JPS6277422A - Solution heat treatment for two phase stainless weld steel pipe - Google Patents

Solution heat treatment for two phase stainless weld steel pipe

Info

Publication number
JPS6277422A
JPS6277422A JP21489785A JP21489785A JPS6277422A JP S6277422 A JPS6277422 A JP S6277422A JP 21489785 A JP21489785 A JP 21489785A JP 21489785 A JP21489785 A JP 21489785A JP S6277422 A JPS6277422 A JP S6277422A
Authority
JP
Japan
Prior art keywords
sec
heat treatment
steel pipe
solution heat
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21489785A
Other languages
Japanese (ja)
Inventor
Tomoaki Hyodo
兵藤 知明
Kazuyoshi Ume
卯目 和巧
Toyofumi Kitada
北田 豊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21489785A priority Critical patent/JPS6277422A/en
Publication of JPS6277422A publication Critical patent/JPS6277422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture weld steel pipe having superior corrosion resistance and good mechanical property, by applying heat treatment at suitable temp. and cooling rate to weld steel pipe in which base metal and welded metal are both made of austenitic and ferritic stainless steel. CONSTITUTION:Welded steel pipe in which base metal and welded metal are both made of austenitic-ferritic two phases stainless steel is soln. heat treated. When heat treating condition is exhibited by a coordinate indicating one and the other axes with heat treating temp. deg.C and cooling rate deg.C/sec respectively, the soln. heat treatment is carried out in the domain surrounded by connecting six plotted points of 1,200 deg.C-0.5 deg.C/sec, 1,200 deg.C-1 deg.C/sec, 1,100 deg.C-25 deg.C/sec, 1,100 deg.C-200 deg.C/sec, 1,000 deg.C-0.5 deg.C/sec, 1,000 deg.C-200 deg.C/sec. By the treatment, the titled steel pipe having superior corrosion resistance such as resistances for pitting corrosion, crevice corrosion, intergranular corrosion, stress corrosion cracking, further having good mechanical property such as strength, toughness is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、耐孔食性、耐隙間腐食性、耐粒界腐食性お
よび耐応力腐食割れ性等の耐食性に優れた、オーステナ
イト・フェライト2相系ステンレス溶接鋼管を得るため
の、2相系ステンレス溶接鋼管の溶体化熱処理方法に関
するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention provides an austenite-ferrite two-phase system having excellent corrosion resistance such as pitting corrosion resistance, crevice corrosion resistance, intergranular corrosion resistance, and stress corrosion cracking resistance. The present invention relates to a method of solution heat treatment of a two-phase welded stainless steel pipe to obtain a welded stainless steel pipe.

〔従来技術とその問題点〕[Prior art and its problems]

石油や天然ガス輸送管の使用条件は、近年径々苛酷にな
りつつある。例えば輸送ガスが約100℃のように比較
的高温であってしかもCO2を多く含有する場合には、
その材質が炭素鋼では、全面腐食が生ずるため、使用不
可能である。また、輸送ガス中に塩素イオンが混合して
いる場合には、応力腐食割れが生ずるため、JIS  
で規定されたSUS 304やSUS 316のステン
レス鋼は使用できない。
The operating conditions for oil and natural gas transmission pipes have become increasingly severe in recent years. For example, when the transport gas has a relatively high temperature such as about 100°C and contains a large amount of CO2,
If the material is carbon steel, it cannot be used because corrosion will occur on the entire surface. In addition, if chlorine ions are mixed in the transport gas, stress corrosion cracking will occur, so JIS
Stainless steels such as SUS 304 and SUS 316 specified in the above cannot be used.

そこで、上述のような腐食環境下で使用される溶接鋼管
には、オーステナイト・フェライト2相系ステンレス鋼
の使用されることが多い。このような溶接鋼管は、2相
系ステンレス鋼板を圧延まま、または、溶体化熱処理後
成形し、シーム溶接を行なって鋼管となし、これに溶体
化熱処理を施すことによって製造される。溶接鋼管に溶
体化熱処理を施すことは、溶接金属および溶接熱影響部
の耐食性を確保する上において望ましい。
Therefore, austenitic-ferritic two-phase stainless steel is often used for welded steel pipes used in the above-mentioned corrosive environment. Such a welded steel pipe is manufactured by forming a two-phase stainless steel plate as rolled or after solution heat treatment, seam welding it into a steel pipe, and subjecting it to solution heat treatment. It is desirable to subject welded steel pipes to solution heat treatment in order to ensure the corrosion resistance of weld metal and weld heat affected zone.

2相系ステンレス鋼の溶体化熱処理は、例えばJISG
4304によると、950〜1100℃に加熱し次いで
水冷するように規定されている。
Solution heat treatment of duplex stainless steel is performed according to, for example, JISG
According to 4304, it is prescribed to heat to 950 to 1100°C and then cool with water.

しかしながら、単に上記のような溶体化熱処理を施すだ
けでは不十分であって、耐食性が劣化する場合がある。
However, simply performing the solution heat treatment as described above is insufficient, and corrosion resistance may deteriorate.

即ち、熱処理温度が低い場合には溶体化が十分に行なわ
れないために耐食性が劣化し、一方、熱処理温度が高く
ても冷却速度が早い場合には母材部において孔食が発生
する問題が生ずる。
In other words, if the heat treatment temperature is low, the corrosion resistance will deteriorate due to insufficient solution treatment, whereas if the heat treatment temperature is high but the cooling rate is fast, there will be a problem of pitting corrosion occurring in the base material. arise.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、優れた耐食性を有し且つ強
度、靭性等の機械的性質も良好なオーステナイト・フェ
ライト2相系ステンレス溶接鋼管を得るための2相系ス
テンレス溶接鋼管の溶体化熱処理方法を提供することに
ある。
Therefore, the object of the present invention is to provide a solution heat treatment method for a welded duplex stainless steel pipe to obtain a welded austenitic-ferritic duplex stainless steel pipe that has excellent corrosion resistance and good mechanical properties such as strength and toughness. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

この発明は、母材および溶接金属が共にオーステナイト
・フェライト2相系ステンレス鋼からなるオーステナイ
トeフェライト2相系ステンレス溶接鋼管に対する溶体
化熱処理を、一方の軸を1000〜1200℃の熱処理
温度で示し、他方の軸を0.5〜b 座標によって熱処理条件を表わしたときに、前記一方の
軸の熱処理温度(℃)と前記他方の軸の冷却速度(℃/
5ee)  とを結ぶ次の6つのプロット点即ち120
0℃ −0,5℃/see 、 1200℃−1℃/s
ee 、 1100℃−25℃/sec 、 1100
℃−200℃/sec 、 1000℃−0,5℃/s
ee 、 1000℃−200℃/ Be(!で囲まれ
る領域内で行なうことに特徴を有するものである。
This invention shows solution heat treatment of an austenitic e-ferritic two-phase stainless steel welded steel pipe whose base material and weld metal are both austenitic-ferritic two-phase stainless steel, at a heat treatment temperature of 1000 to 1200°C on one axis, When heat treatment conditions are expressed by coordinates of 0.5 to b on the other axis, the heat treatment temperature (°C) on the one axis and the cooling rate (°C/°C) on the other axis
5ee) Next 6 plot points connecting 120
0℃-0.5℃/see, 1200℃-1℃/s
ee, 1100℃-25℃/sec, 1100
℃-200℃/sec, 1000℃-0.5℃/s
ee, 1000° C.-200° C./Be (!).

〔発明の構成〕[Structure of the invention]

次に、この発明において、溶体化熱処理条件を上述のよ
うに限定した理由について説明する。
Next, the reason why the solution heat treatment conditions are limited as described above in this invention will be explained.

第2図は、下記第1表に示す成分組成を有する2相系ス
テンレス溶接鋼管の試験片に対し、950〜1250℃
の熱処理温度、1〜30分の保持時間、0.5〜b 体化熱処理を施したときの孔食試験結果を示すグラフで
ある。
Figure 2 shows the temperature at 950 to 1250°C for a test piece of a two-phase welded stainless steel pipe having the composition shown in Table 1 below.
It is a graph showing the pitting corrosion test results when heat treatment temperature, holding time of 1 to 30 minutes, and solidification heat treatment of 0.5 to b.

試験片は、第3図に示すように長さaが60w&、幅す
が3QIEl、厚さtが14.3臨の2相系ステンレス
鋼板の内外面を下記の条件で潜弧溶接法(SAW)によ
シ1層盛シ溶接したものを使用した。
As shown in Fig. 3, the test piece was made by submerged arc welding (SAW) on the inner and outer surfaces of a duplex stainless steel plate with a length a of 60W, a width of 3QIEL, and a thickness t of 14.3I under the following conditions. ) was used, which was welded in one layer.

(1)入熱:内面31 KJ/cIn 外面34 KJ/Cm (2)溶接ワイヤ:試験片と同一材質のもの(3)溶接
フラックス:溶融型高塩基性孔食試験は、C/−環境下
における耐孔食性を厳しく評価するため、上記により溶
体化熱処理が施された試験片に対し、ショツトブラスト
、酸洗後、30℃の温度のlO% FeCl3−6H2
0水溶液中に24時間浸漬し、溶接金棒、溶接熱影響部
(HAZ)および母材の内面側の孔食発生状態を調べた
。この試験は、JIS G 0578に規定された試験
に準するものである。
(1) Heat input: Inner surface 31 KJ/cIn Outer surface 34 KJ/Cm (2) Welding wire: Same material as the test piece (3) Welding flux: Melting type high basic pitting test was conducted under C/- environment. In order to strictly evaluate the pitting corrosion resistance of the specimen, the test piece subjected to the solution heat treatment as described above was subjected to shot blasting, pickling, and 1O% FeCl3-6H2 at a temperature of 30°C.
The weld metal rod, the weld heat affected zone (HAZ), and the inner surface of the base metal were examined for pitting corrosion. This test is based on the test specified in JIS G 0578.

第2図において、丸の上半分は母材部を丸の下半分は溶
接部(溶接金属および溶接熱影響部)を示す。また、1
印は孔食2ケ以下を、生態丸印は孔食3ヶ以上をそして
半白丸印は孔食なしをそれぞれ示す。図面かられかるよ
うに、溶体化熱処理温度が1000℃未満では溶接部の
溶体化が十分に行なわれず、溶接金属に多くの孔食が発
生する。
In FIG. 2, the upper half of the circle indicates the base metal part, and the lower half of the circle indicates the weld zone (weld metal and weld heat affected zone). Also, 1
The mark indicates 2 or less pitting corrosion, the ecological circle indicates 3 or more pitting corrosion, and the half-white circle indicates no pitting corrosion. As can be seen from the drawings, when the solution heat treatment temperature is less than 1000° C., the welded portion is not sufficiently solutionized and a lot of pitting corrosion occurs in the weld metal.

一方、溶体化熱処理温度が1200℃を超えると母材部
に孔食が発生し、1100℃超〜1200℃の間は、冷
却速度によって母材部に孔食が発生する。
On the other hand, when the solution heat treatment temperature exceeds 1200°C, pitting corrosion occurs in the base material, and between over 1100°C and 1200°C, pitting corrosion occurs in the base metal depending on the cooling rate.

溶体化熱処理温度が1100℃以下の領域においては、
冷却速度の耐孔食性に及ぼす影響は認められない。しか
しながら、溶体化熱処理温度が1100℃を超える領域
においては、冷却速度が早いと母材部の耐孔食性が劣化
する。その原因の1つは、第4図(イ)に溶体化熱処理
温度が1150℃で冷却速度が50℃/SのときのCr
層の模式図で示すように、冷却速度が早いとフェライト
粒界などに主にCr窒化物からなる析出物が発生し、そ
の近辺のCr量が減少してCr欠乏域が生ずるためであ
ると考えられる。溶体化熱処理温度が1100 ℃を超
えても冷却速度が遅ければ、第4図(ロ)に溶体化熱処
理温度が1150℃で冷却速度が0.5℃/Sのときの
Cr層の模式図で示すように、Cr窒化物からなる析出
物が発生してもCr拡散のための時間的余裕があるため
、マ) IJノックスらCr  の拡散が生じてCr 
欠乏層が埋められる結果、孔食が発生しない。
In the region where the solution heat treatment temperature is 1100°C or less,
No effect of cooling rate on pitting corrosion resistance was observed. However, in a region where the solution heat treatment temperature exceeds 1100° C., the pitting corrosion resistance of the base metal portion deteriorates if the cooling rate is fast. One of the causes is that Cr
As shown in the layer schematic diagram, this is because when the cooling rate is fast, precipitates mainly consisting of Cr nitrides are generated at ferrite grain boundaries, and the amount of Cr in the vicinity decreases, creating a Cr-deficient region. Conceivable. If the cooling rate is slow even when the solution heat treatment temperature exceeds 1100 °C, Figure 4 (b) shows a schematic diagram of the Cr layer when the solution heat treatment temperature is 1150 °C and the cooling rate is 0.5 °C/S. As shown in the figure, even if precipitates made of Cr nitride are generated, there is time for Cr to diffuse.
As a result of filling the deficient layer, pitting corrosion does not occur.

溶体化熱処理温度が1000〜1100℃の領域におい
ては、冷却速度の限定は必ずしも必要としないが、この
発明において冷却速度の下限を0.5℃/SeCとした
のは、この冷却速度が空冷とほぼ同等であるからであり
、上限を200℃/see  としたのは、この冷却速
度が現時点で工業的に水冷によって得られる最大冷却速
度であるからである。
In the region where the solution heat treatment temperature is 1000 to 1100°C, it is not necessarily necessary to limit the cooling rate, but the reason why the lower limit of the cooling rate is set to 0.5°C/SeC in this invention is that this cooling rate is different from air cooling. The reason for setting the upper limit to 200° C./see is that this cooling rate is the maximum cooling rate that can be obtained industrially by water cooling at present.

上記からこの発明においては、第1図に示すように、一
方の軸を1000〜1200℃の熱処理温度で示し、他
方の軸を0.5〜b 却速度で示した座標によって熱処理条件を表わしたとき
に、前記一方の軸の熱処理温度(℃)と前記他方の軸の
冷却速度(℃/5ec)  とを結ぶ次の6つのプロッ
ト点即ち1200℃−〇、5℃/see 、 1200
℃−−1℃/see 、 1100℃−25℃/see
 、 1100℃−−200℃/see 、 l OO
0℃−0,5℃/ 8eCT1000℃−200°0.
/sec  で囲まれる領域内を、溶体化熱処理条件と
した。
From the above, in this invention, as shown in Fig. 1, the heat treatment conditions are expressed by coordinates where one axis indicates the heat treatment temperature of 1000 to 1200 °C, and the other axis indicates the cooling rate of 0.5 to b. Sometimes, the following six plot points connecting the heat treatment temperature (°C) on one axis and the cooling rate (°C/5ec) on the other axis, namely 1200°C-〇, 5°C/see, 1200
℃--1℃/see, 1100℃-25℃/see
, 1100℃--200℃/see, lOO
0°C-0.5°C/8eCT1000°C-200°0.
The area surrounded by /sec was defined as the solution heat treatment condition.

本発明におけるオーステナイト・フェライト2相系ステ
ンレス溶接鋼管および溶接金属の成分組成範囲は下記の
通シである。
The composition range of the austenite-ferrite two-phase stainless steel welded steel pipe and weld metal in the present invention is as follows.

C: 0.03 wt@%以下、 Si  : 0.1 = 1.0 wt、チ、Mn  
: 0.1〜2.Owt、qb。
C: 0.03 wt@% or less, Si: 0.1 = 1.0 wt, Chi, Mn
: 0.1~2. Owt, qb.

Ni  :  3〜8 wt護、 Cr  : 21〜28 wt、qb。Ni: 3-8 wt Mamoru, Cr: 21-28 wt, qb.

Mo:1〜4wt、%、 N   :  0.08〜0.25wt、%、鉄および
不可避不純物;残シ。
Mo: 1 to 4 wt, %, N: 0.08 to 0.25 wt, %, iron and inevitable impurities; remainder.

または、上記の成分組成に加えて、下記の1種または2
種以上を含有した成分。
Or, in addition to the above component composition, one or two of the following
Ingredients containing seeds or more.

Cu  : 2.5 wt、%以下、 V、W:各々1.5wt、%以下、 Ta、Ti、Nb、Zr:各々1.Qwt、4以下、C
alMP:各々0.01 wt、4以下、B  :0.
01wt、1以下、 REM: 0.2 wt、4以下。
Cu: 2.5 wt, % or less; V, W: each 1.5 wt, % or less; Ta, Ti, Nb, Zr: each 1.5 wt, % or less; Qwt, 4 or less, C
alMP: each 0.01 wt, 4 or less, B: 0.
01 wt, 1 or less, REM: 0.2 wt, 4 or less.

〔発明の実施例〕[Embodiments of the invention]

次に、この発明を実施例によシ説明する。第2表に示す
2種類のレードル成分組成の鋼A、Bを用い、第3表に
示すA−1〜3およびB−1〜3の鋼板を調製した。
Next, the present invention will be explained using examples. Steel plates A-1 to 3 and B-1 to 3 shown in Table 3 were prepared using steels A and B having two ladle compositions shown in Table 2.

次いで、上記鋼板をUOEプロセスによシ造管後、共金
のワイヤーを使用してシーム溶接し、本発明方法により
溶体化熱処理を施した溶接鋼管A−1゜A−2、B−1
、B−2と、従来方法によシ溶体化熱処理を施した溶接
鋼管A−3およびB−3を調製した。第4表は、上記各
溶接鋼管の寸法、溶接条件および溶体化熱処理条件であ
る。
Next, the above-mentioned steel plates were formed into pipes by the UOE process, seam welded using matching metal wire, and solution heat treated by the method of the present invention to produce welded steel pipes A-1, A-2, and B-1.
, B-2, and welded steel pipes A-3 and B-3 which were subjected to solution heat treatment by a conventional method were prepared. Table 4 shows the dimensions, welding conditions, and solution heat treatment conditions of each welded steel pipe.

第5表は、第4表に示した各試験片の機械的性質である
。第5表において、[)epo  とは溶着金属のこと
を、またHAZとは溶接熱影響部のことを意味する。溶
接部引張試験の破断位置は倒れも母材部である。なお、
AB−1およびAB  2の試験片のシャルピー試験は
、1/2  サイズで実施した。
Table 5 shows the mechanical properties of each test piece shown in Table 4. In Table 5, [)epo means weld metal, and HAZ means weld heat affected zone. The fracture location in the weld tensile test was the base metal. In addition,
Charpy testing of AB-1 and AB 2 specimens was conducted on 1/2 size.

第6表は、第4表に示した各試験片の母材部および溶接
部の耐食性試験結果である。第6表において、溶接部4
点曲げSCCテストは、CO2を9.95気圧、H2S
を0.05気圧で溶けこませた90℃の温度の5 % 
NaC7溶液中で、応力80チσYSをかけた4点曲げ
状態での試験片の応力腐食割れを調べることによシ行な
った。また孔食テストは、試験片を30℃の温度のlO
% F’eCA3s6H2+水溶液中に24時間浸漬し
、その孔食発生状態を調べることによシ行なった。
Table 6 shows the corrosion resistance test results for the base metal and welded parts of each test piece shown in Table 4. In Table 6, welded part 4
The point bending SCC test uses CO2 at 9.95 atm and H2S.
5% of the temperature of 90℃ melted at 0.05 atm.
This was done by examining the stress corrosion cracking of a test piece in a four-point bending state with a stress of 80 inches σYS applied in a NaC7 solution. In addition, the pitting corrosion test is carried out by testing the test piece at 10°C at a temperature of 30°C.
% F'eCA3s6H2+ aqueous solution for 24 hours, and the state of pitting corrosion was investigated.

第5表および第6表から明らかなように、この発明方法
により溶体化熱処理を施した溶接鋼管は、その母材部、
溶接部共に強度および靭性が良好であシ、且つ、粒界腐
食および孔食が発生せず、優れた耐食性が得られた。
As is clear from Tables 5 and 6, welded steel pipes subjected to solution heat treatment by the method of the present invention have a base metal part,
Both welded parts had good strength and toughness, and no intergranular corrosion or pitting corrosion occurred, resulting in excellent corrosion resistance.

なお、この発明方法の適用される溶接鋼管は、母材およ
び溶接金属が共にオーステナイト・フェライト系2相ス
テンレス鋼であれば、直管でも曲管でもよく、その他ク
ラッド鋼管の合せ材等、どのような形状や大きさのもの
でも適用することができる。
The welded steel pipe to which the method of this invention is applied may be a straight pipe or a curved pipe, as long as the base metal and weld metal are both austenitic-ferritic duplex stainless steel, and any other material such as a clad steel pipe may be used. It can be applied to objects of various shapes and sizes.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の方法によれば、耐孔食性
、耐隙間腐食性、耐1粒界腐食性、耐応力腐食割れ性等
に優れ、且つ、強度、靭性等の機械的性質の良好なオー
ステナイト・フェライト2相系ステンレス溶接鋼管を得
ることができる、工業上優れた効果がもたらされる。
As described above, according to the method of the present invention, the material has excellent pitting corrosion resistance, crevice corrosion resistance, single grain boundary corrosion resistance, stress corrosion cracking resistance, etc., and has excellent mechanical properties such as strength and toughness. An industrially excellent effect is brought about by making it possible to obtain a good quality austenite-ferrite two-phase stainless steel welded steel pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法における溶体化熱処理温度と冷却
速度の範囲を示すグラフ、第2図は孔食試験結果を示す
グラフ、第3図は試験片の形状を示す斜視図、第4図(
イ)(ロ)はCr層の模式図である。
Fig. 1 is a graph showing the range of solution heat treatment temperature and cooling rate in the method of this invention, Fig. 2 is a graph showing the pitting corrosion test results, Fig. 3 is a perspective view showing the shape of the test piece, and Fig. 4 (
(a) and (b) are schematic diagrams of a Cr layer.

Claims (1)

【特許請求の範囲】[Claims] 母材および溶接金属が共にオーステナイト・フェライト
2相系ステンレス鋼からなるオーステナイト・フェライ
ト2相系ステンレス溶接鋼管に対する溶体化熱処理を、
一方の軸を1000〜1200℃の熱処理温度で示し、
他方の軸を0.5〜200℃/secの冷却速度で示し
た座標によつて熱処理条件を表わしたときに、前記一方
の軸の熱処理温度(℃)と前記他方の軸の冷却速度(℃
/sec)とを結ぶ次の6つのプロット点即ち1200
℃−0.5℃/sec、1200℃−1℃/sec、1
100℃−25℃/sec、1100℃−200℃/s
ec、1000℃−0.5℃/sec、1000℃−2
00℃/secで囲まれる領域内で行なうことを特徴と
する2相系ステンレス溶接鋼管の溶体化熱処理方法。
Solution heat treatment for austenitic-ferritic dual-phase stainless steel welded steel pipes in which both the base metal and weld metal are made of austenitic-ferritic dual-phase stainless steel,
One axis is shown at a heat treatment temperature of 1000 to 1200°C,
When heat treatment conditions are expressed by coordinates with the other axis showing a cooling rate of 0.5 to 200°C/sec, the heat treatment temperature (°C) of the one axis and the cooling rate (°C) of the other axis are expressed as follows:
/sec) and the next six plot points, i.e. 1200
℃-0.5℃/sec, 1200℃-1℃/sec, 1
100℃-25℃/sec, 1100℃-200℃/s
ec, 1000℃-0.5℃/sec, 1000℃-2
A method for solution heat treatment of a two-phase stainless steel welded steel pipe, characterized in that the solution heat treatment is carried out within a region surrounded by 00° C./sec.
JP21489785A 1985-09-30 1985-09-30 Solution heat treatment for two phase stainless weld steel pipe Pending JPS6277422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21489785A JPS6277422A (en) 1985-09-30 1985-09-30 Solution heat treatment for two phase stainless weld steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21489785A JPS6277422A (en) 1985-09-30 1985-09-30 Solution heat treatment for two phase stainless weld steel pipe

Publications (1)

Publication Number Publication Date
JPS6277422A true JPS6277422A (en) 1987-04-09

Family

ID=16663369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21489785A Pending JPS6277422A (en) 1985-09-30 1985-09-30 Solution heat treatment for two phase stainless weld steel pipe

Country Status (1)

Country Link
JP (1) JPS6277422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217434A (en) * 2014-05-21 2015-12-07 新日鐵住金ステンレス株式会社 Method for improving corrosion resistance of duplex stainless steel welded part
JP2017150876A (en) * 2016-02-23 2017-08-31 新日鐵住金株式会社 Method for manufacturing test piece, test piece and stress corrosion crack test method
JP2020100859A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Two-phase stainless welded channel steel, and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935622A (en) * 1982-08-24 1984-02-27 Kubota Ltd Production of two phase stainless cast steel pipe having small bore and long size
JPS59229414A (en) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd Improvement of corrosion resistance in weld zone of two-phase stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935622A (en) * 1982-08-24 1984-02-27 Kubota Ltd Production of two phase stainless cast steel pipe having small bore and long size
JPS59229414A (en) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd Improvement of corrosion resistance in weld zone of two-phase stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217434A (en) * 2014-05-21 2015-12-07 新日鐵住金ステンレス株式会社 Method for improving corrosion resistance of duplex stainless steel welded part
JP2017150876A (en) * 2016-02-23 2017-08-31 新日鐵住金株式会社 Method for manufacturing test piece, test piece and stress corrosion crack test method
JP2020100859A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Two-phase stainless welded channel steel, and method of producing the same

Similar Documents

Publication Publication Date Title
EP0864663B1 (en) High-strength welded steel structures having excellent corrosion resistance
KR101339484B1 (en) High-strength stainless steel pipe
EP1179380A1 (en) Martensite stainless steel welded steel pipe
US20110250471A1 (en) Ultrahigh strength welded joint and ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal, and methods for producing the same
CN101386956A (en) Toughness and welded joint with good inhibition of fatigue cracking
MX2014010898A (en) Process for producing welded joint, and welded joint.
KR20210099627A (en) High-strength steel products and their manufacturing method
JP3770106B2 (en) High strength steel and its manufacturing method
JPH10146691A (en) Method for welding high chromium steel
MXPA97007729A (en) Solded gasket that has excellent resistance to the fat
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP2000158183A (en) Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JPS6277422A (en) Solution heat treatment for two phase stainless weld steel pipe
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP7445125B2 (en) Austenitic stainless steel pipe
JP2004043911A (en) High strength line pipe having excellent low temperature toughness
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JP2557993B2 (en) Low temperature thin nickel steel plate with excellent weld toughness
JP3541778B2 (en) Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance
JP2000063997A (en) Welded tube of martensitic stainless steel
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
WO2021220912A1 (en) Austenitic heat-resistant steel
JP2002155341A (en) Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel