JPS6254806B2 - - Google Patents

Info

Publication number
JPS6254806B2
JPS6254806B2 JP1077478A JP1077478A JPS6254806B2 JP S6254806 B2 JPS6254806 B2 JP S6254806B2 JP 1077478 A JP1077478 A JP 1077478A JP 1077478 A JP1077478 A JP 1077478A JP S6254806 B2 JPS6254806 B2 JP S6254806B2
Authority
JP
Japan
Prior art keywords
monomer
polymerization
polymer latex
weight
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1077478A
Other languages
Japanese (ja)
Other versions
JPS54103498A (en
Inventor
Shinsuke Yamazaki
Hiroshi Suzuki
Masatoshi Mikumo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1077478A priority Critical patent/JPS54103498A/en
Publication of JPS54103498A publication Critical patent/JPS54103498A/en
Publication of JPS6254806B2 publication Critical patent/JPS6254806B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は超微粒子ポリマーラテツクスを乳化重
合法によつて工業的に有利に製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing ultrafine polymer latex by emulsion polymerization.

粒子径が0.005〜0.05μ程度の超微粒子ポリマ
ーラテツクスは、粒子径が0.05〜0.4μ位の白色
不透明の通常のポリマーラテツクスとは異なり、
反射光に対しては青白色で透過光に対しては黄赤
色に見える半透明ないし透明の粘稠を帯びたもの
で、溶剤揮発型の溶液タイプのポリマーに匹敵す
る光沢を持つた緻密で透明性の良い皮膜の形成が
可能であり、さらに比較的高粘性のポリマーラテ
ツクスが容易に得られるなどの優れた物性と作業
性を備えていることからラテツクス工業面におい
てその重要性を増してきている。
Ultrafine particle polymer latex with a particle size of about 0.005 to 0.05μ differs from normal white opaque polymer latex with a particle size of about 0.05 to 0.4μ.
It is a semi-transparent or transparent viscous material that appears blue-white to reflected light and yellow-red to transmitted light, and is dense and transparent with a luster comparable to that of solvent-volatile solution-type polymers. It has become increasingly important in the latex industry because it has excellent physical properties and workability, such as being able to form a film with good viscosity and easily producing polymer latex with relatively high viscosity. There is.

従来、超微粒子ポリマーラテツクスの製造法と
しては、カルボン酸変性のアクリル系ポリマーラ
テツクスを若干の水溶性溶剤を混入した水媒体中
でアルカリ膨潤させ、高温下で激しくかきまぜる
ことによつてポリマー粒子を微細に分割する方法
(デユポン社ハイドロゾル)が知られているが、
この方法は、その操作が複雑なことと、共重合に
よるカルボン酸モノマー量とアルカリ中和度、分
子量などの極めて限定された範囲内においてのみ
超微粒子のポリマーラテツクスの製造が可能とな
るといつた制約があつた。
Conventionally, the method for producing ultrafine particle polymer latex is to swell a carboxylic acid-modified acrylic polymer latex in an aqueous medium containing a small amount of a water-soluble solvent, and then stir it vigorously at high temperature to form polymer particles. There is a known method of finely dividing (DuPont Hydrosol), but
This method is difficult to operate, and it is possible to produce ultrafine polymer latex particles only within extremely limited ranges such as the amount of carboxylic acid monomer, degree of alkali neutralization, and molecular weight through copolymerization. There were restrictions.

一方、良く知られているように通常の乳化重合
では、生成するポリマーラテツクスの粒子数は乳
化剤濃度の0.6乗に比例して増加し、粒子径は乳
化剤濃度とともに減少するが、粒子径が0.05μ以
下の超微粒子のポリマーラテツクスを生成させる
ためには非常に多量の乳化剤を必要として実用的
でない。また、ポリマーラテツクスの粒子径が小
さくなると重合の経過とともにポリマー濃度が高
い場合は生成ポリマーラテツクスの粘度が著しく
高くなり、重合操作ことに撹拌に著しい障害を与
えて、未重合の単量体が層状に分離して水相内に
分散できず工業的製法は実際上不可能である。
On the other hand, as is well known, in normal emulsion polymerization, the number of particles of the polymer latex produced increases in proportion to the 0.6th power of the emulsifier concentration, and the particle size decreases with the emulsifier concentration, but when the particle size is 0.05 In order to produce a polymer latex with ultrafine particles of micron size or less, a very large amount of emulsifier is required, which is impractical. Additionally, as the particle size of the polymer latex decreases, the viscosity of the resulting polymer latex becomes significantly higher as the polymerization progresses and if the polymer concentration is high. It separates into layers and cannot be dispersed in the aqueous phase, making industrial production practically impossible.

本発明は、このような事情にかんがみてなされ
たものであつて、粒子径が0.005〜0.05μ程度の
超微粒子ポリマーラテツクスの有利な製造法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an advantageous method for producing ultrafine polymer latex having a particle size of about 0.005 to 0.05 μm.

本発明者らは前記した従来法における欠点を克
服し、より広範囲の任意の単量体成分からなる超
微粒子ポリマーラテツクスを工業的に有利に製造
し得る方法を開発すべく鋭意研究を行ない適切な
界面活性剤の選択、諸種の重合条件の影響および
生成ポリマーラテツクスの減粘方法について検討
を重ねた結果、かきまぜなどの重合操作を困難に
することなく低粘度でかつ高濃度の超微粒子ポリ
マーラテツクスを容易に製造し得る方法を見い出
し、本発明を完成するに到つた。
The present inventors have conducted intensive research to overcome the drawbacks of the conventional methods described above and to develop an industrially advantageous method for producing ultrafine particle polymer latex consisting of a wider range of arbitrary monomer components. As a result of repeated studies on the selection of suitable surfactants, the effects of various polymerization conditions, and methods for reducing the viscosity of the resulting polymer latex, we have developed an ultrafine particle polymer with low viscosity and high concentration without complicating polymerization operations such as stirring. The inventors discovered a method for easily producing latex and completed the present invention.

すなわち本発明は、下記第1および第2の工程
からなり、該第1または第2の工程における重合
による粘度上昇以前に低粘度化有効範囲量のイオ
ン性電解質を添加することを特徴とするものであ
る。
That is, the present invention consists of the following first and second steps, and is characterized in that an ionic electrolyte is added in an effective amount for reducing viscosity before the viscosity increases due to polymerization in the first or second step. It is.

第1の工程:アクリル酸低級アルキルエステ
ル、メタクリル酸低級アルキルエステルおよび酢
酸ビニルからなる群から選ばれた少なくとも1種
の親水性単量体A、または該単量体Aと共重合可
能な疎水性単量体Bと該少なくとも1種の親水性
単量体Aとからなる単量体混合物の1〜15重量部
を、濃度1.0×10-3〜1.0×10-2モル/の水溶性
重合開始剤および1〜8重量部のアニオン系界面
活性剤の存在下にPH2〜7において水性媒体100
重量部中で乳化重合させて一次ポリマーラテツク
スを製造する工程。
First step: at least one hydrophilic monomer A selected from the group consisting of acrylic acid lower alkyl ester, methacrylic acid lower alkyl ester, and vinyl acetate, or a hydrophobic monomer copolymerizable with the monomer A 1 to 15 parts by weight of a monomer mixture consisting of monomer B and the at least one hydrophilic monomer A is added to a water-soluble polymerization initiator at a concentration of 1.0 x 10 -3 to 1.0 x 10 -2 mol/. 100% in an aqueous medium at a pH of 2 to 7 in the presence of an anionic surfactant and 1 to 8 parts by weight of an anionic surfactant.
A process of producing a primary polymer latex by emulsion polymerization in parts by weight.

第2の工程:前記第1の工程で得られた一次ポ
リマーラテツクスに、前記第1の工程における単
量体と同種または異種の単量体Cを前記水性媒体
100重量部に対して70〜90重量部滴下しながら撹
拌して前記一次ポリマーラテツクス中のポリマー
粒子を核種として前記単量体Cを重合させる工
程。
Second step: A monomer C of the same type or different type as the monomer in the first step is added to the primary polymer latex obtained in the first step in the aqueous medium.
A step of polymerizing the monomer C using the polymer particles in the primary polymer latex as a nuclide by stirring while dropping 70 to 90 parts by weight per 100 parts by weight.

なお、水性媒体中で重合性単量体を乳化重合さ
せる際に用いられる重合開始剤としては、水溶性
のものであればよく、特に制約されず、この種の
乳化重合に慣用のもの、たとえば過硫酸塩や過硫
酸塩とチオ硫酸塩、亜硫酸塩などの公知の還元性
スルホキシ化合物からなるレドツクス開始剤など
が適用される。その添加量は水性媒体中濃度で
1.0×10-3〜1.0×10-2モル/である。
The polymerization initiator used in emulsion polymerization of polymerizable monomers in an aqueous medium is not particularly limited as long as it is water-soluble, and examples of polymerization initiators commonly used in this type of emulsion polymerization, such as A redox initiator consisting of a persulfate or a known reducing sulfoxy compound such as a persulfate, a thiosulfate, or a sulfite can be used. The amount added is determined by the concentration in the aqueous medium.
It is 1.0×10 −3 to 1.0×10 −2 mol/.

以下、本発明の構成について詳しく説明する。 Hereinafter, the configuration of the present invention will be explained in detail.

(1) 本発明においては、まず第1段階の重合工程
を行ない粒子径0.02μ以下のポリマーラテツク
スを水性媒体中に生成させる。この場合、水性
媒体中に乳化剤を存在させるのであるが、乳化
剤としては、PH2〜7の範囲で乳化作用を持つ
もの、たとえばラウリル硫酸塩などのアルキル
硫酸塩、ドデシルベンゼンスルホン酸塩などの
アルキルベンゼンスルホン酸塩、ジエチルスル
ホコハク酸塩などのジアルキルスルホコハク酸
塩、P.O.Eアルキルエーテル硫酸エステル塩な
どのアニオン系界面活性剤が好適である。これ
らの乳化剤は、水性媒体100重量部に対して1
〜8重量部、好ましくは2〜4重量部の割合で
添加される。乳化剤の使用量は多くなると生成
ポリマーラテツクスの著しい発泡性や、皮膜物
性に悪影響があるので可及的少量であることが
望ましい。しかしながら乳化剤量が1重量部よ
り少なくなると生成するポリマーラテツクスの
粒子径が0.1μ以上にもなり、所期の目的を達
成することができない。
(1) In the present invention, first, a first stage polymerization step is carried out to produce a polymer latex having a particle size of 0.02 μm or less in an aqueous medium. In this case, an emulsifier is present in the aqueous medium. Examples of emulsifiers include those that have an emulsifying effect in the pH range of 2 to 7, such as alkyl sulfates such as lauryl sulfate, and alkylbenzene sulfones such as dodecylbenzenesulfonate. Anionic surfactants such as acid salts, dialkyl sulfosuccinates such as diethyl sulfosuccinate, and POE alkyl ether sulfate salts are suitable. These emulsifiers should be added in an amount of 1 part by weight per 100 parts by weight of the aqueous medium.
It is added in a proportion of 8 parts by weight, preferably 2 to 4 parts by weight. If the amount of emulsifier used is too large, the foaming properties of the produced polymer latex and the physical properties of the film will be adversely affected, so it is desirable that the amount of emulsifier used be as small as possible. However, if the amount of emulsifier is less than 1 part by weight, the particle size of the resulting polymer latex will be 0.1 μm or more, making it impossible to achieve the intended purpose.

この工程で用いる単量体としては比較的親水
性を有し水性媒体中に乳化分散可能で重合によ
り水不溶性の重合体を形成する単量体であれば
任意であるが、一般には、酢酸ビニル、アクリ
ル酸およびメタクリル酸の低級アルキルエステ
ル(例えば、メチルエステル、エチルエステ
ル)などの少なくとも1種が用いられる。ま
た、これらの親水性単量体の少なくとも1種と
それに共重合可能な疎水性単量体、例えば、ス
チレン、アクリル酸ブチル、アクリル酸、アク
リロニトリルなどとの混合物を用いることがで
きる。
The monomer used in this step may be any monomer as long as it is relatively hydrophilic, can be emulsified and dispersed in an aqueous medium, and forms a water-insoluble polymer through polymerization, but in general, vinyl acetate is used. , lower alkyl esters (eg, methyl ester, ethyl ester) of acrylic acid and methacrylic acid. Furthermore, a mixture of at least one of these hydrophilic monomers and a hydrophobic monomer copolymerizable therewith, such as styrene, butyl acrylate, acrylic acid, acrylonitrile, etc., can be used.

この工程においては、上記単量体又は上記混
合物を水性媒体100重量部に対して1〜15重量
部添加して乳化分散させる。この量は、この工
程で生成されるポリマーラテツクス中のポリマ
ー量が15〜1.5重量%、好ましくは12〜2.5重量
%になるような量である。添加する単量体量が
この範囲より多くなると生成するポリマーラテ
ツクスの粒子数が減少して粒子径が大きくなつ
て超微粒子のポリマーラテツクスを得るにはさ
らに多量の乳化剤を必要とするため不利であ
る。また昇温も著しく重合反応を制御して難た
くなり好ましくない。他方この範囲よりも少く
なると単量体の可溶化限界以下となつて生成ポ
リマー粒子数は減少して不利である。
In this step, the above monomer or the above mixture is added in an amount of 1 to 15 parts by weight per 100 parts by weight of the aqueous medium and emulsified and dispersed. This amount is such that the amount of polymer in the polymer latex produced in this step is 15 to 1.5% by weight, preferably 12 to 2.5% by weight. If the amount of monomer added exceeds this range, the number of particles of the polymer latex produced decreases and the particle size increases, which is disadvantageous because a larger amount of emulsifier is required to obtain ultrafine polymer latex. It is. Further, temperature elevation is also undesirable since it becomes extremely difficult to control the polymerization reaction. On the other hand, if the amount is less than this range, it will be below the solubilization limit of the monomer and the number of produced polymer particles will decrease, which is disadvantageous.

つぎに、上記の範囲の単量体量を分散後重合
が行なわれる。この場合、重合温度としては50
〜90℃、好ましくは60〜70℃の温度が採用され
るが重合熱によつて80℃以上に昇温しても重合
開始時点の温度が60〜70℃であれば良い。また
PH値は2〜7の酸性側であることが好ましく、
PHがアルカリ性側になると生成するラテツクス
中のポリマー粒子が大きくなる傾向を示す。
Next, polymerization is performed after dispersing the monomer amount within the above range. In this case, the polymerization temperature is 50
A temperature of -90°C, preferably 60-70°C is employed, but even if the temperature is raised to 80°C or higher due to the heat of polymerization, it is sufficient as long as the temperature at the start of polymerization is 60-70°C. Also
The pH value is preferably on the acidic side of 2 to 7,
When the pH becomes alkaline, the polymer particles in the latex produced tend to become larger.

このようにして、粒径0.02μ以下、通常、
0.01〜0.005μ程度の極超微粒子のポリマー粒
子のポリマー含量15〜1.5重量%のポリマーラ
テツクスが得られる。このポリマーラテツクス
は次の第2段階の重合工程の重合核種として適
用される。
In this way, particle size of 0.02 μ or less, usually
A polymer latex with a polymer content of 15 to 1.5% by weight of ultrafine polymer particles of about 0.01 to 0.005 μm is obtained. This polymer latex is used as a polymerization nuclide in the next second stage polymerization step.

(2) つぎに、本発明においては、第1段階の重合
工程で得られるポリマーラテツクスに対し、水
不溶性のポリマーを与える重合性単量体を連続
的に滴下しながら加えることにより第2段階の
重合工程を行なうのである。この工程で加える
単量体は、前記第1段階の重合工程で用いたと
同種の親水性単量体に限定されるものではな
く、異種の単量体、即ち疎水性の単量体、たと
えばエチレン、スチレン、ブタジエンやアクリ
ル酸、メタクリル酸のC4以上のアルキルエス
テルなども挙げられる。第2段階の重合工程で
加える重合性単量体の量は、水性媒体100重量
部に対し70〜90重量部あるいは生成するポリマ
ーラテツクス中ポリマー含量が35〜48重量%と
なる量である。なお、この工程における水溶性
重合開始剤の量は溶液中濃度で5.0×10-3〜5.0
×10-4/モル、好ましくは1.0×10-3〜2.0×
10-3モル/である。なお、重合開始剤は第1
段階の重合工程であらかじめ全量を加え、第2
段階の添加を省略することもできる。第2段階
の重合工程における重合条件は第1段階重合ほ
ど限定されずモノマーの種類に応じて任意の温
度(通常は50〜90℃)とPHで行なわれ、酸性側
でもアルカリ性側でも良く、好ましくはPH3〜
9で行なわれる。単量体は連続的に滴下しなが
ら重合を行なつて重合熱による著しい昇温を防
止する。
(2) Next, in the present invention, a polymerizable monomer that provides a water-insoluble polymer is continuously added dropwise to the polymer latex obtained in the first stage polymerization process. The polymerization process is carried out. The monomers added in this step are not limited to the same kind of hydrophilic monomers used in the first stage polymerization step, but also different kinds of monomers, such as hydrophobic monomers such as ethylene. , styrene, butadiene, and C4 or higher alkyl esters of acrylic acid and methacrylic acid. The amount of the polymerizable monomer added in the second stage polymerization step is 70 to 90 parts by weight per 100 parts by weight of the aqueous medium, or such an amount that the polymer content in the resulting polymer latex is 35 to 48% by weight. The amount of water-soluble polymerization initiator in this step is 5.0×10 -3 to 5.0 in solution concentration.
×10 -4 /mol, preferably 1.0 × 10 -3 to 2.0 ×
10 -3 mol/. Note that the polymerization initiator is the first
Add the entire amount in advance in the polymerization process of the second stage, and
It is also possible to omit the addition of a step. The polymerization conditions in the second stage polymerization step are not as limited as those in the first stage polymerization, and can be carried out at any temperature (usually 50 to 90°C) and PH depending on the type of monomer, and may be acidic or alkaline, preferably is PH3~
It will be held at 9. The monomer is polymerized while being continuously added dropwise to prevent a significant temperature rise due to the heat of polymerization.

(3) また、本発明においては、上記の第1又は第
2の工程のいずれかにおいて水性媒体にイオン
性電解質を添加する。これは、撹拌操作を容易
にし、工業的な製造を可能とするために、生成
するポリマーラテツクスの粘度の上昇を抑制す
るためである。このように粘度低下剤として用
いるイオン性電解質としては、著しいPH値の変
動を起こしたり、重合反応を抑制もしくは禁止
させたり、複分解で水溶性の塩を析出するよう
な重金属などの塩を除いた水溶性の有機、無機
性の広い範囲の電解質が使用可能であるが、一
般的には次のような種類のものが望ましい。
(3) Furthermore, in the present invention, an ionic electrolyte is added to the aqueous medium in either the first or second step. This is to suppress the increase in viscosity of the resulting polymer latex in order to facilitate stirring operations and enable industrial production. In this way, the ionic electrolyte used as a viscosity reducing agent must not contain salts such as heavy metals that cause significant PH value fluctuations, suppress or inhibit polymerization reactions, or precipitate water-soluble salts during double decomposition. Although a wide range of water-soluble organic and inorganic electrolytes can be used, the following types are generally preferred.

(a) 塩化カリウム、リン酸二アンモニウムなど
アルカリ塩もしくはアンモニウム塩からなる
各種のリン酸塩、硫酸塩、塩化塩、炭酸塩、
酢酸塩、過硫酸塩、イミド硫酸塩、スルホン
酸塩。
(a) Various phosphates, sulfates, chlorides, carbonates, consisting of alkali salts or ammonium salts such as potassium chloride and diammonium phosphate;
Acetates, persulfates, imidosulfates, sulfonates.

(b) アンモニア水(28%)、メチルジエチルア
ミノアルコール、モルホリン、パラトルエン
スルホン酸ナトリウム、などである。
(b) Aqueous ammonia (28%), methyldiethylaminoalcohol, morpholine, sodium paratoluenesulfonate, etc.

本発明においては、このようなイオン性電解質
の添加量は適当な範囲に制限することが必要であ
つて添加量が多すぎても少なすぎても生成ポリマ
ーラテツクスの粘度は著しく高くなつて不都合で
ある。換言すれば、その量を適当な範囲に制限す
るとその種類にかかわらず重合時におけるポリマ
ーラテツクスの粘度上昇を効果的に防止すること
ができる。粘度上昇を有効に防止し得るイオン性
電解質の添加量は適用される重合条件や、電解質
の種類などによつて異なり一義的には定めること
ができないが、一般的には水性媒体100重量部に
対して0.4重量部以下、通常、0.2〜0.3重量部の範
囲である。その好ましい添加量は当業者であれば
数回の予備実験で容易に定めることができる。し
たがつて、本発明においては重合反応時における
ポリマーラテツクスの粘度上昇を有効に抑制し得
る範囲のイオン性電解質の添加量は、低粘度化有
効範囲量と定義される。
In the present invention, it is necessary to limit the amount of such ionic electrolyte added within an appropriate range; if the amount added is too large or too small, the viscosity of the resulting polymer latex will become extremely high, which is disadvantageous. It is. In other words, if the amount is limited to an appropriate range, it is possible to effectively prevent the viscosity of the polymer latex from increasing during polymerization, regardless of its type. The amount of ionic electrolyte added that can effectively prevent viscosity increase varies depending on the polymerization conditions applied and the type of electrolyte, and cannot be determined unambiguously, but it is generally added to 100 parts by weight of the aqueous medium. The amount is 0.4 parts by weight or less, usually in the range of 0.2 to 0.3 parts by weight. A person skilled in the art can easily determine the preferable amount to be added through several preliminary experiments. Therefore, in the present invention, the amount of ionic electrolyte added that can effectively suppress the increase in viscosity of the polymer latex during the polymerization reaction is defined as the effective viscosity-lowering range amount.

本発明において実際に用いる前記イオン性電解
質の具体的な種類は、重合条件との関係で適当に
選択され、たとえば重合系のPH調整を要しない場
合は弱酸/弱塩基、強酸/強塩基の中性塩が適用
され、また重合系のPHをアルカリ性に調整したい
場合には、ピロリン酸ナトリウムやイミドビス硫
酸ナトリウムなどの塩基性塩あるいはアンモニア
水が適用され重合系のPHを酸性側に調整したい場
合はパラトルエンスルホン酸やイミド硫酸アンモ
ニウムなどが効果的に適用される。
The specific type of the ionic electrolyte actually used in the present invention is appropriately selected in relation to the polymerization conditions. When a basic salt such as sodium pyrophosphate or sodium imidobis sulfate or aqueous ammonia is applied and the PH of the polymerization system is adjusted to an alkaline side, ammonia water is applied and the PH of the polymerization system is adjusted to an acidic side. Para-toluenesulfonic acid and ammonium imidosulfate are effectively applied.

これらのイオン性電解質は、通常、水溶液の形
で反応系内に添加されるが、その添加時期は重合
反応において粘度の上昇し始める時点より以前な
らば任意であるが、生成ポリマーラテツクスの凝
集破壊を防ぐためには、第1段階の重合工程の重
合開始前に添加するのが好ましい。しかしながら
第1段階の重合工程はPHが酸性側で実施させるこ
とが必要で、重合系のPHをアルカリ性にするアン
モニア水やピロリン酸ナトリウムなどは、第2段
階の重合工程の重合開始後に10g/dl濃度以下の
水溶液として徐々に滴下しながら反応系に添加す
るのが好ましい。アンモニア水、各種アミノアル
コール、モルホリンなどは比較的凝集破壊を起こ
しにくく、またポリマーラテツクスの乾燥による
造膜過程で揮発性であるため皮膜の形成上望まし
い利点を有する。
These ionic electrolytes are usually added to the reaction system in the form of an aqueous solution, but they can be added at any time before the viscosity starts to increase during the polymerization reaction, but they can be added at any time before the viscosity starts to increase during the polymerization reaction. In order to prevent destruction, it is preferable to add it before the start of polymerization in the first stage polymerization step. However, the first stage polymerization process needs to be carried out at an acidic pH, and aqueous ammonia, sodium pyrophosphate, etc., which make the pH of the polymerization system alkaline, must be added at 10g/dl after the start of the second stage polymerization process. It is preferable to add it to the reaction system while gradually dropping it as an aqueous solution having a concentration below the concentration. Aqueous ammonia, various amino alcohols, morpholine, etc. are relatively resistant to cohesive failure, and are volatile during the film forming process by drying the polymer latex, so they have desirable advantages in film formation.

本発明の方法によつて製造された超微粒子ポリ
マーラテツクスは、浸透性や表面のヌレが良好で
あり、増粘剤を必要としないで粘度の調整が容易
であるという利点を有する。また皮膜形成性が良
く、これから得られる生成皮膜は緻密で優れた光
沢を有するので光沢塗料パフ掛け不要の床磨き用
エマルジヨン、コーテイング剤、皮革の仕上げ用
紙加工用、繊維加工用のラテツクスとして一層有
利に使用できる。
The ultrafine particle polymer latex produced by the method of the present invention has the advantage of good permeability and surface wetting, and that the viscosity can be easily adjusted without the need for a thickener. It also has good film-forming properties, and the resulting film is dense and has excellent gloss, making it even more useful as a latex for floor polishing emulsions that do not require puffing, coating agents, leather finishing, paper processing, and textile processing. Can be used for

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 ガス導入管、還流冷却器、PH測定用複合ガラス
電極及び、かきまぜ装置(弦長6cmの半月形かく
はん片を付したもの)を備えた1000mlの4つ口セ
パラブルフラスコ中蒸留水400mlに8gのラウリ
ル硫酸ナトリウムを溶かした溶液に第1段階の重
合工程の単量体としてメタクリル酸メチル10mlを
乳化分散させ、系中濃度1.0×10-3モル/の過
硫酸カリウムを重合開始剤として、一定のかきま
ぜ状態(300rpm)を保ちながら、温度60〜70
℃、PH2〜3の条件で重合を行なつた。この第1
段階の重合工程は8分で完了し蛋白光を帯びた透
明性のラテツクス分散液を得た。
Example 1 400 ml of distilled water in a 1000 ml four-neck separable flask equipped with a gas introduction tube, a reflux condenser, a composite glass electrode for PH measurement, and a stirring device (equipped with a half-moon stirring piece with a string length of 6 cm). 10 ml of methyl methacrylate as a monomer for the first stage polymerization step was emulsified and dispersed in a solution of 8 g of sodium lauryl sulfate dissolved in the solution, and potassium persulfate at a concentration of 1.0 x 10 -3 mol/in the system was used as a polymerization initiator. , while maintaining a constant stirring state (300 rpm), at a temperature of 60 to 70.
Polymerization was carried out under the conditions of .degree. C. and pH of 2 to 3. This first
The step polymerization process was completed in 8 minutes, yielding a transparent latex dispersion with a proteinaceous glow.

次にこの蛋白光を帯びたポリマーラテツクス分
散液中にメタクリル酸メチル290mlを重合熱によ
る著しい昇温を防ぐために徐々に滴下しながら、
系中濃度1.0×10-3モル/の過硫酸カリウムを
開始剤として第2段階目の重合を行なつた。この
場合、重合の経過とともに、系の粘度が急速に上
昇してきて単量体の分散と、かくはん操作が困難
になり、流動性を失なうが、第2段階目の重合開
始後すぐに、1.5〜2mlのアンモニア水(28%)
を徐々に滴下して重合系のPHを8.7〜9.0に保ちな
がら重合を行なつたところ、重合系の粘度の上昇
は顕著でなく、流動性を保持するようになつて、
単量体の分散とかきまぜは良好となつた。また、
アンモニア水以外に、メチルジメチルアミノアル
コール、モルホリンを1〜2ml添加した場合も同
様の効果が得られた。
Next, 290 ml of methyl methacrylate was gradually added dropwise into this protein-colored polymer latex dispersion to prevent a significant temperature rise due to polymerization heat.
The second stage of polymerization was carried out using potassium persulfate at a system concentration of 1.0 x 10 -3 mol/ as an initiator. In this case, as the polymerization progresses, the viscosity of the system increases rapidly, making monomer dispersion and stirring operations difficult, and fluidity is lost, but immediately after the start of the second stage polymerization, 1.5-2ml ammonia water (28%)
When polymerization was carried out while maintaining the pH of the polymerization system at 8.7 to 9.0 by gradually adding it dropwise, the viscosity of the polymerization system did not increase significantly and the fluidity was maintained.
Dispersion and agitation of the monomers were good. Also,
A similar effect was obtained when 1 to 2 ml of methyldimethylamino alcohol or morpholine was added in addition to ammonia water.

このようにして得られたポリマーラテツクスは
反射光に対しては青白色で、透過光に対しては黄
赤色に見える半透明性のやや粘稠なコロイド分散
液であり、分光光度計による光透過率は31.0%で
あつた。
The polymer latex thus obtained is a semi-transparent, slightly viscous colloidal dispersion that appears blue-white to reflected light and yellow-red to transmitted light; The transmittance was 31.0%.

(波長800mμ、試料厚さ1cm)。また粘度はB
型回転粘度計スピンドルNo.4回転数6rpmのとき
36600センチボイズ60rpmのとき8626センチボイ
ズのやや高粘性の非ニユートン粘性体であつた。
(wavelength 800 mμ, sample thickness 1 cm). Also, the viscosity is B
Type rotational viscometer spindle No. 4 when rotation speed is 6 rpm
It was a non-Newtonian viscous material with a rather high viscosity of 36,600 centivoise and 8,626 centivoise at 60 rpm.

このやや高粘稠なポリマーラテツクスはさらに
電解質の添加によつて粘度が減少し、例えば、こ
のポリマーラテツクス130gに対して10g/dl濃
度のピロリン酸ナトリウム水溶液を1ml添加する
と、粘度は著しく低下し420センチボイズのニユ
ートン粘性体に変わり、3mlの添加では43センチ
ボイズのごく低粘性のポリマーラテツクスに変化
した。
The viscosity of this somewhat highly viscous polymer latex is further reduced by the addition of an electrolyte. For example, when 1 ml of a sodium pyrophosphate aqueous solution with a concentration of 10 g/dl is added to 130 g of this polymer latex, the viscosity decreases significantly. However, it turned into a Newtonian viscous material with 420 centivoise, and when 3ml was added, it changed into a very low viscosity polymer latex with 43 centivoise.

電子顕微鏡写真から求めたポリマーラテツクス
の粒子径は0.048μであつた。
The particle size of the polymer latex determined from an electron micrograph was 0.048μ.

実施例 2 実施例1と同様の装置を用い、1000mlの4つ口
セパラブルフラスコ中に蒸留水400mlに8.0gのラ
ウリル硫酸ナトリウムと0.7gのパラトルエンス
ルホン酸ナトリウムの結晶性粉末を溶かした溶液
に第1段階の重合工程の単量体として、メタクリ
ル酸メチル10mlを乳化分散させ、実施例1と同様
に系中濃度1.0×10-3モル/の過硫酸カリウム
を重合開始剤として一定のかきまぜ状態を保ち60
℃で重合を行つた。重合系のPHは5〜6で第1段
階目重合は5分位で完了し、蛋白光を帯びた透明
なラテツクス分散液が生成した。ついでメタクリ
ル酸メチル290mlを連続的に滴下しながら1.0×
10-3モル/の過硫酸カリウムを重合開始剤とし
て第2段階重合を行なつたところ系の粘度上昇は
わずかでかきまぜ困難などの不都合はなくて、30
分で重合は完了した。生成ポリマーラテツクスは
光透過率29%の半透明の青白色を帯びたものでB
型粘度計による粘度はスピンドルNo.2で6〜
60rpmの範囲で485〜750センチボイズの低粘性の
ポリマーラテツクスであつた。また生成ラテツク
スのPHは3〜4であつた。
Example 2 Using the same apparatus as in Example 1, a solution of 8.0 g of sodium lauryl sulfate and 0.7 g of sodium paratoluenesulfonate crystalline powder dissolved in 400 ml of distilled water was placed in a 1000 ml four-necked separable flask. 10 ml of methyl methacrylate was emulsified and dispersed as a monomer in the first stage polymerization step, and potassium persulfate at a concentration of 1.0 × 10 -3 mol/in the system was used as a polymerization initiator in the same manner as in Example 1 with constant stirring. keep the condition 60
Polymerization was carried out at ℃. The pH of the polymerization system was 5 to 6, and the first stage polymerization was completed in about 5 minutes, producing a transparent latex dispersion with a proteinaceous glow. Then, while continuously dropping 290 ml of methyl methacrylate,
When the second stage polymerization was carried out using 10 -3 mol/mol of potassium persulfate as a polymerization initiator, the viscosity of the system increased only slightly and there were no problems such as difficulty in stirring.
Polymerization was completed in minutes. The resulting polymer latex is translucent, blue-white, and has a light transmittance of 29%.B
The viscosity measured by a type viscometer is 6 to 6 on spindle No. 2.
It was a low viscosity polymer latex with 485 to 750 centivoise in the 60 rpm range. The pH of the latex produced was 3 to 4.

電子顕微鏡写真から求めたポリマーラテツクス
の粒子径は0.055μであつた。
The particle size of the polymer latex determined from an electron micrograph was 0.055μ.

実施例 3 実施例1と同様の装置と方法によつて蒸留水
400mlに8gのラウリル硫酸ナトリウムを溶かし
た水溶液に50mlのメタクリル酸メチルを乳化分散
後、1.0812gの過硫酸カリウムの結晶を添加する
と重合系のPHは、1.5〜1.2となる。ついで28%ア
ンモニア水をピヘツトで2〜3滴(1ml以下)滴
下するとPHは7〜8となり重合開始して系は乳濁
状態から半透明となるが、ついでメタクリル酸メ
チルモノマー250mlを連続的に滴下しながら重合
を続けたところ、開始後約27分で重合が完了し、
粘度の上昇は小さく流動性のポリマーラテツクス
が得られた。生成ポリマーラテツクスの光透過率
は45%(800mμ 1cm厚さ)粘度は1840〜3040
センチボイズであつた。
Example 3 Distilled water was prepared using the same equipment and method as in Example 1.
After emulsifying and dispersing 50 ml of methyl methacrylate in an aqueous solution of 8 g of sodium lauryl sulfate in 400 ml, adding 1.0812 g of potassium persulfate crystals, the pH of the polymerization system becomes 1.5 to 1.2. Next, 2 to 3 drops (1 ml or less) of 28% ammonia water are added with a pipette, and the pH becomes 7 to 8, and polymerization starts and the system changes from a milky state to a translucent state. Next, 250 ml of methyl methacrylate monomer is continuously added. Polymerization was continued while dropping, and the polymerization was completed approximately 27 minutes after the start.
A fluid polymer latex with a small increase in viscosity was obtained. The light transmittance of the produced polymer latex is 45% (800 mμ, 1 cm thickness) and the viscosity is 1840 to 3040.
It was centiboise.

電子顕微鏡写真から求めた一次粒子の粒子径は
174±26Åであつた。
The particle size of the primary particles determined from the electron micrograph is
It was 174±26 Å.

実施例 4 ガス導入管、還流冷却器、PH測定用複合ガラス
電極およびかきまぜ装置を備えた1000mlの4つ口
セパラブルフラスコにラウリル硫酸ナトリウム
8.0gと粘度低下剤として作用するリン酸二アン
モニウム0.50gを溶かした蒸留水400ml中にアク
リル酸エチルとメタクリル酸メチルの組成比7:
3の混合単量体10mlを分散させ、一定のかきまぜ
状態(300rpm)に保ちながら過硫酸カリウムを
開始剤(系中濃度1.0×10-3モル/)として60
℃PH2〜4で重合を開始させた。ついで重合熱に
よる著しい昇温を防ぐために290mlのアクリル酸
エチルとメタクリル酸メチルからなる混合単量体
(組成比7:3)を滴下しながら共重合を行なつ
た。重合は60分以内に完了し、重合完了時まで重
合系の粘度は低く、かきまぜ困難などの不都合は
なく透明性の超微粒子ポリマーラテツクスが生成
した(800mμの光透過率38%)B型回転粘度計
によるラテツクスの粘度はスピンドル回転数
60rpmで2248センチボイズであつた。またポリマ
ーラテツクスのPH値は7であつた。
Example 4 Sodium lauryl sulfate was placed in a 1000 ml four-neck separable flask equipped with a gas inlet tube, a reflux condenser, a composite glass electrode for PH measurement, and a stirring device.
The composition ratio of ethyl acrylate and methyl methacrylate is 7: in 400 ml of distilled water in which 8.0 g and 0.50 g of diammonium phosphate, which acts as a viscosity reducing agent, are dissolved.
Disperse 10 ml of the mixed monomers from step 3 and mix with potassium persulfate as an initiator (concentration in the system: 1.0 x 10 -3 mol/) while maintaining constant stirring (300 rpm).
Polymerization was initiated at ℃ PH2-4. Next, copolymerization was carried out while dropping 290 ml of a mixed monomer consisting of ethyl acrylate and methyl methacrylate (composition ratio 7:3) to prevent a significant temperature increase due to heat of polymerization. Polymerization was completed within 60 minutes, and until the completion of polymerization, the viscosity of the polymerization system was low, and there were no problems such as difficulty in stirring, and a transparent ultrafine particle polymer latex was produced (light transmittance of 38% at 800 mμ). The viscosity of latex measured by a viscometer is determined by the spindle rotation speed.
It was 2248 centimeter voice at 60 rpm. The pH value of the polymer latex was 7.

得られたアクリル酸エチル〜メタクリル酸メチ
ル共重合体ラテツクスを11×15cm四方のガラス板
上に30ml流延させ、室温で自然通風下で乾燥する
と透明性の光沢に富んだポリマーラテツクス皮膜
を生成した。
30 ml of the obtained ethyl acrylate-methyl methacrylate copolymer latex was cast onto a 11 x 15 cm square glass plate and dried under natural ventilation at room temperature to form a transparent, glossy polymer latex film. did.

電子顕微鏡写真から求めたポリマーラテツクス
の粒子径は0.041μであつた。
The particle size of the polymer latex determined from an electron micrograph was 0.041μ.

比較例 1 実施例1と同様の装置と方法によつて蒸留水
400mlに12gのラウリル硫酸ナトリウムを溶かし
た水溶液に300mlのスチレンモノマーを乳化分散
後、系中濃度1.0×10-3モル/の過硫酸カリウ
ムを重合開始剤として一定のかきまぜ状態を保ち
ながら温度を60〜70℃、PH3〜4の条件で重合を
行なつた。生成ポリマーラテツクスは白色不透明
で電子顕微鏡写真から求めた粒子径は0.09μであ
つた。スチレンなどの疎水性モノマーの乳化重合
の場合は、Smith−Ewart理論〔J.chem.phys.,
16,592(1948)〕にしたがつていて粒子数は乳化
剤濃度の0.6乗に比例するため、粒子径が0.05μ
以下の超微粒子ポリマーラテツクスを生成させる
ためには8重量%(32g)以上の多量のラウリル
硫酸ナトリウムを必要とする。他の乳化剤の場合
は、さらに一層多量の乳化剤を必要とするが、か
かる多量の乳化剤の使用は生成ポリマーラテツク
スの発泡性を著しくして、また乳化剤のもつ副作
用のため使用用途に悪影響をもたらし不適当であ
る。
Comparative Example 1 Distilled water was prepared using the same equipment and method as in Example 1.
After emulsifying and dispersing 300 ml of styrene monomer in an aqueous solution of 12 g of sodium lauryl sulfate in 400 ml, the temperature was raised to 60°C while maintaining constant stirring using potassium persulfate at a concentration of 1.0 x 10 -3 mol/in the system as a polymerization initiator. Polymerization was carried out at ~70°C and pH 3-4. The resulting polymer latex was white and opaque, and the particle size determined from an electron micrograph was 0.09μ. In the case of emulsion polymerization of hydrophobic monomers such as styrene, the Smith-Ewart theory [J.chem.phys.,
16, 592 (1948)], and the number of particles is proportional to the 0.6th power of the emulsifier concentration, so if the particle size is 0.05μ
In order to produce the following ultrafine particle polymer latex, a large amount of sodium lauryl sulfate of 8% by weight (32 g) or more is required. In the case of other emulsifiers, even larger amounts of emulsifiers are required, but the use of such large amounts of emulsifiers significantly increases the foaming properties of the resulting polymer latex, and also adversely affects the intended use due to the side effects of the emulsifiers. It's inappropriate.

比較例 2 実施例3において過硫酸カリウムを0.75684g
用いた場合と1.4055g使用した場合は重合の経過
とともに重合系の粘度が高くなつて添加されつつ
あるモノマー層が高粘性のラテツクス層の上部に
分離しモノマーの拡散が不可能となつた。生成ポ
リマーラテツクスは12000〜41150センチポイズ高
粘性のものであつた。
Comparative Example 2 0.75684g of potassium persulfate in Example 3
When 1.4055 g was used and when 1.4055 g was used, the viscosity of the polymerization system increased as the polymerization progressed, and the monomer layer being added separated onto the top of the highly viscous latex layer, making it impossible for the monomer to diffuse. The resulting polymer latex was highly viscous, ranging from 12,000 to 41,150 centipoise.

Claims (1)

【特許請求の範囲】 1 下記第1および第2の工程からなり、該第1
または第2の工程における重合による粘度上昇以
前に低粘度化有効範囲量のイオン性電解質を添加
することを特徴とする超微粒子ポリマーラテツク
スの製造法。 第1の工程:アクリル酸低級アルキルエステ
ル、メタクリル酸低級アルキルエステルおよび酢
酸ビニルからなる群から選ばれた少なくとも1種
の親水性単量体A、または該単量体Aと共重合可
能な疎水性単量体Bと該少なくとも1種の親水性
単量体Aとからなる単量体混合物の1〜15重量部
を、濃度1.0×10-3〜1.0×10-2モル/の水溶性
重合開始剤および1〜8重量部のアニオン系界面
活性剤の存在下にPH2〜7において水性媒体100
重量部中で乳化重合させて一次ポリマーラテツク
スを製造する工程。 第2の工程:前記第1の工程で得られた一次ポ
リマーラテツクスに、前記第1の工程における単
量体と同種または異種の単量体Cを前記水性媒体
100重量部に対して70〜90重量部滴下しながら撹
拌して前記一次ポリマーラテツクス中のポリマー
粒子を核種として前記単量体Cを重合させる工
程。
[Claims] 1. Consisting of the following first and second steps, the first step
Alternatively, a method for producing an ultrafine particle polymer latex, characterized in that an ionic electrolyte is added in an amount effective for reducing the viscosity before the viscosity increases due to polymerization in the second step. First step: at least one hydrophilic monomer A selected from the group consisting of acrylic acid lower alkyl ester, methacrylic acid lower alkyl ester, and vinyl acetate, or a hydrophobic monomer copolymerizable with the monomer A 1 to 15 parts by weight of a monomer mixture consisting of monomer B and the at least one hydrophilic monomer A is added to initiate water-soluble polymerization at a concentration of 1.0 x 10 -3 to 1.0 x 10 -2 mol/. 100% in an aqueous medium at a pH of 2 to 7 in the presence of an anionic surfactant and 1 to 8 parts by weight of an anionic surfactant.
A process of producing a primary polymer latex by emulsion polymerization in parts by weight. Second step: A monomer C of the same type or different type as the monomer in the first step is added to the primary polymer latex obtained in the first step in the aqueous medium.
A step of polymerizing the monomer C using the polymer particles in the primary polymer latex as a nuclide by stirring while dropping 70 to 90 parts by weight per 100 parts by weight.
JP1077478A 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization Granted JPS54103498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077478A JPS54103498A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077478A JPS54103498A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Publications (2)

Publication Number Publication Date
JPS54103498A JPS54103498A (en) 1979-08-14
JPS6254806B2 true JPS6254806B2 (en) 1987-11-17

Family

ID=11759667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077478A Granted JPS54103498A (en) 1978-02-02 1978-02-02 Preparation of ultra-fine polymer latex by emulsion polymerization

Country Status (1)

Country Link
JP (1) JPS54103498A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325856A (en) * 1980-01-02 1982-04-20 The Dow Chemical Company Sequential emulsion polymerization process
FR2515657B1 (en) * 1981-11-03 1987-07-17 Kendall & Co EMULSION POLYMERIZATION PROCESS AND PRODUCT OBTAINED
JPH0714985B2 (en) * 1986-04-09 1995-02-22 旭化成工業株式会社 Method for manufacturing latex with excellent water resistance
US4812510A (en) * 1986-04-17 1989-03-14 The Glidden Company Small particle size latex based on vinyl acetate polymers
JPH052360U (en) * 1991-06-25 1993-01-14 矢崎総業株式会社 Pressure contact fuse
DE602007011615D1 (en) 2006-07-05 2011-02-10 Solvay PROCESS FOR PREPARING A LATEX OF A VINYL CHLORIDE POLYMER
JP2011063733A (en) * 2009-09-18 2011-03-31 Sumitomo Chemical Co Ltd Method for producing latex containing polymer

Also Published As

Publication number Publication date
JPS54103498A (en) 1979-08-14

Similar Documents

Publication Publication Date Title
US4456726A (en) Method for making aqueous dispersions of a synthetic resin
EP0478829B1 (en) A method of preparing hollow latexes
US4200563A (en) Method of producing aqueous polymer emulsion with improved stability
AU662814B2 (en) Aqueous polymer dispersion
JP5345520B2 (en) Polymer dispersion and its use as a water vapor barrier
AU2001249603B2 (en) Polymerizable compounds and uses thereof
JPH0681765B2 (en) Stable emulsion polymer and process for producing the same
JPH07165843A (en) Water-base latex polymer composition
JPH06220298A (en) Water-dispersed system of fluorescent pigment and preparation thereof
JPS6254806B2 (en)
SE444441B (en) INTERNAL SOFT ADDITION POLYMER PARTICLES IN THE FORM OF A LATEX OR PARTICULAR PARTICLES OR AS A COMPONENT IN A WATER BASED POLISH COMPOSITION
JPS59152972A (en) Water-resistant coating composition
JP2685600B2 (en) Aqueous surface treatment agent for polyvinyl chloride
JP3164634B2 (en) Emulsion composition for film formation
JPS628441B2 (en)
TWI761397B (en) Production method of polymer emulsion for water-resistant coating film and polymer emulsion for water-resistant coating film
WO1996010587A1 (en) Copolymer latex and process for producing the same
JPH04185607A (en) Redispersible acrylic resin powder prepared from emulsion containing protective clloid and production of the powder
JPS6334196B2 (en)
US3317449A (en) Polyvinylidene chloride latex and process
JP3154477B2 (en) Fine particle aggregate emulsion and method for producing the same
JPS58185605A (en) Acrylic emulsion
JP3030906B2 (en) Aqueous coating composition
JPS5856366B2 (en) Method for manufacturing microemulsion
RU2260602C1 (en) Method for preparing styrene-acrylic copolymers aqueous dispersions