the reaction system as the reaction progresses, it is possible to prevent a decrease in the dispersion stability of the polymer particles, which is a concern as the particle phase fraction increases.

本発明においては上記の(a)および(b)をともに行
うことが必要である。その具体的方法として、例えば次
のような方法を挙げることができる。
In the present invention, it is necessary to perform both (a) and (b) above. As a specific method, for example, the following method can be mentioned.

すなわち、それは、重合性不飽和単量体を水と乳化剤の
存在下に安定に乳化して第一の単量体プレエマルション
を作成し、別の重合性不飽和単量体を水と乳化剤の存在
下に安定に乳化して第二の単量体プレエマルションを作
成し、第一の単量体プレエマルションを第一の供給源か
ら反応系に供給するとともに、第二の単量体プレエマル
ションを第二の供給源から第一の供給源に供給し、この
とき、反応系中で重合性不飽和単量体を乳化重合させる
乳化重合方法であり、 (a)重合反応の初期に第一の供給源から反応系に供給
する単量体プレエマルション中の重合性不飽和単量体(
A)が、(A)の重合体のガラス転移温度(Ta)が−
60〜10℃のものであり、重合反応の終期に第一の供
給源から反応系に供給する単量体プレエマルション中の
重合性不飽和単量体(B)が、(B)の重合体のガラス
転移温度(Tb)が0〜100℃のものであり、かつT
b−Ta210℃であり、 (b)第一の単量体プレエマルション中の重合性不飽和
単量体に対する同プレエマルション中の乳化剤の重量比
率が、第二の単量体プレエマルション中の重合性不飽和
単量体に対する同ブレエマルション中の乳化剤の重合比
率より低く、上記の(a)および(b)によって、第一
の供給源から反応系に供給する単量体プレエマルション
中の重合性不飽和単量体および乳化剤に関する組成を重
合反応経時とともに連続的に変化させる方法である。
That is, it stably emulsifies a polymerizable unsaturated monomer in the presence of water and an emulsifier to create a first monomer pre-emulsion, and emulsifies another polymerizable unsaturated monomer in the presence of water and an emulsifier. a second monomer pre-emulsion is stably emulsified in the presence of is an emulsion polymerization method in which a polymerizable unsaturated monomer is supplied from a second supply source to a first supply source, and at this time, the polymerizable unsaturated monomer is emulsion polymerized in the reaction system, (a) the first The polymerizable unsaturated monomer (
A), the glass transition temperature (Ta) of the polymer of (A) is -
60 to 10°C, and the polymerizable unsaturated monomer (B) in the monomer pre-emulsion supplied to the reaction system from the first supply source at the end of the polymerization reaction is the polymer of (B). has a glass transition temperature (Tb) of 0 to 100°C, and T
(b) The weight ratio of the emulsifier in the first monomer pre-emulsion to the polymerizable unsaturated monomer in the same pre-emulsion is higher than that in the second monomer pre-emulsion. The polymerizability in the monomer pre-emulsion supplied from the first source to the reaction system is lower than the polymerization ratio of the emulsifier in the same braemulsion to the sexually unsaturated monomer, and according to (a) and (b) above, This is a method in which the composition of unsaturated monomers and emulsifiers is continuously changed over time of the polymerization reaction.

上記の如き方法にて製造される乳化重合体粒子は、複層
構造を有すると同時に従来のものよりもサイズが大きい
ことが特徴である。従来の複層構造乳化重合体は、一般
に粒子径(d)が0.3μm以下であり、造膜後のフィ
ルムのモルホロジーは、通常このサイズ(#d)の単位
のくり返しになる。これに対して本発明の乳化重合体粒
子はそのサイズが大きいため、造膜後のフィルムのモル
ホロジーのくり返し単位のサイズがより太き(なる。そ
の結果、従来みられない性能の発現が期待される。本発
明者らは、種々検討した結果、これらの乳化重合体が前
述の如き性質を持つことを見出したが、それは、くり返
し単位のサイズが大きいフィルムモルホロジーに帰因す
るものと考える。
The emulsion polymer particles produced by the above method are characterized by having a multilayer structure and at the same time being larger in size than conventional particles. Conventional multilayer structure emulsion polymers generally have a particle diameter (d) of 0.3 μm or less, and the morphology of the film after film formation is usually a repetition of units of this size (#d). On the other hand, since the emulsion polymer particles of the present invention have a large size, the repeat unit size of the morphology of the film after film formation becomes thicker.As a result, it is expected that performance not seen before can be exhibited. As a result of various studies, the present inventors found that these emulsion polymers have the above-mentioned properties, which we believe is due to the film morphology in which the size of the repeating unit is large.

本発明の乳化重合体は、粒子径が大きいことが特徴であ
り、その範囲は、0.3〜3.0μm、好ましくは0.
4〜230μm、さらに好ましくは0.5〜1.0μm
である。
The emulsion polymer of the present invention is characterized by a large particle size, which ranges from 0.3 to 3.0 μm, preferably from 0.3 μm to 3.0 μm.
4 to 230 μm, more preferably 0.5 to 1.0 μm
It is.

本発明方法に用いる重合性不飽和単量体は、乳化重合に
一般的に使用されるものであれば特に限定されるもので
はない。具体例としては、(メタ)アクリル酸メチル、
(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル
、(メタ)アクリル酸ラウリル、(メタ)アクリル酸−
2−エチルヘキシル、(メタ)アクリル酸−2−ヒドロ
キシエチル、(メタ)アクリル酸−2−ヒドロキシプロ
ピル、(メタ)アクリル酸−3−クロロ−2−ヒドロキ
シプロピルもしくは(メタ)アクリル酸グリシジルの如
きアクリル酸またはメタクリル酸の各種エステル類; 
(メタ)アクリルアミドもしくはN−メチロール(メタ
)アクリルアミドの如き各種アミド類;アクリル酸、メ
タクリル酸、マレイン酸もしくはフマル酸の如き各種カ
ルボキシル基含有単量体類;ジメチルアミノエチル(メ
タ)アクリレートもしくはジエチルアミノプロビル(メ
タ)アクリレートの如き各種のジアルキルアミノ基含有
モノマー類:塩化ビニル塩化ビニリデンもしくはフッ化
ビニリデンの如きハロゲン化ビニルまたはハロゲン化ビ
ニリデン類;スチレン、α−メチルスチレンもしくはビ
ニルトルエンの如き各種芳香族ビニル化合物類;酢酸ビ
ニルもしくはプロピオン酸ビニルの如き各種ビニルエス
テル類;ブタジェンもしくはイソプレンの如き各種共役
ジエン類;無水マレイン酸または無水イタコン酸の如き
各種の多価カルボン酸無水基含有単量体類;エチレン、
プロピレンもしくはブテンの如き各種の脂肪族モノオレ
フィン類;あるいは、アクリロニトリルもしくはメタク
リロニトリルの如き各種不飽和ニトリル類を挙げること
ができる。これらのものを単独もしくは2種以上の併用
で使用することができる。
The polymerizable unsaturated monomer used in the method of the present invention is not particularly limited as long as it is commonly used in emulsion polymerization. Specific examples include methyl (meth)acrylate,
Ethyl (meth)acrylate, butyl (meth)acrylate, lauryl (meth)acrylate, (meth)acrylic acid-
Acrylics such as 2-ethylhexyl, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate or glycidyl (meth)acrylate. various esters of acid or methacrylic acid;
Various amides such as (meth)acrylamide or N-methylol (meth)acrylamide; various carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid or fumaric acid; dimethylaminoethyl (meth)acrylate or diethylaminopropylene Various dialkylamino group-containing monomers such as vinyl(meth)acrylate; vinyl halides or vinylidene halides such as vinyl chloride vinylidene chloride or vinylidene fluoride; various aromatic vinyls such as styrene, α-methylstyrene or vinyltoluene. Compounds; various vinyl esters such as vinyl acetate or vinyl propionate; various conjugated dienes such as butadiene or isoprene; various polyhydric carboxylic acid anhydride-containing monomers such as maleic anhydride or itaconic anhydride; ethylene ,
Mention may be made of aliphatic monoolefins such as propylene or butene; or unsaturated nitriles such as acrylonitrile or methacrylonitrile. These materials can be used alone or in combination of two or more.

また、本発明方法に用いる乳化剤は、乳化重合に一般的
に使用されるものであれば特に限定されないが、具体的
には、以下に示すような、アニオン型界面活性剤、ノニ
オン型界面活性剤、カチオン型界面活性剤およびそれら
の混合物を用いることができる。アニオン型界面活性剤
としては、例えば、各種脂肪酸塩、高級アルコール硫酸
エステル塩、アルキルベンゼンスルホン酸塩、ジアルキ
ルスルホコハク酸塩、ポリオキシエチレンアルキルエー
テル硫酸塩、ポリオキシエチレンアルキルフェニルエー
テル硫酸塩、ポリオキシエチレンポリオキシブロビレン
グリコールエーテル硫酸塩、ポリカルボン酸型高分子界
面活性剤などを挙げることができる。ノニオン型界面活
性剤としては、ポリオキシエチレンアルキルエーテル、
ポリオキシエチレンアルキルフェニルエーテル、ソルビ
タン脂肪酸エステル、ポリオキシエチレン脂肪酸エステ
ル、ポリオキシエチレン・ポリオキシブロビレンブロッ
クコボリマーなどを挙げることができる。また、カチオ
ン型界面活性剤としては、アルキルアミン塩、第四級ア
ンモニウム塩などを挙げることができる。これらの乳化
剤の使用量は、重合性不飽和単量体の総量に対して0.
01〜10重量%、好ましくは0.1〜5重量%の範囲
にあることが適当である。
Further, the emulsifier used in the method of the present invention is not particularly limited as long as it is commonly used in emulsion polymerization, but specifically, anionic surfactants and nonionic surfactants such as those shown below may be used. , cationic surfactants and mixtures thereof can be used. Examples of anionic surfactants include various fatty acid salts, higher alcohol sulfate ester salts, alkylbenzene sulfonates, dialkyl sulfosuccinates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene Examples include polyoxybrobylene glycol ether sulfate and polycarboxylic acid type polymeric surfactants. Nonionic surfactants include polyoxyethylene alkyl ether,
Examples include polyoxyethylene alkylphenyl ether, sorbitan fatty acid ester, polyoxyethylene fatty acid ester, and polyoxyethylene/polyoxybrobylene block copolymer. Furthermore, examples of the cationic surfactant include alkylamine salts, quaternary ammonium salts, and the like. The amount of these emulsifiers used is 0.0% based on the total amount of polymerizable unsaturated monomers.
Suitably, the amount is in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight.

反応系中での重合性不飽和単量体と重合性不飽和単量体
の重合物との和に対する乳化剤の重量比率は、反応経時
とともに高められなければならない。したがって反応初
期よりも終了時の方がこの値が増加するように乳化剤を
供給し、その増加割合は、1.5〜500倍、好ましく
は、2〜100倍の範囲にあることが適当である。
The weight ratio of the emulsifier to the sum of the polymerizable unsaturated monomer and the polymer of the polymerizable unsaturated monomer in the reaction system must be increased as the reaction progresses. Therefore, the emulsifier is supplied so that this value increases more at the end of the reaction than at the beginning of the reaction, and the increase rate is suitably in the range of 1.5 to 500 times, preferably 2 to 100 times. .

本発明においては、反応系中で、重合性不飽和単量体を
乳化重合させるが、その際、一般的には重合開始剤を使
用する。この重合開始剤は、乳化重合に一般的に使用さ
れるものであれば、特に限定されないが、具体例として
は、過酸化水素の如き水溶性無機過酸化物;過硫酸カリ
ウム、過硫酸アンモニウムの如き過硫酸塩類:クメンハ
イドロパーオキサイド、ベンゾイルパーオキサイド、を
−ブチルハイドロパーオキサイド、ジ−t−ブチルパー
オキサイドの如き有機過酸化物類;アゾビスイソブチロ
ニトリル、アゾビスシアノ吉草酸の如きアゾ系開始剤類
などがあり、これらのラジカル重合開始剤は、単独また
は2種以上併用して使用できる。使用量としては、重合
性不飽和単量体の総量に対して、0.1〜2重量%が好
ましい。
In the present invention, a polymerizable unsaturated monomer is emulsion polymerized in a reaction system, and a polymerization initiator is generally used at that time. The polymerization initiator is not particularly limited as long as it is commonly used in emulsion polymerization, but specific examples include water-soluble inorganic peroxides such as hydrogen peroxide; potassium persulfate, ammonium persulfate, etc. Persulfates: organic peroxides such as cumene hydroperoxide, benzoyl peroxide, -butyl hydroperoxide, di-t-butyl peroxide; azo-based starting materials such as azobisisobutyronitrile, azobiscyanovaleric acid These radical polymerization initiators can be used alone or in combination of two or more. The amount used is preferably 0.1 to 2% by weight based on the total amount of polymerizable unsaturated monomers.

なお、上記の過酸化物系重合開始剤と金属イオンまたは
還元剤とを併用して重合開始剤とし、レドックス重合を
行なってもよい。
Note that redox polymerization may be carried out by using the above peroxide-based polymerization initiator together with a metal ion or a reducing agent as a polymerization initiator.

これらの重合開始剤の供給は、あらかじめ反応器中に重
合開始剤の水溶液または水分散液を装入しておく方法、
重合性不飽和単量体または単量体プレエマルション中に
配合しておく方法、重合開始剤の水溶液または水分散液
を重合性不飽和単量体と同時に反応器に送入する方法、
あるいはこれらの方法の併用で行なうことができる。ま
た、重合性不飽和単量体の供給終了後、追加触媒として
重合開始剤の一部を反応器に供給してもよい。
These polymerization initiators can be supplied by charging an aqueous solution or dispersion of the polymerization initiator into the reactor in advance;
A method in which a polymerizable unsaturated monomer or a monomer pre-emulsion is blended, a method in which an aqueous solution or aqueous dispersion of a polymerization initiator is fed into a reactor simultaneously with a polymerizable unsaturated monomer,
Alternatively, these methods can be used in combination. Furthermore, after the supply of the polymerizable unsaturated monomer is completed, a portion of the polymerization initiator may be supplied to the reactor as an additional catalyst.

本発明において使用する水の量は、重合性不飽和単量体
の総量に対して10〜300重量%、好ましくは10〜
100重量%の範囲が適当である。
The amount of water used in the present invention is 10 to 300% by weight, preferably 10 to 300% by weight based on the total amount of polymerizable unsaturated monomers.
A range of 100% by weight is suitable.

本発明においては、上記の重合性不飽和単量体、乳化剤
、重合開始剤および水のほかに、必要に応じて、メルカ
プタン類などの連鎖移動剤、および重炭酸ナトリウムや
酢酸ナトリウムなどの緩衝剤などを使用してもよい。こ
れらの添加剤の供給は、例えば、あらかじめ反応器中に
装入しておく方法、あるいは、重合性不飽和単量体また
は重合体プレエマルション中に混合して反応器に送入す
る方法などで行なうことができる。
In the present invention, in addition to the above-mentioned polymerizable unsaturated monomers, emulsifiers, polymerization initiators, and water, chain transfer agents such as mercaptans, and buffers such as sodium bicarbonate and sodium acetate are optionally used. etc. may also be used. These additives can be supplied, for example, by charging them into the reactor in advance, or by mixing them into a polymerizable unsaturated monomer or polymer pre-emulsion and feeding it into the reactor. can be done.

本発明方法において、反応系への重合性不飽和単量体の
供給速度は使用する単量体、重合開始剤および重合温度
などによって適宜選択すればよいが、一般には重合性不
飽和単量体の全量が1〜10時間かけて反応系中へ供給
し終わる速度である。反応系中へ重合性不飽和単量体を
供給する場合、水と乳化剤の存在下に重合性不飽和単量
体を安定に乳化して単量体プレエマルションを作成し、
この単量体プレエマルションを反応系中へ供給してもよ
い。単量体プレエマルションは例えば最初、乳化剤と水
を混ぜ、次に重合性不飽和単量体を撹拌しながら混合す
ることによって容易に得られる。
In the method of the present invention, the feed rate of the polymerizable unsaturated monomer to the reaction system may be appropriately selected depending on the monomer used, the polymerization initiator, the polymerization temperature, etc. This is the speed at which the entire amount is completely fed into the reaction system over 1 to 10 hours. When supplying a polymerizable unsaturated monomer into the reaction system, a monomer pre-emulsion is created by stably emulsifying the polymerizable unsaturated monomer in the presence of water and an emulsifier.
This monomer pre-emulsion may be fed into the reaction system. A monomer pre-emulsion can be easily obtained, for example, by first mixing an emulsifier and water and then mixing the polymerizable unsaturated monomer with stirring.

反応系の重合温度は特に限定されないが、通常10〜1
00℃であり、好ましくは30〜80℃である。
The polymerization temperature of the reaction system is not particularly limited, but is usually 10 to 1
00°C, preferably 30 to 80°C.

(発明の効果) 本発明の方法を用いることによって、内部層が軟質、表
面層が硬質で、平均粒子径が0.3〜3.0μmの範囲
にある粒子から成る乳化重合体を製造することができる
(Effects of the Invention) By using the method of the present invention, an emulsion polymer consisting of particles having a soft inner layer, a hard surface layer, and an average particle diameter in the range of 0.3 to 3.0 μm can be produced. I can do it.

本発明の方法によって得られる乳化重合体は、塗料、末
剤、シーリング剤、コーキング剤、カーペット等のバッ
キング剤などへの利用が可能である。本乳化重合体は、
上記の如きモルホロジーをもち、かつ比較的サイズが大
きい粒子から成るため、従来の複層構造ラテックスに比
べて、層構造の特徴をより顕著にフィルム性能に反映さ
せることが可能である。
The emulsion polymer obtained by the method of the present invention can be used as a paint, a powder, a sealant, a caulking agent, a backing agent for carpets, etc. This emulsion polymer is
Since it has the above-mentioned morphology and is composed of particles having a relatively large size, it is possible to more clearly reflect the characteristics of the layer structure in the film performance compared to conventional multi-layer structure latex.

(実施例) 以下に、実施例に基づき本発明を具体的に説明する。な
お、本発明の範囲は、これらの実施例にのみ限定される
ものではない。
(Examples) The present invention will be specifically described below based on Examples. Note that the scope of the present invention is not limited only to these examples.

なお、粘度測定はB型粘度計(60rpm。The viscosity was measured using a B-type viscometer (60 rpm).

25℃)で行ない、粒子径の測定は注1)の方法によっ
て行ない、最低造膜温度の測定は、日本理学工業(株)
製の最低造膜温度測定機を使用した。なお実施例中の「
部」および「%」は重量基準である。
The particle size was measured using the method described in Note 1), and the minimum film forming temperature was measured using Nippon Rigaku Kogyo Co., Ltd.
A minimum film-forming temperature measurement device manufactured by Kogyo Co., Ltd. was used. In addition, “
Parts" and "%" are by weight.

実施例1 重合反応装置は、撹拌機、温度計および還流冷却器を備
えた反応器(2ρフラスコ)、撹拌機を備えた第一の単
量体プレエマルション供給源、撹拌機を備えた第二の単
量体プレエマルション供給源、触媒溶液供給源、これら
を結ぶ配管、およびポンプ(3台)から成る。反応器と
第一の供給源を配管で連結し、その途中にポンプを設置
した。
Example 1 The polymerization reactor consisted of a reactor (2ρ flask) equipped with a stirrer, thermometer and reflux condenser, a first monomer pre-emulsion source equipped with a stirrer, a second monomer pre-emulsion source equipped with a stirrer. The system consists of a monomer pre-emulsion supply source, a catalyst solution supply source, piping connecting these, and three pumps. The reactor and the first supply source were connected by piping, and a pump was installed in the middle.

別に、反応器と触媒溶液供給源を配管で連結し、その途
中にポンプを設置した。また、第一の単量体プレエマル
ション供給源と第二の単量体プレエマルション供給源を
配管で連結し、その途中にポンプを設置した。
Separately, the reactor and the catalyst solution supply source were connected by piping, and a pump was installed in the middle. Further, the first monomer pre-emulsion supply source and the second monomer pre-emulsion supply source were connected by piping, and a pump was installed in the middle.

反応器に脱イオン水240部を仕込み、温度70℃に加
熱した。第一の供給源の中で下記の配合から成る第一の
単量体プレエマルションを調製した。
A reactor was charged with 240 parts of deionized water and heated to a temperature of 70°C. A first monomer pre-emulsion consisting of the following formulation was prepared in a first source.

脱イオン水            167部ニューコ
ール271A 注2)   1.40部ニューコール1
120 注3)   0.67部スチレン      
       132部アクリル酸−2−エチルヘキシ
ル  360部メタクリル酸メチル        1
81部アクリル酸           6.73部t
−ブチルハイドロパーオキサイド 注4)2.50部 第二の供給源の中で下記の配合から成る第二の単量体プ
レエマルションを調製した。
Deionized water 167 parts Nucol 271A Note 2) 1.40 parts Nucol 1
120 Note 3) 0.67 part styrene
132 parts 2-ethylhexyl acrylate 360 parts Methyl methacrylate 1
81 parts acrylic acid 6.73 parts t
-Butyl hydroperoxide Note 4) 2.50 parts A second monomer pre-emulsion consisting of the following formulation was prepared in a second source.

脱イオン水           109部ニューコー
ル271A 注2)   40.7部ニューコール11
20 注3)   19.5部スチレン       
      132部アクリル酸−2−エチルヘキシル
  270部メタクリル酸メチル        27
0部アクリル酸           6.73部t−
ブチルハイドロパーオキサイド 注4)2.50部 上記の第一の単量体プレエマルション中の重合性不飽和
単量体のガラス転移温度は0.4℃であり、第二の単量
体プレエマルション中の重合性不飽和単量体のガラス転
移温度は20.4℃である。
Deionized water 109 parts Nucol 271A Note 2) 40.7 parts Nucol 11
20 Note 3) 19.5 parts styrene
132 parts 2-ethylhexyl acrylate 270 parts Methyl methacrylate 27
0 parts acrylic acid 6.73 parts t-
Butyl hydroperoxide Note 4) 2.50 parts The glass transition temperature of the polymerizable unsaturated monomer in the above first monomer pre-emulsion is 0.4°C, and the glass transition temperature of the polymerizable unsaturated monomer in the above first monomer pre-emulsion is 0.4°C. The glass transition temperature of the polymerizable unsaturated monomer therein is 20.4°C.

触媒溶液供給源の中で、次の配合から成る触媒溶液を調
製した。
A catalyst solution consisting of the following formulation was prepared in a catalyst solution source.

ホルムアルデヒドスルホン酸ナトリウム8.0部 脱イオン水          40.0部第一の単量
体プレエマルションを第一の供給源から反応器に5時間
に亘って一定の速度で送入した。同時に、第二の単量体
プレエマルションを第二の供給源から第一の供給源に5
時間に亘って一定速度で送入し、送入期間中は、第一の
供給源を撹拌し続け、常に十分な混合が生じるようにし
た。同時に、触媒溶液を、触媒溶液供給源から反応器に
5時間に亘って一定速度で送入した。
Sodium formaldehyde sulfonate 8.0 parts Deionized water 40.0 parts The first monomer pre-emulsion was fed from the first source to the reactor at a constant rate over a period of 5 hours. At the same time, 55% of the second monomer pre-emulsion is transferred from the second source to the first source.
The feed was carried out at a constant rate over time, and the first source was kept stirring during the feed period to ensure that sufficient mixing occurred at all times. At the same time, catalyst solution was pumped into the reactor from a catalyst solution source at a constant rate over a period of 5 hours.

上記操作の期間中、反応器を70部2℃に保ち、撹拌を
続けた。単量体プレエマルションおよ触媒溶液の送入が
終了した後、更に、70部2℃に1時間保ち撹拌を続け
た。その期間中に、ホルムアルデヒドスルホン酸ナトリ
ウム1.60部と脱イオン水5.90部から成るロンガ
リット水溶液7.50部およびt−ブチルハイドロパー
オキサイド1.60部を反応器中に、3回に分けて15
分間隔で投入した。
During the above operation, 70 parts of the reactor were kept at 2° C. and stirring was continued. After the introduction of the monomer pre-emulsion and catalyst solution was completed, 70 parts of the reactor were kept at 2° C. for 1 hour and stirring was continued. During that period, 7.50 parts of Rongalite aqueous solution consisting of 1.60 parts of sodium formaldehyde sulfonate and 5.90 parts of deionized water and 1.60 parts of t-butyl hydroperoxide were added into the reactor in three portions. te15
Inserted at minute intervals.

上記操作の終了後、反応器を冷却し、25%アンモニア
水12.7部、アデカネートB748−改−8注5)C
l 80部およびスラオフ72N注6)2.00部を反
応器に投入し、その後10分間撹拌した。その後、反応
器の内容物を300メツシユ絹布で濾過した。得られた
ラテックスは固形分濃度68.9%、粘度1650CP
S、pH9−1、粒子径0.55μm、最低造膜温度7
℃であった。
After the above operation is completed, the reactor is cooled, and 12.7 parts of 25% ammonia water is added to the reactor.
1 and 2.00 parts of Suraoff 72N Note 6) were charged into the reactor, and then stirred for 10 minutes. The contents of the reactor were then filtered through a 300 mesh silk cloth. The obtained latex had a solid content concentration of 68.9% and a viscosity of 1650CP.
S, pH 9-1, particle size 0.55 μm, minimum film forming temperature 7
It was ℃.

比較例1 重合反応装置は、実施例1と同じものを用いた。第一の
単量体プレエマルションとして次の配合のものを使用し
た。
Comparative Example 1 The same polymerization reaction apparatus as in Example 1 was used. The following formulation was used as the first monomer pre-emulsion.

脱イオン水           167部ニューコー
ル271A 注2)   1.40部ニューコール11
20 注3)   0.67部スチレン       
      132部アクリル酸−2−エチルヘキシル
  270部メタクリル酸メチル        27
0部アクリル酸           6.73部t−
ブチルハイドロパーオキサイド 注4)2.50部 第二の単量体プレエマルションとして次の配合のものを
使用した。
Deionized water 167 parts Nucol 271A Note 2) 1.40 parts Nucol 11
20 Note 3) 0.67 parts styrene
132 parts 2-ethylhexyl acrylate 270 parts Methyl methacrylate 27
0 parts acrylic acid 6.73 parts t-
Butyl hydroperoxide Note 4) 2.50 parts The following formulation was used as the second monomer pre-emulsion.

脱イオン水           109部ニューコー
ル271A 注2)   40.7部ニューコール11
20 注3)   19.5部スチレン       
      132部アクリル酸−2−エチルヘキシル
  360部メタクリル酸メチル        18
1部アクリル酸           6.73部t−
ブチルハイドロパーオキサイド 注4)2.50部 上記の第一の単量体プレエマルション中の重合性不飽和
単量体のガラス転移温度は20.4℃であり、第二の単
量体プレエマルション中の重合性不飽和単量体のガラス
転移温度は0.4℃である。
Deionized water 109 parts Nucol 271A Note 2) 40.7 parts Nucol 11
20 Note 3) 19.5 parts styrene
132 parts 2-ethylhexyl acrylate 360 parts Methyl methacrylate 18
1 part acrylic acid 6.73 parts t-
Butyl hydroperoxide Note 4) 2.50 parts The glass transition temperature of the polymerizable unsaturated monomer in the above first monomer pre-emulsion is 20.4°C, and the second monomer pre-emulsion The glass transition temperature of the polymerizable unsaturated monomer therein is 0.4°C.

上記の単量体プレエマルションを使用し、実施例1と同
様の操作を行ない、ラテックスを合成した。得られたラ
テックスは、固形分濃度68.9%、粘度1426cp
s、pH9,2、粒子径0.65μm、最低造膜温度1
4℃であった。
A latex was synthesized using the above monomer pre-emulsion and performing the same operation as in Example 1. The obtained latex had a solid content concentration of 68.9% and a viscosity of 1426 cp.
s, pH 9.2, particle size 0.65 μm, minimum film forming temperature 1
The temperature was 4°C.

注1 ) Joyce−Loeb1社製のDisk C
entrifuge(MK−III型)粒度分布測定機
を用いて粒子径分布を測定し、得られた粒子径分布曲線
において最大ピークが現われるところの粒子径の値を、
ここでの「粒子径」として扱う。
Note 1) Disk C manufactured by Joyce-Loeb1
The particle size distribution is measured using an entrifuge (MK-III type) particle size distribution analyzer, and the value of the particle size where the maximum peak appears in the obtained particle size distribution curve is
Treated as "particle size" here.

なお、測定条件として、スピン液は水10〜20m℃、
ディスクの回転数は2000〜6000 r p m、
温度は10〜30℃、試料の分散媒はメタノール−脱イ
オン水(体積比でl:1)混合溶液、試料分散液濃度は
O,1〜1.0重量%、試料分散液の注入量は0.1〜
1.0mj2とする。
Note that the measurement conditions were that the spin liquid was water at 10 to 20 m℃;
The rotation speed of the disk is 2000 to 6000 rpm,
The temperature was 10 to 30°C, the sample dispersion medium was a mixed solution of methanol and deionized water (1:1 by volume), the sample dispersion concentration was O, 1 to 1.0% by weight, and the injection amount of the sample dispersion was 0.1~
It is assumed to be 1.0 mj2.

注2)日本乳化剤(株)製のアニオン型界面活性剤 注3)日本乳化剤(株)製のノニオン型界面活性剤 注4)70%水溶液 注5)無電化工業(株)製の消泡剤 性6)式日薬品工業(株)製の防腐剤Note 2) Anionic surfactant manufactured by Nippon Nyukazai Co., Ltd. Note 3) Nonionic surfactant manufactured by Nippon Nyukazai Co., Ltd. Note 4) 70% aqueous solution Note 5) Antifoaming agent manufactured by Mudenka Kogyo Co., Ltd. 6) Preservative manufactured by Shikinichi Yakuhin Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)水および乳化剤の存在下で重合性不飽和単量体を
乳化重合させることによる、内部層が軟質、表面層が硬
質で粒子径が0.3〜3.0μmの範囲にある粒子から
成る乳化重合体の製造方法であって、 (a)重合反応の初期に反応系に供給する重合性不飽和
単量体(A)が、(A)の重合体のガラス転移温度(T
a)が−60〜10℃のものであり、重合反応の終期に
反応系に供給する重合性不飽和単量体(B)が、(B)
の重合体のガラス転移温度(Tb)が0〜100℃のも
のであり、かつTb−Ta≧10℃であり、かつ (b)反応系への乳化剤の供給に関して、反応系中での
重合性不飽和単量体の重合物との和に対する乳化剤の重
量比率が重合反応経時とともに高められることを特徴と
する乳化重合体の製造方法。
(1) From particles with a soft inner layer, a hard surface layer, and a particle size in the range of 0.3 to 3.0 μm, obtained by emulsion polymerization of a polymerizable unsaturated monomer in the presence of water and an emulsifier. A method for producing an emulsion polymer comprising: (a) a polymerizable unsaturated monomer (A) supplied to the reaction system at the initial stage of the polymerization reaction;
a) is -60 to 10°C, and the polymerizable unsaturated monomer (B) supplied to the reaction system at the end of the polymerization reaction is (B)
The glass transition temperature (Tb) of the polymer is 0 to 100°C, and Tb-Ta≧10°C, and (b) regarding the supply of the emulsifier to the reaction system, the polymerizability in the reaction system is A method for producing an emulsion polymer, characterized in that the weight ratio of the emulsifier to the sum of the unsaturated monomer and the polymer is increased as the polymerization reaction progresses.
(2)重合性不飽和単量体を水と乳化剤の存在下に安定
に乳化して第一の単量体プレエマルシヨンを作成し、別
の重合性不飽和単量体を水と乳化剤の存在下に安定に乳
化して第二の単量体プレエマルションを作成し、第一の
単量体プレエマルシヨンを第一の供給源から反応系に供
給するとともに第二の単量体プレエマルションを第二の
供給源から第一の供給源に供給し、このとき、反応系中
で重合性不飽和単量体を乳化重合させる重合方法であっ
て、 (a)重合反応の初期に第一の供給源から反応系に供給
する単量体プレエマルション中の重合性不飽和単量体(
A)が、(A)の重合体のガラス転移温度(Ta)が−
60〜10℃のものであり、重合反応の終期に第一の供
給源から反応系に供給する単量体プレエマルション中の
重合性不飽和単量体(B)が、(B)の重合体のガラス
転移温度(Tb)が0〜100℃のものであり、かつT
b−Ta≧10℃であり、 (b)第一の単量体プレエマルション中の重合性不飽和
単量体に対する同プレエマルション中の乳化剤の重量比
率が、第二の単量体プレエマルション中の重合性不飽和
単量体に対する同プレエマルション中の乳化剤の重量比
率よりも低く、上記の(a)および(b)によって、第
一の供給源から反応系に供給する単量体プレエマルショ
ン中の重合性不飽和単量体および乳化剤に関する組成を
重合反応経時とともに連続的に変化させる請求項第1項
に記載の乳化重合体の製造方法。
(2) A first monomer pre-emulsion is created by stably emulsifying a polymerizable unsaturated monomer in the presence of water and an emulsifier, and another polymerizable unsaturated monomer is emulsified in the presence of water and an emulsifier. the first monomer pre-emulsion is stably emulsified in the presence of is supplied from a second supply source to a first supply source, and at this time, a polymerizable unsaturated monomer is emulsion polymerized in a reaction system, comprising: The polymerizable unsaturated monomer (
A) is when the glass transition temperature (Ta) of the polymer (A) is -
60 to 10°C, and the polymerizable unsaturated monomer (B) in the monomer pre-emulsion supplied to the reaction system from the first supply source at the end of the polymerization reaction is the polymer of (B). has a glass transition temperature (Tb) of 0 to 100°C, and T
b-Ta≧10°C, and (b) the weight ratio of the emulsifier in the first monomer pre-emulsion to the polymerizable unsaturated monomer in the same pre-emulsion is such that the weight ratio of the emulsifier in the second monomer pre-emulsion is is lower than the weight ratio of emulsifier to polymerizable unsaturated monomer in the same pre-emulsion, and according to (a) and (b) above, the monomer pre-emulsion supplied from the first source to the reaction system is 2. The method for producing an emulsion polymer according to claim 1, wherein the composition of the polymerizable unsaturated monomer and the emulsifier is continuously changed over time of the polymerization reaction.
(3)請求項第1項に記載の方法によって得られる乳化
重合体。
(3) An emulsion polymer obtained by the method according to claim 1.
(4)請求項第2項に記載の方法によって得られる乳化
重合体。
(4) An emulsion polymer obtained by the method according to claim 2.
JP15300590A 1990-06-12 1990-06-12 Production of emulsion polymer and emulsion polymer obtained by the same production Pending JPH0445102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15300590A JPH0445102A (en) 1990-06-12 1990-06-12 Production of emulsion polymer and emulsion polymer obtained by the same production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15300590A JPH0445102A (en) 1990-06-12 1990-06-12 Production of emulsion polymer and emulsion polymer obtained by the same production

Publications (1)

Publication Number Publication Date
JPH0445102A true JPH0445102A (en) 1992-02-14

Family

ID=15552871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15300590A Pending JPH0445102A (en) 1990-06-12 1990-06-12 Production of emulsion polymer and emulsion polymer obtained by the same production

Country Status (1)

Country Link
JP (1) JPH0445102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059622A (en) * 2002-07-25 2004-02-26 Kansai Paint Co Ltd Water-based coating composition
WO2014038679A1 (en) * 2012-09-07 2014-03-13 三菱レイヨン株式会社 Acrylic film, method for producing same, laminate film, laminated injection molded article, and method for producing rubber-containing polymer
JP5649763B1 (en) * 2013-08-01 2015-01-07 関西ペイント株式会社 Water-based paint composition
WO2015015827A1 (en) * 2013-08-01 2015-02-05 関西ペイント株式会社 Aqueous coating composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059622A (en) * 2002-07-25 2004-02-26 Kansai Paint Co Ltd Water-based coating composition
WO2014038679A1 (en) * 2012-09-07 2014-03-13 三菱レイヨン株式会社 Acrylic film, method for producing same, laminate film, laminated injection molded article, and method for producing rubber-containing polymer
JPWO2014038679A1 (en) * 2012-09-07 2016-08-12 三菱レイヨン株式会社 Acrylic film, method for producing the same, laminated film, laminated injection molded article, and method for producing rubber-containing polymer
US10450396B2 (en) 2012-09-07 2019-10-22 Mitsubishi Chemical Corporation Acrylic film, method for producing same, laminate film, laminated injection molded article, and method for producing rubber-containing polymer
US10654962B2 (en) 2012-09-07 2020-05-19 Mitsubishi Chemical Corporation Acrylic film, method for producing same, laminate film, laminated injection molded article, and method for producing rubber-containing polymer
JP5649763B1 (en) * 2013-08-01 2015-01-07 関西ペイント株式会社 Water-based paint composition
WO2015015827A1 (en) * 2013-08-01 2015-02-05 関西ペイント株式会社 Aqueous coating composition

Similar Documents

Publication Publication Date Title
JPH049182B2 (en)
WO1997022641A1 (en) Aqueous resin dispersion and process for preparing the same
JP3817738B2 (en) Copolymer latex and method for producing the same
JPH0445102A (en) Production of emulsion polymer and emulsion polymer obtained by the same production
JP3590457B2 (en) Method for producing aqueous emulsion
JPS6340480B2 (en)
JP2013133417A (en) Process for producing emulsion and coating composition containing the emulsion
JP2856509B2 (en) Single layer elastic emulsion paint composition
JP3569971B2 (en) Polymer particles, method for producing the same, and polymer latex using the same
JP3676572B2 (en) Vinylidene chloride emulsion and aqueous resin composition for undercoat
JPH1180290A (en) Composite emulsion and preparation thereof
JP2003277688A (en) Film-forming assistant and aqueous composition containing the same
JP2005247955A (en) Adhesive composition and adhesive sheet
JP2000027097A (en) Backside treating agent using aqueous emulsion for release paper
JP3463512B2 (en) Aqueous resin dispersion
JPH1112329A (en) Aqueous resin dispersion
JPH1112311A (en) Aqueous resin dispersion
JPH11124530A (en) Emulsion for aqueous coating
JP3475977B2 (en) Copolymer latex composition and water-resistant coating composition
JP3417583B2 (en) Method for producing high acid value acrylic resin
JP2005089518A (en) Method for producing aqueous dispersion of polymer for aqueous adhesive and aqueous adhesive
JPH0649108A (en) Production of core-sheel emulsion
JPS62225501A (en) Aqueous emulsion resin composition
JP4465583B2 (en) Impregnated paper
JP2007224138A (en) Process for producing water dispersion