JPS6283723A - Liquid crystal displaying device - Google Patents
Liquid crystal displaying deviceInfo
- Publication number
- JPS6283723A JPS6283723A JP60224336A JP22433685A JPS6283723A JP S6283723 A JPS6283723 A JP S6283723A JP 60224336 A JP60224336 A JP 60224336A JP 22433685 A JP22433685 A JP 22433685A JP S6283723 A JPS6283723 A JP S6283723A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- mim
- mim element
- display device
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 19
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 12
- 239000011521 glass Substances 0.000 abstract description 10
- 238000004544 sputter deposition Methods 0.000 abstract description 4
- 238000001312 dry etching Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract 1
- 238000001771 vacuum deposition Methods 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 241000566113 Branta sandvicensis Species 0.000 description 1
- 101100536546 Caenorhabditis elegans tcl-2 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1365—Active matrix addressed cells in which the switching element is a two-electrode device
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は各画素に金属−絶縁体−金属構造を有する非線
形素子(以下、MIMR子と呼ぶ)を組み合せたアクテ
ィブマトリクス型の液晶表示装置に関するものである。Detailed Description of the Invention <Industrial Application Field> The present invention relates to an active matrix liquid crystal display device in which each pixel is combined with a nonlinear element (hereinafter referred to as MIMR element) having a metal-insulator-metal structure. It is something.
〈従来の技術〉
従来のMIM素子を組み合せたアクティブマトリクス型
の液晶表示装置は、例えば特願昭59〜20485号公
報に示されている様にMIM素子の一方の金属を薄くし
て光が透過するよりにし、画素直販と同一形状にして製
造プロセスを短かくしてl/IA友。<Prior art> In an active matrix type liquid crystal display device that combines conventional MIM elements, for example, as shown in Japanese Patent Application No. 59-20485, one metal of the MIM element is thinned to allow light to pass through. Instead, we shortened the manufacturing process by using the same shape as the pixel sold directly, making it a good choice for l/IA friends.
〈発明が解決しようとする間租点〉
しかし、従来の方法では薄いとはいえ金属を使用するた
めに画素部分の透過率が低下し、液晶表示装置の外観が
暗くなるという欠点を有していた。<Disadvantage that the invention seeks to solve> However, the conventional method has the drawback that the transmittance of the pixel portion decreases due to the use of metal, although it is thin, and the appearance of the liquid crystal display device becomes dark. Ta.
即ち、第6図にC7を徐々に厚くしてVh Ofc場合
のCr十工TOの透過率の変化を示す、范6図中へはガ
ラス基板自体の透過率特性、Bはガラス基板+工TO@
の透過率特注%C,F°はC7−の膜厚を徐々に増した
場合のガラス基板十〇r十1TOの透過率特性を示す、
Cf映厚#′iC″C数n m 、 Fで約15 n
mと思わにる。That is, Fig. 6 shows the change in transmittance of Cr TO when C7 is gradually thickened and Vh Ofc. @
The custom-made transmittance %C, F° shows the transmittance characteristics of the glass substrate 10r11TO when the film thickness of C7- is gradually increased.
Cf projection thickness #'iC''C number nm, about 15 n at F
I think m.
又、醜7図はMIM素子の一方の金属にTa。Also, in Figure 7, one of the metals of the MIM element is Ta.
絶縁膜にTa20sを用い、第6図と同じ′Cr十工T
O膜をMIMの他方の金属電極とした場合の電圧−電流
特性をプール7レンケルプロツトしたモので、破Ii!
i!はTcL側に負匝注、CT/工TOIIllK正甑
性の電界を印加した時、実線は逆匝性の電界を印加した
時の特性を示す。Ta20s is used for the insulating film, and the same Cr-T as shown in Fig. 6 is used.
Pool 7 Lenkel plot of the voltage-current characteristics when O film is used as the other metal electrode of MIM shows that it is broken!
i! indicates the characteristics when a positive electric field is applied to the TcL side, and the solid line shows the characteristics when a reverse electric field is applied.
第6図及び配7図に示した様に透過率を上げるためにC
rの膜厚を薄くしていくと、透明電画として用いている
工TOを用いたMIM素子、部ちTa−TCLIOs−
工T t+ @ ifiのMIM累子の特性に近づき、
素子に印加され乞匝注によって整流性を生ずる様になっ
てくる。この様な素子を組込んだアクティブマトリクス
型の液晶表示装置では直流ル;流が累積されることによ
り、表示Inあるいは液晶中O不純物の電気化学反応に
より装置の信頼性に問題が生ずる。As shown in Figures 6 and 7, C
As the film thickness of r is decreased, MIM elements using TO, which are used as transparent electrolyte, become Ta-TCLIOs-
Approaching the characteristics of MIM t+ @ ifi,
When applied to the element, it begins to produce rectifying properties. In an active matrix type liquid crystal display device incorporating such an element, the accumulation of direct current causes a problem in the reliability of the device due to an electrochemical reaction of display In or O impurities in the liquid crystal.
そこで本発明は従来のこのような欠点を解決するために
、Crv)膜i#をMIM累子形成部を厚く、画素電極
上を薄くすることにより、透過率が高くMIM素子り整
流性が少ない液晶表示装置を潜ることを目的とする。Therefore, in order to solve these conventional drawbacks, the present invention makes the Crv) film i# thicker on the MIM layer forming part and thinner on the pixel electrode, thereby achieving high transmittance and less rectification than the MIM element. The purpose is to dive into the liquid crystal display device.
く問題点を解決するための手段〉
上記問題点を解決するために、本発明はMIM素子02
層目の金@全形成する方法を斜め蒸着とすることで、M
IM素子形成部と画素電極部の金属O厚みを変化させた
ものである。Means for Solving the Problems> In order to solve the above problems, the present invention provides an MIM element 02
By using oblique vapor deposition as the method for completely forming the gold layer
The thickness of the metal O in the IM element forming part and the pixel electrode part is changed.
く作用〉
上記のように、MIM素子形成部の2層目金桟の膜厚が
厚いため整流性の少ないMIM素子が得られる。又、画
素部分の金属簿膜■膜厚が薄いため透過率の高い、明る
い外観を持った液晶表示装置が得られる。Effects> As described above, since the thickness of the second layer metal bar of the MIM element forming portion is thick, an MIM element with low rectification properties can be obtained. Furthermore, since the metal film in the pixel portion is thin, a liquid crystal display device with high transmittance and a bright appearance can be obtained.
〈実施例〉
以下本発明による液晶表示装置のm敗及び特数を図面に
従って説明する。<Example> The advantages and disadvantages of the liquid crystal display device according to the present invention will be explained below with reference to the drawings.
第1図は、本発明によるMIM素子の製造プロセスを説
明する図である。FIG. 1 is a diagram illustrating a manufacturing process of an MIM element according to the present invention.
まず、ガラス基板l上にTa2をスパッタリングで形成
した後、表面を200V程度の電圧で陽極酸化し300
〜400zmのTl)lo33 k形成する(α)0次
に、CF4+Ot混合ガスでドライエツチングを行なり
hTα2の断面形状が40〜80° のテーパー状にな
る様にする(b)、更に、ドライエツチングで露出した
Ta2の側面部をl(1〜60vrv電圧で再び陽極酸
化した後、基板法線から40〜85°の角度でCTJを
斜め蒸着する(C)、ここで、斜め蒸着の角度は陽極酸
化されたTcL2の側面に対しほぼ垂直、あるいは垂直
よりもカラス基板1表面に近づいた(#、い角度で行な
い、ガラス基板1表面に形成されるCr4の膜厚が前記
陽極酸化されたTa2の側面部より薄くなるようにする
1次に、工TO5をスパッタリングにて形成しく社)9
画素及びMIM素子が出来るように工’1’o5とCr
4をバターニングする(e)、このようにして完成した
1画素分の画Xlr、甑6及びMIM素子7(斜線部)
の配置は第2図のようになる。又、このMIM素子を用
いた液晶表示装置の断面は第3図のようになる。即ち、
前記MIM素子7及び画素11を載せたガラス基板lと
、前記Tα2iCより形成される信号線とマトリクスを
13成すべく配置された対向透明m1i5’を設けたガ
ラス基板1′とでセルを11y、L、その間隙1c液晶
8を充填した後、1組の偏光板9.91及び反射板lO
ではさみ込み反射型液晶表示装置となす、ここで、液晶
の種類・配向方向及び偏光板・反射板等の有無あるいは
配置方法で一般的に各種の、例えばG−Hタイプ、透過
型等0液晶表示装置が帰られることは明らかである。First, after forming Ta2 on a glass substrate l by sputtering, the surface was anodized at a voltage of about 200V and
~400zm of Tl) lo33k is formed (α)0 Next, dry etching is performed with a CF4+Ot mixed gas so that the cross-sectional shape of hTα2 becomes tapered at 40 to 80° (b), and further dry etching is performed. After anodizing the exposed side surface of Ta2 again at a voltage of 1 to 60 vrv, CTJ is obliquely deposited at an angle of 40 to 85 degrees from the substrate normal (C). The thickness of the Cr4 film formed on the surface of the glass substrate 1 is approximately perpendicular to the side surface of the oxidized TcL2, or closer to the surface of the glass substrate 1 than perpendicular to the surface of the glass substrate 1. First, form TO5 by sputtering so that it is thinner than the side surface.9)
Engineering '1'o5 and Cr to make pixels and MIM elements
4 (e), one pixel image Xlr completed in this way, koshiki 6 and MIM element 7 (hatched area)
The arrangement is as shown in Figure 2. The cross section of a liquid crystal display device using this MIM element is shown in FIG. That is,
A cell is formed by a glass substrate 1 on which the MIM element 7 and pixel 11 are mounted, and a glass substrate 1' on which an opposing transparent m1i5' is arranged to form a matrix 13 with the signal line formed from the Tα2iC. , after filling the gap 1c with the liquid crystal 8, a pair of polarizing plates 9, 91 and a reflecting plate lO
In this case, it is made into a reflective type liquid crystal display device.Here, there are generally various types of liquid crystal display devices, such as G-H type, transmissive type, etc. It is clear that the display device is returned.
上記製造プロセスでTa2のテーパー角度カ80°に設
定してテーパーとのCr2が約H1n m厚になるよう
に作ったMIM累子V)電圧−電流特性と画素部分の透
過率特注をそれぞれ第4図および第5図に示す。In the above manufacturing process, the taper angle of Ta2 was set to 80° and the thickness of Cr2 with the taper was approximately H1 nm. As shown in FIG.
m4図は従来列のは7図と同様に、破線セTα2側を負
匝注とした場合、実線は逆甑註の場合0竜圧−電流特性
でGで示すのが本実m例り結果、Bは工Toのみ(ay
なし)、CはCf4膜厚が数n m (5n m Id
下)■場合である。又、第5図も従来列V)禰6図と同
様に八はガラス基板のみの場会の透過率特性であり、B
oC,G1−1:欺4図の同じ記号と対応する。なお、
点線で示す’r、、、側を負匝注とした場合には条件に
よらず(にrV)厚さが変fヒしても)Iξぼ一定の特
性を示す。The m4 diagram is the same as the conventional column's diagram 7, when the broken line set Tα2 side is negative injection, the solid line is the reverse voltage note, and the zero pressure-current characteristic is shown by G. This is the actual m example result. , B is only engineering To (ay
None), C has a Cf4 film thickness of several nm (5 nm Id
Bottom)■It is a case. Also, in Fig. 5, as in the conventional column V) Nene 6, 8 is the transmittance characteristic in the case of only a glass substrate, and B
oC, G1-1: Corresponds to the same symbol in Figure 4. In addition,
When the 'r, .
〈発明■効果〉
本発明によれば、MIM素子の電圧−電流′特性に関与
するTαテーパ一部v)Cr嗅膜厚画素部分にくらべて
厚くすることが出来る。従って、液晶表示装置合本の明
るさを決定する画素部分O透過率が高り、シかも整流性
を持たないMrM素子を得ることが出来、信頼性が高く
製造コストo低いアクティブマトリクス型の液晶表示装
置を得ることが町1]ヒとなる。<Effects of the Invention> According to the present invention, the Tα taper portion, which is involved in the voltage-current characteristic of the MIM element, can be made thicker than the pixel portion v) Cr olfactory membrane thickness. Therefore, the transmittance of the pixel portion, which determines the overall brightness of the liquid crystal display device, is high, and it is possible to obtain MrM elements that do not have rectifying properties, making it possible to produce active matrix liquid crystals with high reliability and low manufacturing costs. Obtaining a display device will result in town 1]hi.
第1図(a)〜(8)は本発明におけるMIM素子の製
造プロセスを説明する図、第2図は本発明における1画
素分V)モ面図、第3図は本発明による液晶表示装置1
t(V)断面向、第4図は本発明の実施列によるMlj
i&素子の電圧−電流特注?示す因、第5図は同じく本
発明の実施例における画素部分の透過率特性を示す図、
第6図及び第7図は従来列における透過率特性とMIM
素子の電圧−電?N、特性を示す図。
Ill・ガラス基板 2・・Tα
3°@ T alQS 4 e * C7−5−
・工TO5・lll1!ll素亀匝7侮・MIM素子部
8・・液晶
9・・偏光板 lO・・反射板
板 上Figures 1 (a) to (8) are diagrams explaining the manufacturing process of the MIM element in the present invention, Figure 2 is a cross-sectional view of one pixel in the present invention, and Figure 3 is a liquid crystal display device according to the present invention. 1
t(V) cross-sectional direction, FIG. 4 shows Mlj according to the implementation row of the present invention.
I & element voltage-current custom made? FIG. 5 is a diagram showing the transmittance characteristics of the pixel portion in the embodiment of the present invention.
Figures 6 and 7 show the transmittance characteristics and MIM in the conventional array.
Element voltage - electricity? N. Diagram showing characteristics. Ill・Glass substrate 2...Tα 3°@T alQS 4 e * C7-5-
・Engineering TO5・lll1! ll Sokame 7 - MIM element part 8... Liquid crystal 9... Polarizing plate lO... Reflector plate top
Claims (2)
電極を配置し、前記画素電極の各々に金属−絶縁体−金
属構造を有する非線形素子(以下、MIM素子と呼ぶ)
を組み合せたアクティブマトリクス型の液晶表示装置に
おいて、前記MIM素子の一方の金属を斜め蒸着法を用
いて形成したことを特徴とする液晶表示装置。(1) A nonlinear element (hereinafter referred to as an MIM element) in which a pixel electrode is arranged at each intersection of a plurality of scanning electrodes and a plurality of signal electrodes, and each of the pixel electrodes has a metal-insulator-metal structure.
1. An active matrix liquid crystal display device in which one metal of the MIM element is formed using an oblique evaporation method.
画素電極を形成する材質が同一のパターン形状に形成さ
れていることを特徴とする特許請求の範囲第1項記載の
液晶表示装置。(2) The liquid crystal display device according to claim 1, wherein one metal of the MIM element formed by oblique vapor deposition and a material forming the pixel electrode are formed in the same pattern shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224336A JPS6283723A (en) | 1985-10-08 | 1985-10-08 | Liquid crystal displaying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224336A JPS6283723A (en) | 1985-10-08 | 1985-10-08 | Liquid crystal displaying device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6283723A true JPS6283723A (en) | 1987-04-17 |
Family
ID=16812157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60224336A Pending JPS6283723A (en) | 1985-10-08 | 1985-10-08 | Liquid crystal displaying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6283723A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5253092A (en) * | 1991-01-25 | 1993-10-12 | Seiko Epson Corporation | Lateral MIM device and method of production |
-
1985
- 1985-10-08 JP JP60224336A patent/JPS6283723A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5253092A (en) * | 1991-01-25 | 1993-10-12 | Seiko Epson Corporation | Lateral MIM device and method of production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100934590B1 (en) | Manufacturing method of liquid crystal display device using halftone exposure method | |
US4933296A (en) | N+ amorphous silicon thin film transistors for matrix addressed liquid crystal displays | |
JPS60149025A (en) | Liquid crystal display device | |
US5893621A (en) | Liquid crystal display and method of manufacturing the same | |
JPH0334368A (en) | Active matrix display panel | |
JPS63289533A (en) | Liquid crystal display device | |
JPS6283723A (en) | Liquid crystal displaying device | |
US5539549A (en) | Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes | |
JPS60241021A (en) | Liquid crystal display device | |
JP2812720B2 (en) | Method of manufacturing reflective MIM active matrix substrate | |
JPH0281028A (en) | Liquid crystal display device | |
JPH0345930A (en) | Two-terminal type nonlinear element | |
JPH0331823A (en) | Production of liquid crystal display device and electrode substrate | |
JPH11249177A (en) | Active matrix substrate, production thereof and liquid crystal display panel | |
US20020145684A1 (en) | Method of manufacturing nonlinear element, method of manufacturing electrooptic device, electrooptic device, and electronic apparatus | |
JPH02168236A (en) | Manufacture of active matrix substrate | |
JP3169319B2 (en) | Manufacturing method of nonlinear element | |
JPH07168208A (en) | Active matrix system liquid crystal display | |
JPH0352277A (en) | Manufacture of nonlinear element | |
JPH01113725A (en) | Production of liquid crystal display device | |
JPS61124922A (en) | Manufacture of electrooptic device | |
JPH09185085A (en) | Nonlinear resistance element and its production | |
JPS60149024A (en) | Liquid crystal display device | |
JPH06337440A (en) | Mim type nonlinear element and manufacture thereof | |
JPH01283524A (en) | Liquid crystal display device |