JPS60238423A - Improvement of corrosion resistance in weld zone of two-phase stainless steel - Google Patents

Improvement of corrosion resistance in weld zone of two-phase stainless steel

Info

Publication number
JPS60238423A
JPS60238423A JP9173184A JP9173184A JPS60238423A JP S60238423 A JPS60238423 A JP S60238423A JP 9173184 A JP9173184 A JP 9173184A JP 9173184 A JP9173184 A JP 9173184A JP S60238423 A JPS60238423 A JP S60238423A
Authority
JP
Japan
Prior art keywords
stainless steel
corrosion
weld zone
corrosion resistance
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173184A
Other languages
Japanese (ja)
Inventor
Tadaaki Taira
平 忠明
Toyofumi Kitada
北田 豊文
Nobuhiro Seki
関 信博
Susumu Tamura
田村 益
Osamu Hirano
攻 平野
Kazuyoshi Ume
卯目 和巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9173184A priority Critical patent/JPS60238423A/en
Publication of JPS60238423A publication Critical patent/JPS60238423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a weld zone by heating and holding the weld zone of a two-phase stainless steel welded as rolled or after a soln. heat treatment or the entire part of the welded structure including the weld zone to and in a prescribed temp. range, thereby effecting the soln. heat treatment. CONSTITUTION:The two-phase austenite-ferrite stainless steel contg. <=0.03% C, 0.1-1.0% Si, 0.1-2.0% Mn, 3-8% Ni, 21-28% Cr, 1-4% Mo and 0.08-0.25% N is welded by the weld metal consisting of the above-described compsn. as rolled or after the soln. heat treatment. The above-described weld zone or the entire part of the welded structure including the weld zone is heated and held within the range enclosed by the four points; (1,000, 20), (1,000, 3,600), (1,100, 0), (1,100, 3,600) in the coordinates shown in the figure showing the relation between temp. ( deg.C) and time (sec), thereby effecting the soln. heat treatment. As a result, the weld zone of the two- phase stainless steel having the improved corrosion resistance including all of general corrosion pitting corrosion, crevice corrosion, integranular corrosion, stress corrosion cracking and hydrogen induced cracking is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は二相系ステンレス鋼(オーステナイト−フェラ
イト二相系ステンレス鋼)の溶接熱影響部及び溶接金属
等の溶接部の耐食性を改善する方法に関するものである
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for improving the corrosion resistance of a welded heat-affected zone of duplex stainless steel (austenitic-ferritic duplex stainless steel) and a welded part of weld metal. It is something.

〔従来技術〕[Prior art]

石油45:F秋ガス給咲等の使用6件は祈苑云々苛酷に
なりつつある。例えば炭酸ガス分、硫化水素分を多く含
んだガスを輸送する場合、安定操業、公害問題、安全性
等の面から、このような使用条件に充分耐える耐食性を
具備した鋼管のニーズが高まっている。
Oil 45: F Autumn gas supply, etc. 6 uses are becoming more severe, such as prayer gardens. For example, when transporting gas containing a large amount of carbon dioxide or hydrogen sulfide, there is a growing need for steel pipes that are sufficiently corrosion resistant to withstand such usage conditions from the perspectives of stable operation, pollution issues, and safety. .

このようなニーズに対処するため、苛酷な使用条件で使
われるパイプの材料は高合金化する傾向にあシ、例えば
ヘビーサワー環境(輸送ガス温度が室温付近の場合)に
はオーステナイト系、輸送ガスが比較的高温(100℃
前後)でCOtを多く含みかつCtが混合している場合
には二相系のステンレス鋼管といったように使い分けが
なされている。
To meet these needs, the materials used for pipes used under harsh operating conditions tend to be highly alloyed; for example, in heavy sour environments (when the transport gas temperature is around room temperature), austenitic materials is relatively high temperature (100℃
If the pipe contains a large amount of COt and is mixed with Ct (before and after), it is used as a two-phase stainless steel pipe.

従来ステンレス溶接鋼管は、圧延まま鋼板或いは板溶体
化熱処理(以下溶体化処理をsolutionTrea
tment: STと略記する。)鋼板を板巻き(べ/
ディングロールにより)後溶接して製造していた。また
長尺管が製造可能でかつ寸法精度にも優れているという
ことでrUO+溶接+拡管」という工程も採用されてい
る。
Conventionally, welded stainless steel pipes are processed using as-rolled steel plates or plate solution heat treatment (hereinafter referred to as solution treatment).
tment: Abbreviated as ST. ) Wrap steel plate (be/
It was manufactured by post welding (using a rolling roll). In addition, the process of "rUO + welding + tube expansion" has been adopted because it allows long pipes to be manufactured and has excellent dimensional accuracy.

しかし溶接ままでは、溶接金属及び溶接熱影響部のとけ
込み線付近は溶接により1300℃以上の高温の熱サイ
クルがかかるため2相系(オーステナイト+フェライト
)ステンレスの場合、フェライト率が非常に大きくなり
靭性が劣化するだけでなく、耐食比にも悪影響を及ぼし
従来から問題になっていた。
However, in the as-welded state, the weld metal and the weld heat-affected zone near the melting line are subject to high-temperature thermal cycles of over 1300℃ due to welding, so in the case of two-phase (austenite + ferrite) stainless steel, the ferrite ratio becomes extremely large. This has been a problem in the past because it not only deteriorates toughness but also has an adverse effect on the corrosion resistance ratio.

因みK t=18−のJIs329J1 相当鋼を入熱
40KJ/ynで内外面1Nの潜弧溶接を行い、その溶
接部切出し片を10チFecls・6H70溶液中に6
0℃x24時間浸漬すると、HAZのFusionLi
fe刺近にビットが発生する。
Incidentally, steel equivalent to JIs329J1 with K t = 18- was subjected to latent arc welding on the inner and outer surfaces of 1N with a heat input of 40 KJ/yn, and the cut pieces of the welded part were placed in 10 pieces of Fecls 6H70 solution.
When immersed at 0°C for 24 hours, HAZ's Fusion Li
A bit occurs near the fe stab.

また溶接熱影響部のある領域では700〜900℃に溶
接熱サイクルがかかる部分があシ、σ相及びCr 炭化
物などが粒界に析出して耐食性を劣化する恐れがある。
In addition, in the area where the welding heat affected zone exists, where the welding heat cycle is applied to 700 to 900°C, there is a risk that abrasion, σ phase, Cr carbide, etc. will precipitate at the grain boundaries and deteriorate the corrosion resistance.

〔発明の目的〕[Purpose of the invention]

以上の如き従来技術の問題点に対し本発明は2相系ステ
ンレス鋼の溶接部(溶接熱影響部及び溶接金属)の耐食
比即ち耐全面腐食性、耐孔食性、比、耐水素銹起割れ註
などすべてを含む耐食性を改善することを目的とするも
のである。
In order to solve the above-mentioned problems of the conventional technology, the present invention has improved the corrosion resistance ratio of welded parts (weld heat-affected zone and weld metal) of two-phase stainless steel, namely general corrosion resistance, pitting corrosion resistance, resistance to hydrogen rusting and cracking. The purpose is to improve corrosion resistance, including all aspects.

本発明の対象とする溶接部は母材及び溶接金属と共にオ
ーステナイト−フェライト系ステンレス鋼であれば、そ
れ以外には何ら限定でれるととろ−は何らなく例えば溶
接鋼管に例をとって説明すれば直管、曲シ管どちらでも
よく、サイズ(径、管厚)も規定の対象としないが、以
下本明細書中では天然ガス輸送を対象としたフローライ
ン、ギヤザリングライン等の比較的大きい径のものを例
にとって記載した。
There are no other limitations as long as the welded part targeted by the present invention is austenitic-ferritic stainless steel together with the base metal and weld metal. Either a pipe or a curved pipe may be used, and the size (diameter, pipe thickness) is not subject to regulations, but in this specification, relatively large diameter pipes such as flow lines and gearing lines intended for natural gas transportation will be used. I have given an example.

〔発明の概要〕[Summary of the invention]

本発明は上述の目的を達成するためになきれたものでろ
υ本発明の要旨は、 2相系ステンレス鋼を圧延のま\或いは溶体化処理孝溶
接し、該溶接部又は溶接部を含む溶接構造全体を加熱設
備によシ温度(口と時間秒の関係を示す座標において(
1000,20)、(1000,3600)(1100
,O)、(1100,3600)の4点で囲まれる範囲
内ll′r、iXl熱保持する溶体化処理を行うことを
特徴とする2相系ステンレス鋼の溶接部の耐食性改善法
であって、高002−微H,S −CI−@境下で高耐
食荘を示す2相ステンレス溶接部が得られるものでめる
The present invention has not been completed in order to achieve the above-mentioned objects. The gist of the present invention is to weld duplex stainless steel as rolled or through solution treatment, and to weld the welded part or the welded part including the welded part. The entire structure is heated by heating equipment to maintain the temperature (in coordinates showing the relationship between time and seconds).
1000, 20), (1000, 3600) (1100
, O), (1100, 3600) A method for improving the corrosion resistance of a welded part of duplex stainless steel, characterized by performing solution treatment to maintain heat within the range surrounded by the four points ll'r, iXl, A two-phase stainless steel welded part exhibiting high corrosion resistance under conditions of , high 002-fine H, S-CI-@ can be obtained.

〔発明の構成〕[Structure of the invention]

本発明は次のような構成から成り立っている。 The present invention consists of the following configuration.

(1)対象は、酸性にしてCtイオンを含む環境下例え
ば高cot−微H2S C1−の100℃前後の環境下
で使用される2相系ステンレス溶接鋼管等、2相系ヌテ
ンレス鋼溶接部を有する構造物であること。
(1) The target is two-phase stainless steel welded parts such as two-phase stainless steel welded steel pipes used in an acidic environment containing Ct ions, such as a high cot-microH2S C1- environment of around 100℃. It must be a structure that has

(2)耐食性特に溶接部(溶接金属、熱影響部)の耐食
性確保の点から溶接部又は溶接部を含む溶接構造物全体
の溶体化処理の条件を限定すること。
(2) Corrosion resistance In particular, the conditions for solution treatment of the welded part or the entire welded structure including the welded part should be limited in order to ensure the corrosion resistance of the welded part (weld metal, heat affected zone).

(3)本発明においては、溶接前の2相系ステンレス鋼
は、圧延ま壕(熱間圧延まま)溶体化処理された状態の
いずれの状態でもかまわな・く、又溶接前には、加工工
程例えば溶接鋼管の製造工程で入ってくる板を管状に成
形する工程例えばUO底成形介入1.千本よ〈又溶接と
溶体化処理の間にも加工工程例えば拡管工程が介入して
もよい。又溶体イヒ処理后にもサイジング工程で代表さ
れるような軽度な冷間加工工程が入ってもよい。
(3) In the present invention, the duplex stainless steel before welding may be in any of the following states: rolled (as hot rolled) or solution treated; Process: For example, the process of forming an incoming plate into a tubular shape in the manufacturing process of welded steel pipes, such as UO bottom forming intervention 1. Senbon (Also, a processing step such as a pipe expansion step may intervene between welding and solution treatment. Further, after the solution immersion treatment, a mild cold working step such as a sizing step may be performed.

次に本発明の限定理由について述べる。Next, the reasons for the limitations of the present invention will be described.

前述の(1)については、2相系ステンレス鋼力ぶこの
ような環境に優れていることは公知のことであるが、念
のために第1表に示す如き成分のオーステナイト型ステ
ンレス(e)と2相系ステンルス(A。
Regarding (1) mentioned above, it is well known that duplex stainless steel is excellent in environments such as forceps, but just to be sure, austenitic stainless steel (e) with the components shown in Table 1 and two-phase stainless steel (A.

B)2種類の高co2−微H2S−C1−環境下におけ
る腐食試験結果を第1図に示す。第1図のサンフ。
B) Fig. 1 shows the results of corrosion tests under two types of high CO2, minute H2S, and C1 environments. Sanf in Figure 1.

ル鋼のいずれも1050℃で10分間溶体化後水冷した
ものであり、試験条件は、 腐食浴*−5%NaC7+0.5%C)(sCOOH,
ガス:98%CO,+2%H,S 温度:60℃ 期間
:14日であシ、鋼Cのオーステナイト系に比べ2相系
鋼A、Bは腐食速度が小豆く耐食性が優れている。
All steels were solution-treated at 1050°C for 10 minutes and then water-cooled, and the test conditions were: corrosion bath *-5% NaC7 + 0.5% C) (sCOOH,
Gas: 98% CO, +2% H, S Temperature: 60°C Period: 14 days Compared to the austenitic steel C, the duplex steels A and B have a lower corrosion rate and are superior in corrosion resistance.

第2図は上記鋼Aを内外面1層の潜弧溶接したのちに、
実験室で種々STを施し1、ショット、酸洗後孔食試験
をした結果を示し、たものである。図中O印は、pit
ting無し■はビット≦2ケ争はビット〉3ケを示し
、*印は電気炉で、その仙はソルト・シスで行なったも
のである。
Figure 2 shows the above steel A after one layer of latent arc welding on the inner and outer surfaces.
This shows the results of various ST tests performed in the laboratory, followed by shot and pickling tests, followed by pitting corrosion tests. The O mark in the figure is pit
``■'' without ting indicates bit≦2 pieces, bit≦3 pieces, *marked is an electric furnace, and the process was done in a salt system.

尚テストサンプルは第6図に示す如く溶接法:5AW(
内外面1層)、入熱:内面31KJ/6n外面34に5
7削、ワイヤー共金、フラックス:溶融型高塩基性、プ
ロセヌ:溶接→ソルトパスと電気炉によるST→ショッ
ト→酸洗を行い、腐食テストは10%FC3C1s ”
 6H20溶液に30℃×24hrs浸漬後、溶接金属
、HAZ、母材を評価(内面側)する方法によった。
The test samples were welded using a welding method of 5AW (as shown in Figure 6).
1 layer on the inner and outer surfaces), heat input: 31KJ/6n on the inner surface and 5 on the outer surface 34
7 cutting, wire cometal, flux: molten type high basicity, proscene: welding → ST by salt pass and electric furnace → shot → pickling, corrosion test is 10% FC3C1s.
A method was used in which the weld metal, HAZ, and base metal were evaluated (inner surface side) after being immersed in a 6H20 solution at 30° C. for 24 hours.

第5図に示した通り温度の影響としては、1000℃を
下廻るとビットが溶接金属及びT(AZに多発し、逆に
1100℃を越えてもビットが発生する。
As shown in FIG. 5, as for the influence of temperature, when the temperature is below 1000°C, bits frequently occur in the weld metal and T (AZ), and conversely, even when the temperature exceeds 1100°C, bits occur.

1000’C以下では固溶化が十分性なわれず、−万1
100℃を越えると組織的にフェライト率が高まり、詳
細な原因は不明であるが、耐食性が劣化する− また81時間の影響としてけち壕りに短かすぎ 。
At temperatures below 1000'C, solid solution formation is not sufficient, and -
When the temperature exceeds 100°C, the ferrite ratio increases systematically, and although the detailed cause is unknown, corrosion resistance deteriorates - and the effect of 81 hours is too short to be too short.

ると細かなオーステナイトが折用し1、成分的にも均一
にな9得ないことから、ビットが溶接金属及びHAZ 
に発生するt当テストけASTM G4Bに規定−1!
力だテストに近いものであり、Ct−環境における耐孔
食性を厳しく評価しうるものと考えられ、したがって第
2図から得られる知見はCt−ピッティングに対するS
T条件の影響を明瞭に表わしたものといえる。
If this happens, fine austenite will be broken down and the composition will not be uniform.
This test is specified in ASTM G4B-1!
It is similar to a force test and is considered to be able to strictly evaluate pitting corrosion resistance in a Ct-environment. Therefore, the knowledge obtained from Fig. 2
This can be said to clearly express the influence of the T condition.

第6図より(温度℃ 時間set・)座標で(11゜0
0゜0)(110rl、 3600) (101110
,20) (1000゜3600)の4点で囲まれたS
T条件を耐孔食性の点から限定した。なお、ST時間の
上限を6D分越えることは誘導加熱による熱処理の場合
工業的に現実性がない。
From Figure 6, (temperature °C time set・) coordinates (11°0
0゜0) (110rl, 3600) (101110
,20) S surrounded by four points (1000°3600)
The T conditions were limited from the viewpoint of pitting corrosion resistance. Note that exceeding the upper limit of the ST time by 6D is not industrially practical in the case of heat treatment by induction heating.

雰囲気炉加熱であれば81時間を30分以上(1800
秒以上)とることも可能であるが、81時間が60分な
越えると、溶接金属、HAZ及び母材の靭性がオーステ
ナイト粒が粗大化するため劣化してくるので、81時間
の上限は60分(3600秒)とした。
For atmospheric furnace heating, 81 hours and 30 minutes or more (1800
However, if 81 hours exceeds 60 minutes, the toughness of the weld metal, HAZ, and base metal will deteriorate due to coarsening of austenite grains, so the upper limit of 81 hours is 60 minutes. (3600 seconds).

以上のST(溶体化処理)は冷却速度を必ずしも限定し
なかったのは、空冷以上の急冷であれば問題ないからで
ある。
The reason why the cooling rate was not necessarily limited in the above ST (solution treatment) is that there is no problem as long as the cooling rate is faster than air cooling.

第2表は、溶接部の耐孔食性に及ぼすSTの冷却速度の
°影響を示したものであるが、0゜5℃/s (空冷相
当)〜60℃/s (水冷)の範囲では変化がないこと
がわかる。
Table 2 shows the influence of the cooling rate of ST on the pitting corrosion resistance of welds, and it changes in the range of 0°5°C/s (equivalent to air cooling) to 60°C/s (water cooling). It turns out that there is no.

第2表 耐孔食性に及ぼすST冷却速度の影響〇二 N
o pitting テストサンプル及びテスト条件は第5図と同じST 1
050℃ × 5分 冷却速度 0.5℃/S〜60℃/8 次に(3)の限定理由については、種々の実施態様をら
けたが溶体化処理がなされることが必須要件である。
Table 2 Effect of ST cooling rate on pitting corrosion resistance〇2N
o pitting Test sample and test conditions are the same as in Figure 5 ST 1
050°C x 5 minutes Cooling rate 0.5°C/S to 60°C/8 Next, regarding the reason for limitation (3), various embodiments were considered, but it is an essential requirement that solution treatment be performed.

第3表に第1表(第1図)の鋼Aに相当する鋼を第4図
に示す如く、潜弧溶接し、潜弧溶接部を高C07−微H
2S−Ct−環境下で小型4点曲けによる応力腐食割れ
試験をした結果を示す。
Table 3 shows that steel corresponding to steel A in Table 1 (Fig. 1) was submerged arc welded as shown in Fig. 4, and the submerged arc welded part was
The results of a stress corrosion cracking test using small 4-point bending in a 2S-Ct environment are shown.

第6表 溶接部の応力腐食割れ試験結果第3表に示す如
く、− 60℃及び95℃のテストの結果いずれも溶接ままのサ
ンプルは溶接熱影響部(HAZ)のFus i onL
ine近辺にクラックがあるのに対し、溶液層1050
℃6分の溶体化処理(冷却速度25℃/!りをしたもの
では割れは生ぜず溶接後の溶体化処理、が有効であるこ
とがわかる。
Table 6 Results of stress corrosion cracking test on welded parts As shown in Table 3, the results of the tests at -60°C and 95°C showed that the as-welded samples were fused in the weld heat-affected zone (HAZ).
While there are cracks near the inine, the solution layer 1050
It can be seen that solution treatment for 6 minutes at °C (cooling rate of 25 °C/!) did not cause cracking, and solution treatment after welding is effective.

又第5図には鋼Aを使ってHAZ熱サイクルをシミュレ
ートし、その耐孔食特避を調べた結果を示す。熱サイク
ルパターンエは板ST相尚のシミュレートをしたのちに
I(AZ熱サイクルをかけたもの、パターン■は、HA
Z熱サイすル后パイプST相当の熱サイクルを句与した
ものであり、各熱サイクルパターンの熱履歴については
第6図に示した通シで、耐孔食特注試験(ピッティング
、コロ−ジョンテスト)は、10%Fect11・6H
2o液に60℃X 5 hrsの条件で行なった。
Further, FIG. 5 shows the results of simulating a HAZ thermal cycle using steel A and examining its pitting corrosion resistance. Thermal cycle pattern A simulates the plate ST phase, and then I (AZ thermal cycle is applied. Pattern ■ is the HA
The heat cycle equivalent to the Z heat cycle pipe ST is given, and the heat history of each heat cycle pattern is shown in the diagram shown in Figure 6. John test) is 10%Fect11・6H
The test was carried out using 2O solution at 60°C for 5 hrs.

溶液層パイプSTをシミュレートした熱サイクルパター
ン■では腐食速度が小さいのに対し、板ST后溶接した
場合をシミュレートした熱サイクルパターンIでは、1
300℃の熱サイクル即ちFustonLineに近い
ととるでは腐食速度が大きいととがわかる。以上第5図
においても溶液層STするプロセスが耐食比に有効であ
ることから、溶液層にパイプSTすることは溶接部の耐
食性を改善する見地からは必須である。
The corrosion rate is small in the thermal cycle pattern ■ which simulates the solution layer pipe ST, whereas the corrosion rate is 1 in the thermal cycle pattern I which simulates the case where the plate is welded after ST.
It can be seen that the corrosion rate is high when the thermal cycle is 300° C., that is, close to the Fuston Line. As shown in FIG. 5 as well, the process of applying pipe ST to the solution layer is effective in improving the corrosion resistance ratio, so performing pipe ST in the solution layer is essential from the standpoint of improving the corrosion resistance of the welded part.

なお、溶体化処理(S T)后のサイジング拡管率はと
くに定量的には限定しないが、オーステナイト相を加工
硬化させて耐食性を劣化させることを防ぐ樫点から小ざ
い方が望ましいが真円度が良好であればしl〈てもよい
Note that the sizing expansion rate after solution treatment (ST) is not particularly quantitatively limited, but it is desirable to have a smaller one to prevent deterioration of corrosion resistance due to work hardening of the austenite phase. If it is good, it may be possible.

以上の知見より、高CO,−微H2S−C1−環境下で
高耐食性を示す2相系ステンレス鋼溶接部が得られるこ
とを見出したものでおる。
Based on the above findings, it has been discovered that a two-phase stainless steel welded part exhibiting high corrosion resistance can be obtained in a high CO, -fine H2S-C1 environment.

尚本発明において、オーステナイト・フェライト2相系
ステンレス鋼ならびに当該溶接金属とは次に示す組成を
有するものでおる。
In the present invention, the austenitic-ferritic two-phase stainless steel and the weld metal have the following compositions.

C010ろチ以下1. S i : 0.1〜1.0%
、Mn:0.1〜2.0チ、Ni;3〜8%、Cr:2
1〜28%、Mo:1〜4%、N:11nR−11’)
弓≦ 典熟鈴乃rド木酊暑木釦絢鴬rドf上記した組成
に更に、CIJ:2.5チ以下、V、W:夫々1.5チ
以下、 Ta、 ’ri、 Nb、 Zr :夫々1.
 O%以下、。
Below C010 1. Si: 0.1-1.0%
, Mn: 0.1-2.0%, Ni: 3-8%, Cr: 2
1-28%, Mo: 1-4%, N: 11nR-11')
Bow ≦ Noriyuki Suzuno r de Mokuchu Natsuki Ayaho r de f In addition to the above composition, CIJ: 2.5 inches or less, V, W: each 1.5 inches or less, Ta, 'ri, Nb, Zr: 1 each.
Less than 0%.

Ca、Mg:夫#0.01%以下、B:0.01%以下
REM:0,2%以下のうち1種又は2種以上を含有す
るものである。
It contains one or more of Ca, Mg: 0.01% or less, B: 0.01% or less, and REM: 0.2% or less.

又加熱保持時間0秒というのは誘導力aj%等によシ当
該温度に溶接部又は溶接部を含む溶接構造物が昇温した
ら保持時間をおかず、直ちに冷却に移行することを意味
するものである。
Also, a heating holding time of 0 seconds means that when the temperature of the welded part or the welded structure including the welded part rises to the relevant temperature due to the induction force aj%, etc., there is no holding time and the process immediately shifts to cooling. be.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

下記のレードル成分−X、Yを鋼板としこれをrUOE
+溶接+拡溶接工拡管により鋼管とした。
The following ladle components - X and Y are steel plates and this is rUOE
+ Welding + Expansion Welding process to create a steel pipe.

その場合の鋼板諸元、鋼管諸元ならびに機械的酸質を第
4表に、溶接金属の組成を第5表に、鋼管の耐食性テス
ト結果を第6表に夫々示す。
Table 4 shows the steel plate specifications, steel pipe specifications, and mechanical acidity in that case, Table 5 shows the composition of the weld metal, and Table 6 shows the corrosion resistance test results of the steel pipe.

第6表に示す如く、本発明における2相系ステンレス鋼
の溶接部、母材とも耐食比に優れたものであることは明
らかである。
As shown in Table 6, it is clear that both the welded part and the base metal of the duplex stainless steel of the present invention have excellent corrosion resistance ratios.

〔発明の効果〕〔Effect of the invention〕

叙上の如く本発明方法によると i)粒界腐食のテスト (ヒコーイ、ストラウス)11
)高CO,−微HtS Cf−高温環境下での応力腐食
フレテスト(4点曲げ) iil)C6−下における耐ピツト囲 などに高耐食性を示す2相系ステンレス鋼管を製造する
ことが可能となる。
As mentioned above, according to the method of the present invention, i) Intergranular corrosion test (Hikoi, Strauss) 11
) High CO, - Slight HtS Cf - Stress corrosion test under high temperature environment (4 point bending) iii) It becomes possible to manufacture two-phase stainless steel pipes that exhibit high corrosion resistance for pit surrounds etc. under C6 - .

勿論、強度、靭性面でも、特にHAZ靭性において、管
そのま\に比べST后は良好な回能が得られるものでら
る。
Of course, in terms of strength and toughness, especially in terms of HAZ toughness, it is possible to obtain better performance after ST than with the tube itself.

なお本発明は、2相系ステンレス溶接鋼管を高周波ペン
ドしてベンド管をつくる場合にも適用が可能であり5.
有用な方法である。
The present invention can also be applied to the case where a bent pipe is made by high-frequency bending a two-phase stainless steel welded steel pipe.5.
This is a useful method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はステンレス鋼の腐食速度を示すグラフ第2図は
耐孔食性から最適条件をめ烈たへのS1時間とST温度
との関係グラフ、第3図は上記ST条件をめるために供
試した溶接部の模式図、第4図は溶接部の応力腐食割れ
試験に供した溶接部の模式図、第5図はHAZ熱ザイク
ルをシミュレートした場合の耐孔食性を示した腐食速度
のグラフ、第6図は熱サイクルパターン毎の熱履歴を示
す説明図である。 代理人 弁理士 木 村 三 朗 第1図 第2図 57時間(支カ 第3図 第5図 第4図 第6図
Figure 1 is a graph showing the corrosion rate of stainless steel. Figure 2 is a graph showing the relationship between S1 time and ST temperature to determine the optimum conditions for pitting corrosion resistance. Figure 3 is a graph showing the relationship between S1 time and ST temperature to determine the above ST conditions. Figure 4 is a schematic diagram of the welded part subjected to the stress corrosion cracking test of the welded part, Figure 5 is the corrosion rate showing pitting corrosion resistance when HAZ thermal cycle is simulated. The graph in FIG. 6 is an explanatory diagram showing the thermal history for each thermal cycle pattern. Agent Patent Attorney Sanro Kimura Figure 1 Figure 2 Figure 2 57 hours (Support Figure 3 Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 二相系ステンレス鋼を圧延のま\或いは溶体化処理後溶
接し、該溶接部又は溶接部を含む溶接構造全体を加熱設
備により、温度呻)と時間秒の関係を示す座標において
(1000,20)す(1000゜3600)、 (1
100,O)、 (1100,3,600)の4点で囲
まれる範囲内に加熱保持する溶体化処理を
Duplex stainless steel is welded as rolled or after solution treatment, and the welded part or the entire welded structure including the welded part is heated using heating equipment at coordinates (1000, 20 )su(1000°3600), (1
100, O), (1100, 3,600).
JP9173184A 1984-05-10 1984-05-10 Improvement of corrosion resistance in weld zone of two-phase stainless steel Pending JPS60238423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173184A JPS60238423A (en) 1984-05-10 1984-05-10 Improvement of corrosion resistance in weld zone of two-phase stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173184A JPS60238423A (en) 1984-05-10 1984-05-10 Improvement of corrosion resistance in weld zone of two-phase stainless steel

Publications (1)

Publication Number Publication Date
JPS60238423A true JPS60238423A (en) 1985-11-27

Family

ID=14034653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173184A Pending JPS60238423A (en) 1984-05-10 1984-05-10 Improvement of corrosion resistance in weld zone of two-phase stainless steel

Country Status (1)

Country Link
JP (1) JPS60238423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180016A (en) * 1986-01-21 1987-08-07 シーメンス、アクチエンゲゼルシヤフト Method and apparatus for heat treatment of vertical seam welded pipe
KR100381521B1 (en) * 1998-12-29 2003-07-16 주식회사 포스코 Ideal stainless steel for high heat input welding
KR100550327B1 (en) * 2003-12-29 2006-02-07 주식회사 포스코 Method for post-heating treatment of welded pipe made of 2-phase stainless steel
JP2014148705A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Method of manufacturing duplex stainless steel structure and heat treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665927A (en) * 1979-11-02 1981-06-04 Kubota Ltd Manufacture of cast stainless steel pipe improved in corrosion resistance
JPS5854175A (en) * 1981-09-22 1983-03-31 日産自動車株式会社 Window glass lifting and falling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665927A (en) * 1979-11-02 1981-06-04 Kubota Ltd Manufacture of cast stainless steel pipe improved in corrosion resistance
JPS5854175A (en) * 1981-09-22 1983-03-31 日産自動車株式会社 Window glass lifting and falling apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180016A (en) * 1986-01-21 1987-08-07 シーメンス、アクチエンゲゼルシヤフト Method and apparatus for heat treatment of vertical seam welded pipe
KR100381521B1 (en) * 1998-12-29 2003-07-16 주식회사 포스코 Ideal stainless steel for high heat input welding
KR100550327B1 (en) * 2003-12-29 2006-02-07 주식회사 포스코 Method for post-heating treatment of welded pipe made of 2-phase stainless steel
JP2014148705A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Method of manufacturing duplex stainless steel structure and heat treatment apparatus

Similar Documents

Publication Publication Date Title
KR100628360B1 (en) Hot-rolled steel strip for high strength electric resistance welding pipe
EP0864663B1 (en) High-strength welded steel structures having excellent corrosion resistance
JP6831254B2 (en) Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger
JP3543740B2 (en) Martensitic stainless steel welded steel pipe
JP2007321181A (en) Method for forming martenstic stainless steel material welded part
JPH04191319A (en) Manufacture of low carbon martensitic stainless steel line pipe
US6136109A (en) Method of manufacturing high chromium martensite steel pipe having excellent pitting resistance
JP3555579B2 (en) High corrosion resistance martensitic stainless steel
JP3620319B2 (en) Martensitic stainless steel with excellent corrosion resistance and weldability
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP4022991B2 (en) Ferritic-martensitic duplex stainless steel pipe
US5397654A (en) Abrasion-resistant welded steel pipe
EP1070763A1 (en) HIGH Cr STEEL PIPE FOR LINE PIPE
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2004107773A (en) Stainless steel pipe for line pipe having excellent corrosion resistance
JP2005230909A (en) ELECTRIC RESISTANCE WELDED STEEL TUBE CONTAINING Cr AND MANUFACTURING METHOD THEREOF
JP3624758B2 (en) A welded steel structure with excellent cold cracking resistance
JP7436821B2 (en) Duplex stainless steel material
JPH0890239A (en) Seam welding method of clad steel tube
JPH11229034A (en) Working method for ferritic stainless steel pipe
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JP3064851B2 (en) Method for manufacturing martensitic stainless steel welded pipe
JP2000063997A (en) Welded tube of martensitic stainless steel