JPS627836A - Manufacture of aluminum alloy having fine-grained structure - Google Patents

Manufacture of aluminum alloy having fine-grained structure

Info

Publication number
JPS627836A
JPS627836A JP14792985A JP14792985A JPS627836A JP S627836 A JPS627836 A JP S627836A JP 14792985 A JP14792985 A JP 14792985A JP 14792985 A JP14792985 A JP 14792985A JP S627836 A JPS627836 A JP S627836A
Authority
JP
Japan
Prior art keywords
aluminum alloy
aluminum
fine
alloy
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14792985A
Other languages
Japanese (ja)
Inventor
Kenji Azuma
健司 東
Chuichi Onishi
大西 忠一
Ichizo Tsukuda
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP14792985A priority Critical patent/JPS627836A/en
Publication of JPS627836A publication Critical patent/JPS627836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To provide a fine-grained structure by using an aluminum alloy containing specific amounts of 1 or >=2 elements among Fe, Mn, Cr and Zr and by allowing a plastic working stage of a specific working temp. and rate of strain to be included in the process of alloy manufacture. CONSTITUTION:The aluminum alloy has a composition consisting of, by weight, 0.05-2% Fe, 0.05-2% Mn, 0.05-0.35% Cr, 0.05-0.7% Zr, and the balance Al with inevitable impurities, to which 1 or >=2 kinds among 0.05-25% Si, 0.05-6% Cu, 0.05-6% Mg and 0.05-8% Zr are further incorporated, if necessary. In the manufacturing process of the above alloy, the plastic working stage of 250-480 deg.C working temp. and 1X10<-4>sec<-1>-1sec<-1> rate of strain is included.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、微細結晶粒組織を有し、圧延(A、押出材
等の展伸材として各種成形加工用、鍛造加工用等の用途
に好適する優れた延性を示す超塑性アルミニウム合金の
製造法に関づる。
[Detailed Description of the Invention] Industrial Application Field This invention has a fine crystal grain structure and is suitable for various forming processes, forging processes, etc. as a rolled material such as rolled (A) extruded material, etc. Relates to a method for producing a superplastic aluminum alloy that exhibits excellent ductility.

なお、この明細占において「%」は手相基準で示すもの
とする。
In addition, in this detailed reading, "%" shall be indicated on a palm reading basis.

従来の技術 近年、アルミニウム及びアルミニ「クム合金(以下単に
アルミニウム合金という)において、これに高延性を付
与して成形性、鍛造性の良い超塑性合金とすることに関
して種々研究がなされている。而して、アルミニウム材
の延性は、−その結晶粒組織の微細化をはかることによ
って向上しうろことは良く知られているところであり、
そのための具体的な手段として、従来では、アルミニウ
ム合金にFe 、Mn 、Cr 、 Zr等の遷移元素
を添加し、冷間圧延後焼鈍することによって微細再結晶
組織を得ることが一般的に行われている。英国で開発さ
れ3upralの名称で知られるAA2004合金もそ
の代表的な1つである。該合金はAQ−6%Cu −0
゜4%Zrを基本組織とし、動的再結晶により微細粒組
織を1qでいるものであって、1000%ないしそれを
超える伸びが得られると報告されている。
BACKGROUND OF THE INVENTION In recent years, various studies have been conducted on aluminum and aluminum alloys (hereinafter simply referred to as aluminum alloys) to impart high ductility and create superplastic alloys with good formability and forgeability. It is well known that the ductility of aluminum materials can be improved by refining the grain structure.
As a specific means for this purpose, it has conventionally been common practice to add transition elements such as Fe, Mn, Cr, and Zr to an aluminum alloy, and obtain a fine recrystallized structure by cold rolling and annealing. ing. The AA2004 alloy developed in the UK and known as 3upral is one of the representative examples. The alloy is AQ-6%Cu-0
It is reported that the basic structure is 4% Zr and the fine grain structure is made 1q by dynamic recrystallization, and that an elongation of 1000% or more can be obtained.

発明が解決しようとする問題点 しかしながら、上記従来合金の如く、Fe、Mn、Or
、Zr等の遷移元素を添加する結晶、粒の微細化手段に
よるときは、冷間圧延後焼鈍する製造工程を経てもなお
結晶物径を20ttm以下にまで微細化することは実際
上困難であり、各種成形加工用材料として充分に満足す
べき超塑性を帯有せしめうるちのではなかった。しかも
、上記従来合金では、その製造工程において〜冷間加工
を必須とするため、熱間成形加工後に微細結晶粒組織を
得ようとする場合には製造工程が複雑になるというよう
な難点もあった。
Problems to be Solved by the Invention However, like the above conventional alloys, Fe, Mn, Or
When using crystal and grain refining means that add transition elements such as However, it did not have enough superplasticity to be used as a material for various molding processes. Moreover, since the above-mentioned conventional alloys require ~cold working in the manufacturing process, there is also the drawback that the manufacturing process becomes complicated when attempting to obtain a fine grain structure after hot forming. Ta.

問題点を解決するための手段 この発明者らは、上記の問題点に鑑み、冷間加工の必要
性を排斥して、しかも結晶粒の極微細化をはかりうる”
A造法の確立を意図して種々実験とω1究を行った結果
、従来技術に準じて遷移元素であるFc 、Mn 、Q
r 、 Zrのうちの1種または2種以上の含有するア
ルミニウム合金を、鋳造後、所定の温間条件下で極低ひ
ずみ条件下に加工することによって所期目的を達成しう
ろことを見出し、本発明を完成するに至ったものである
Means for Solving the Problems In view of the above problems, the inventors have been able to eliminate the need for cold working and further refine the crystal grains.
As a result of conducting various experiments and ω1 research with the intention of establishing the A manufacturing method, we found that transition elements Fc, Mn, and Q
It has been found that the desired purpose can be achieved by processing an aluminum alloy containing one or more of Zr and Zr under extremely low strain conditions under predetermined warm conditions after casting, This has led to the completion of the present invention.

而して、この発明は、Fe :0.05〜2゜0%、M
n :0.05〜2.0%、cr:o。
Therefore, this invention has Fe: 0.05 to 2°0%, M
n: 0.05-2.0%, cr: o.

05〜0.35%、Zr :0.05−0.7%のうち
の1種または2種以上を含有し、または更にSi  ;
0.05〜25%、CU:O,05〜6%、Mg :0
.05〜6%、Zr;0.05〜8%のうちの1種また
は2種以上を含有し、残部アルミニウム及び不可避不純
物からなるアルミニウム合金を用い、該合金の%JJJ
a工程において、加工温度;250〜480℃、ひずみ
速度: ’l X 10’SeC’ 〜1SeC’(7
)塑性加工工程を含むことを特徴とする微細結晶粒組織
を有するアルミニウム合金の製造法を要旨とするもので
おる。
05-0.35%, Zr: 0.05-0.7%, or further contains Si;
0.05-25%, CU:O, 05-6%, Mg: 0
.. 05 to 6%, Zr; 0.05 to 8%, using an aluminum alloy containing one or more of Zr; 0.05 to 8%, and the balance consisting of aluminum and unavoidable impurities;
In step a, processing temperature: 250 to 480°C, strain rate: 'l x 10'SeC' to 1SeC' (7
) The gist is a method for producing an aluminum alloy having a fine grain structure, which is characterized by including a plastic working step.

この発明の製造法に用いられるアルミニウム合金は、遷
移元素のFe SMn 、 Cr 、Zl’のうちの1
杯または2種以上を必須成分として含有するものである
。これらの元素はいずれも既知のとおり結晶粒の微細化
に役立つものであり、従って、それらの含有量が本発明
に規定する下限値、即ちいずれも0.05%未満では上
記効果が1qられない。反対に、上限値であるFe;2
.0%、Mn :2.0%、Cr :0.35%、Zr
 :0.7%をそれぞれ超えるとぎは、鋳造時にそれら
の多くの晶出物が発生し、かえって延性の低下を招く。
The aluminum alloy used in the production method of this invention contains one of the transition elements Fe SMn, Cr, and Zl'.
It contains one or more types as essential ingredients. All of these elements are known to be useful for refining crystal grains, and therefore, if their content is less than the lower limit specified in the present invention, that is, less than 0.05%, the above effect cannot be achieved by 1q. . On the other hand, the upper limit of Fe;2
.. 0%, Mn: 2.0%, Cr: 0.35%, Zr
: If the content exceeds 0.7%, a large amount of crystallized substances will be generated during casting, resulting in a decrease in ductility.

上記遷移元素を含有するものであれば、この発明は10
00番系の純アルミニウムをベースをした合金でも使用
可能であるが、各種成形加工用材料として実用に供ずぺ
ぎアルミニウム合金は、多くの場合機械的強度の保有も
充分なものでなければならない。断る要請に応えるアル
ミニウム合金の製造には、上記遷移元素に加えて、硬化
元素として、s+  :0.05〜25%、好適には0
.2〜1.2%、Cu :0.05〜6%、好適には1
.5〜6.0%、M(1:0゜05〜6%、好適には0
.3〜1.5%、Zn;0.05〜8%、好ましくは0
.8〜6%程度の範囲で、それらの1種または2種以上
をS有したものが用いられる。これらの硬化元素の含有
量がそれぞれ下限値未満のものでは合金材おlに所要の
強度が得られず、上限値をこえて過多に含有する場合に
は、粗大な全居間化合物を生じて延性の低下を招く。
If it contains the above-mentioned transition element, this invention can be applied to 10
Alloys based on No. 00 pure aluminum can also be used, but in order to be used as a material for various forming processes, PEGI aluminum alloys must often have sufficient mechanical strength. . In addition to the transition elements mentioned above, in addition to the above-mentioned transition elements, as a hardening element, s+: 0.05 to 25%, preferably 0.
.. 2-1.2%, Cu: 0.05-6%, preferably 1
.. 5-6.0%, M (1:0゜05-6%, preferably 0
.. 3-1.5%, Zn; 0.05-8%, preferably 0
.. S containing one or more of these types is used in a range of about 8 to 6%. If the content of each of these hardening elements is less than the lower limit, the required strength cannot be obtained in the alloy material, and if the content exceeds the upper limit and is excessive, coarse compounds are formed and the ductility is reduced. This results in a decrease in

次にこの発明の製造工程中に必要的に実施されるべき塑
性加工は、その加工の種類において特に限定されるもの
ではなく、張出し加工、押出し加工、圧延、伸線、鍛造
、圧縮などの各種加工が包含される。しかし、その加工
条件は、加工温度において250〜480℃、ひずみ速
度において1x10  sec〜1sec −1(D範
囲に限定される。ここに加工温度が250℃未満では、
加工により発生した転位のセル化が生じにくく、また固
溶しているFe 、 Mn 、 Cr 。
Next, the plastic working that must be carried out during the manufacturing process of the present invention is not particularly limited in terms of its type, and may include various types such as stretching, extrusion, rolling, wire drawing, forging, and compression. Processing is included. However, the processing conditions are limited to a processing temperature of 250 to 480°C and a strain rate of 1x10 sec to 1 sec -1 (D range. If the processing temperature is less than 250°C,
Fe, Mn, and Cr are hard to form cells due to dislocations generated by processing, and are dissolved in solid solution.

Zrの析出が生じないため、結晶粒の微細化効果を得る
ことができない。一方加工温度が480℃を超えると上
記主要硬化元素からなる析出が生じないため、この場合
も結晶粒の微細化を実現することができない。なお上記
加工温度は、加工開始温度であて、加工終了温度は上記
湿度範囲より更に±50℃程度以下の幅をもって200
〜500℃の範囲を可とするものである。
Since Zr does not precipitate, it is not possible to obtain the effect of refining crystal grains. On the other hand, if the processing temperature exceeds 480° C., precipitation of the above-mentioned main hardening elements does not occur, so that grain refinement cannot be achieved in this case as well. The above processing temperature is the processing start temperature, and the processing end temperature is 200℃ with a width of about ±50℃ or less than the above humidity range.
The temperature range is 500°C.

また、加工時の合金のひずみ速度は、これが1X 10
4sec −1未満では微細セル及び微細再結晶粒が小
さくならない。反面1sec−1を超えて速い加工が加
えられると、転位の導入が多くセルの安定がはかれず、
その結果もはや析出物によるピンニング効果が不足し、
結晶粒の微細化を果すことができなくなる。実験の結果
によれば、最も好ましい加工条件の範囲は、概ね加工温
度:350〜400℃、ひずみ速度:1X10−4〜1
 x 10−3sec−’程度テアル。
Also, the strain rate of the alloy during processing is 1X 10
If it is less than 4 sec -1, the fine cells and fine recrystallized grains will not become small. On the other hand, if fast processing exceeding 1 sec-1 is applied, many dislocations will be introduced, making it difficult to stabilize the cell.
As a result, the pinning effect due to the precipitates is no longer sufficient,
It becomes impossible to achieve grain refinement. According to the experimental results, the most preferable range of processing conditions is approximately processing temperature: 350 to 400°C, strain rate: 1X10-4 to 1
x about 10-3 sec-'.

発明の効果 この発明によれば、後掲の実施例に見られるように、冷
間加工を必要としない製造工程をもて、平均結晶粒系を
20μm以下とした極微細な結晶粒組織のアルミニウム
合金を得ることができる。かつ硬化元素を含有して所要
の充分な機械的強度を保有せしめたものにあっても、同
様に微細な結晶粒組織を19ることができる。従って、
延性に著るしく優れた超塑性を示しつ・、機械的強度に
も優れたアルミニウム合金を得ることができるものであ
り、従来提供されている既知の高延性合金に較べて一段
と各種成形加工性、鋳造加工性等に優れたアルミニウム
合金材料を提供しうる。
Effects of the Invention According to the present invention, as seen in the examples below, aluminum can be produced using a manufacturing process that does not require cold working, and has an extremely fine grain structure with an average grain size of 20 μm or less. Alloys can be obtained. Even if the material contains a hardening element and has sufficient mechanical strength, it is possible to obtain a similarly fine grain structure. Therefore,
It is possible to obtain an aluminum alloy that exhibits extremely high ductility, superplasticity, and excellent mechanical strength, and has much better formability than conventionally available high-ductility alloys. , it is possible to provide an aluminum alloy material with excellent casting processability.

ちなみに、本発明の′!!造法により上記のような微細
結晶粒組織が得られるのは、前記の加工条件により、合
金中に固溶したFe 、 Mn 、 Cr、Zrがサブ
グレーイン又はグレイン上に析出し、ピンニング効果が
増大するため、再結晶が遅延し、結果として微細結晶粒
になるものと考えられる。
By the way, the present invention'! ! The reason why the above-mentioned fine grain structure is obtained by the manufacturing method is that due to the processing conditions mentioned above, Fe, Mn, Cr, and Zr dissolved in the alloy precipitate on the subgrain or grains, resulting in a pinning effect. It is thought that this increases the crystal grain size, thereby delaying recrystallization and resulting in fine crystal grains.

実施例 表−1に示す各種組成のアルミニウム合金を、直径75
Mの鋳塊に水冷金型で鋳造した。そして、この鋳塊を4
50℃にて3馴X30mの帯状材に押出したのち、表−
2に示す各種の加工条件で特殊圧延により塑性加工を施
したものを試料とした。なお、比較例については空温で
従来の常法に従い、ひずみ速度l5eCの塑性加■を施
したのち、400℃で焼鈍したものを試料とした。
Aluminum alloys with various compositions shown in Example Table 1 were made into aluminum alloys with a diameter of 75
It was cast into an M ingot using a water-cooled mold. And this ingot is 4
After extruding at 50℃ into a strip of 3cm x 30m,
The samples were plastically worked by special rolling under various processing conditions shown in 2. As for the comparative example, the sample was subjected to plastic stressing at a strain rate of 15 eC according to a conventional conventional method at air temperature, and then annealed at 400°C.

表−1 拭  利       化  学  組  成 (wt
%)唾類 N(l  Si  CI  M(It  Z
n iFe  Mn  Cr  Zr jA!21−−
−−io、2−−一残 実20.5−0.6−IO,8−−一残施3−4.50
.5−1−0.4−一残例4−1.42.14.7−−
− o、34.残5−−4.6−(−−0,25−残 圧6−−−−1.3−−−1vv 表−2 上記によって得られた各試料につき、その合金組成中の
平均結晶粒径を測定すると共【こ、機械的性質を調べた
ところ、結果は表−3に示すとおりであった。
Table-1 Wipe chemical composition (wt
%) Saliva N(l Si CI M(It Z
n iFe Mn Cr Zr jA! 21--
--io, 2--one remainder 20.5-0.6-IO, 8--one remainder 3-4.50
.. 5-1-0.4-1 remaining example 4-1.42.14.7--
- o, 34. Remaining 5--4.6-(--0,25-Residual pressure 6-----1.3--1vv Table 2 For each sample obtained above, the average grain size in its alloy composition In addition to measuring the mechanical properties, the results were as shown in Table 3.

表−3Table-3

Claims (2)

【特許請求の範囲】[Claims] (1)Fe;0.05〜2.0% Mn;0.05〜2.0% Cr;0.05〜0.35% Zr;0.05〜0.7% のうちの1種または2種以上を含有し、残部アルミニウ
ム及び不可避不純物からなるアルミニウム合金を用い、
該合金の製造工程において、 加工温度;250〜480℃、 ひずみ速度;1×10^−^4sec^−^1〜1se
c^−^1の塑性加工工程を含むことを特徴とする微細
結晶粒組織を有するアルミニウム合金の製造法。
(1) One or two of the following: Fe; 0.05-2.0% Mn; 0.05-2.0% Cr; 0.05-0.35% Zr; 0.05-0.7% Using an aluminum alloy containing at least 100% of aluminum with the remainder consisting of aluminum and unavoidable impurities,
In the manufacturing process of the alloy, processing temperature: 250-480°C, strain rate: 1 x 10^-^4sec^-^1-1sec
A method for producing an aluminum alloy having a fine grain structure, characterized by including a plastic working step of c^-^1.
(2)Fe;0.05〜2.0% Mn;0.05〜2.0% Cr;0.05〜0.35% Zr;0.05〜0.7% のうちの1種または2種以上を含有し、かつSi;0.
05〜25% Cu;0.05〜6% Mg;0.05〜6% Zr;0.05〜8% のうちの1種または2種以上を含有し、残部アルミニウ
ム及び不可避不純物からなるアルミニウム合金を用い、
該合金の製造工程において、 加工温度;250〜480℃、 ひずみ速度;1×10^−^4sec^−^1〜1se
c^−^1の塑性加工工程を含むことを特徴とする微細
結晶粒組織を有するアルミニウム合金の製造法。
(2) One or two of the following: Fe; 0.05-2.0% Mn; 0.05-2.0% Cr; 0.05-0.35% Zr; 0.05-0.7% species or more, and Si; 0.
An aluminum alloy containing one or more of the following: 05-25% Cu; 0.05-6% Mg; 0.05-6% Zr; 0.05-8%, with the balance consisting of aluminum and inevitable impurities. using
In the manufacturing process of the alloy, processing temperature: 250-480°C, strain rate: 1 x 10^-^4sec^-^1-1sec
A method for producing an aluminum alloy having a fine grain structure, characterized by including a plastic working step of c^-^1.
JP14792985A 1985-07-04 1985-07-04 Manufacture of aluminum alloy having fine-grained structure Pending JPS627836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14792985A JPS627836A (en) 1985-07-04 1985-07-04 Manufacture of aluminum alloy having fine-grained structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14792985A JPS627836A (en) 1985-07-04 1985-07-04 Manufacture of aluminum alloy having fine-grained structure

Publications (1)

Publication Number Publication Date
JPS627836A true JPS627836A (en) 1987-01-14

Family

ID=15441263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14792985A Pending JPS627836A (en) 1985-07-04 1985-07-04 Manufacture of aluminum alloy having fine-grained structure

Country Status (1)

Country Link
JP (1) JPS627836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259150A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of high-strength al-cu-li-mg-zr superplastic sheet
JPH01259148A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of al-cu-li-zr super plastic plate having less anisotropy
JPH01259149A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu-mg-type superplastic sheet reduced in anisotropy
US5540791A (en) * 1993-07-12 1996-07-30 Sky Aluminum Co., Ltd. Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155410A (en) * 1974-05-13 1975-12-15
JPS57152453A (en) * 1981-03-13 1982-09-20 Mitsubishi Keikinzoku Kogyo Kk Manufacture of superplastic aluminum alloy sheet
JPS605865A (en) * 1983-03-31 1985-01-12 アルカン・インタ−ナシヨナル・リミテイド Superplastic formation for alloy material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155410A (en) * 1974-05-13 1975-12-15
JPS57152453A (en) * 1981-03-13 1982-09-20 Mitsubishi Keikinzoku Kogyo Kk Manufacture of superplastic aluminum alloy sheet
JPS605865A (en) * 1983-03-31 1985-01-12 アルカン・インタ−ナシヨナル・リミテイド Superplastic formation for alloy material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259150A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of high-strength al-cu-li-mg-zr superplastic sheet
JPH01259148A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of al-cu-li-zr super plastic plate having less anisotropy
JPH01259149A (en) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu-mg-type superplastic sheet reduced in anisotropy
US5540791A (en) * 1993-07-12 1996-07-30 Sky Aluminum Co., Ltd. Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JPH027386B2 (en)
JPS623225B2 (en)
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
US5116428A (en) Rolled thin sheets of aluminum alloy
JPS61119658A (en) Manufacture of material for aluminum foil
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JPS627836A (en) Manufacture of aluminum alloy having fine-grained structure
JPS6152345A (en) Superplastic al alloy
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JPH0363442B2 (en)
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPH0696756B2 (en) Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JP2004217945A (en) Method for manufacturing aluminum alloy for forming and formed material superior in thermal conductance
JP3326748B2 (en) Manufacturing method of aluminum foil
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method