JP6831254B2 - Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger - Google Patents

Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger Download PDF

Info

Publication number
JP6831254B2
JP6831254B2 JP2017014922A JP2017014922A JP6831254B2 JP 6831254 B2 JP6831254 B2 JP 6831254B2 JP 2017014922 A JP2017014922 A JP 2017014922A JP 2017014922 A JP2017014922 A JP 2017014922A JP 6831254 B2 JP6831254 B2 JP 6831254B2
Authority
JP
Japan
Prior art keywords
welded
steel pipe
welded portion
dew point
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014922A
Other languages
Japanese (ja)
Other versions
JP2017186650A (en
Inventor
藤原 進
進 藤原
幸男 片桐
幸男 片桐
浩次 面迫
浩次 面迫
保雅 牧原
保雅 牧原
涼太 田中
涼太 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON STEEL COATED STEEL PIPE CO.,LTD.
Nippon Steel Corp
Original Assignee
NIPPON STEEL COATED STEEL PIPE CO.,LTD.
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON STEEL COATED STEEL PIPE CO.,LTD., Nippon Steel Corp filed Critical NIPPON STEEL COATED STEEL PIPE CO.,LTD.
Publication of JP2017186650A publication Critical patent/JP2017186650A/en
Application granted granted Critical
Publication of JP6831254B2 publication Critical patent/JP6831254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

硫黄酸化物や塩化水素を含むガスと接触する部材の表面では、ガスの露点より低温状態においていわゆる「硫酸凝結」あるいは「塩酸凝結」が生じる。その部材が金属である場合には硫酸あるは塩酸を含む凝結水によって腐食が進行し問題となることがある。このような凝結水中の酸による腐食を本明細書では「酸露点腐食」と呼んでいる。本発明は酸露点腐食に対する抵抗力を付与した鋼を用いた溶接鋼管において、特に溶接部の耐硫酸性を改善したもの、およびその製造方法に関する。また、その鋼管を用いた熱交換器に関する。 On the surface of a member that comes into contact with a gas containing sulfur oxides or hydrogen chloride, so-called "sulfuric acid condensation" or "hydrochloric acid condensation" occurs at a temperature lower than the dew point of the gas. If the member is a metal, corrosion may proceed due to condensed water containing sulfuric acid or hydrochloric acid, which may cause a problem. Such acid corrosion in the condensed water is referred to herein as "acid dew point corrosion". The present invention relates to a welded steel pipe using steel imparted with resistance to acid dew point corrosion, particularly one having improved sulfuric acid resistance of a welded portion, and a method for producing the same. It also relates to a heat exchanger using the steel pipe.

火力発電所や廃棄物焼却施設の燃焼排ガスは主に、水分、硫黄酸化物(二酸化硫黄、三酸化硫黄)、塩化水素、窒素酸化物、二酸化炭素、窒素、酸素などで構成されている。特に排ガス中に三酸化硫黄が1ppmでも含まれていると排ガスの露点は100℃以上に達することが多く、硫酸凝結が生じやすい。また、石炭焚火力発電所の排ガスや、廃棄物焼却施設(都市ごみ焼却施設や産業廃棄物焼却施設)の排ガスには塩化水素が相当量含まれており、塩酸凝結も生じやすい。 Combustion exhaust gas from thermal power plants and waste incineration facilities is mainly composed of water, sulfur oxides (sulfur dioxide, sulfur trioxide), hydrogen chloride, nitrogen oxides, carbon dioxide, nitrogen, oxygen, and the like. In particular, if sulfur trioxide is contained in the exhaust gas even at 1 ppm, the dew point of the exhaust gas often reaches 100 ° C. or higher, and sulfuric acid condensation is likely to occur. In addition, the exhaust gas from coal-fired power plants and the exhaust gas from waste incineration facilities (urban waste incineration facilities and industrial waste incineration facilities) contain a considerable amount of hydrogen chloride, and hydrochloric acid condensation is likely to occur.

硫酸凝結が生じる温度(硫酸露点)および塩酸凝結が生じる温度(塩酸露点)は、燃焼排ガス組成によって変動する。一般に硫酸露点は100〜150℃程度、塩酸露点は50〜80℃程度となることが多く、同じ燃焼設備の排ガス流路であっても、硫酸露点腐食支配の部位と塩酸露点腐食支配の部位が生じうる。このため排ガス流路のなかでも比較的低温となる金属部材(例えば煙道のダクト壁や煙突を構成する部材、集塵器部材、排ガスの熱を利用するためのパイプ、フィン等の熱交換部材など)には、耐硫酸露点腐食と耐塩酸露点腐食の両方に優れた材料を適用する必要がある。 The temperature at which sulfuric acid condensation occurs (sulfuric acid dew point) and the temperature at which hydrochloric acid condensation occurs (hydrochloric acid dew point) vary depending on the composition of the combustion exhaust gas. Generally, the sulfuric acid dew point is about 100 to 150 ° C., and the hydrochloric acid dew point is about 50 to 80 ° C. Even in the exhaust gas flow path of the same combustion equipment, the sulfuric acid dew point corrosion-dominated part and the hydrochloric acid dew point corrosion-dominated part are. It can occur. For this reason, metal members that have a relatively low temperature in the exhaust gas flow path (for example, members that make up duct walls and chimneys of flues, dust collector members, pipes for utilizing the heat of exhaust gas, heat exchange members such as fins, etc.) For example), it is necessary to apply a material that is excellent in both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance.

耐酸露点腐食性を改善した鋼としてSb添加鋼が知られている(特許文献1、2)。特に耐硫酸露点腐食性と耐塩酸露点腐食性の両方を改善するためには、Sbと、CuあるいはさらにMoの複合添加が効果的であるとされる(特許文献2)。しかし、Sbは高価な元素であり鋼材のコスト増を招く要因となるとともに、鋼材原料としてSbを多量に消費する場合には原料調達面において不安がある。また、Sb添加により鋼の熱間加工性が低下する。 Sb-added steel is known as a steel having improved acid dew point corrosion resistance (Patent Documents 1 and 2). In particular, in order to improve both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance, it is said that the combined addition of Sb and Cu or Mo is effective (Patent Document 2). However, Sb is an expensive element and causes an increase in the cost of steel materials, and when a large amount of Sb is consumed as a raw material for steel materials, there is concern in terms of raw material procurement. In addition, the addition of Sb reduces the hot workability of steel.

耐酸性に優れる材料としてはステンレス鋼があるが、酸の濃度や温度によってはSb添加鋼より腐食が進行しやすい場合もある。ステンレス鋼は高価であるとともに酸露点腐食に対して万全な材料であるとは言えない。 Stainless steel is a material having excellent acid resistance, but depending on the acid concentration and temperature, corrosion may proceed more easily than Sb-added steel. Stainless steel is expensive and cannot be said to be a perfect material for acid dew point corrosion.

一方、Sb添加に頼らずに耐硫酸露点腐食性や耐塩酸露点腐食性を改善するための手法も種々検討されてきた。例えば、特許文献3には、P、S、Cu、Moの含有量を厳密にコントロールすることにより耐硫酸露点腐食性を向上させる技術が開示されている。特許文献4には、CrやMoの添加量を厳密に制御することにより、耐硫酸露点腐食性と耐塩酸露点腐食性の両方の特性を改善する技術が開示されている。特許文献5には、S含有量を一定以上に管理し、かつMo含有量を抑制することが耐硫酸露点腐食性を一層向上させるうえで有効であることが記載されている。特許文献6には、Cu、Cr、Moを含有する鋼においてフェライト結晶粒径を微細化することにより、耐硫酸露点腐食性と耐塩酸露点腐食性の両方を改善するために必要なCu、Cr、Moの許容範囲を拡大できることが記載されている。 On the other hand, various methods for improving sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance have been studied without relying on the addition of Sb. For example, Patent Document 3 discloses a technique for improving sulfuric acid dew point corrosion resistance by strictly controlling the contents of P, S, Cu, and Mo. Patent Document 4 discloses a technique for improving the properties of both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance by strictly controlling the amount of Cr and Mo added. Patent Document 5 describes that controlling the S content to a certain level or higher and suppressing the Mo content is effective in further improving the sulfuric acid dew point corrosion resistance. Patent Document 6 describes Cu, Cr, which is necessary for improving both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance by refining the ferrite crystal grain size in steel containing Cu, Cr, and Mo. , It is described that the allowable range of Mo can be expanded.

特公昭43−14585号公報Special Publication No. 43-14585 特開2003−213367号公報Japanese Unexamined Patent Publication No. 2003-213367 特開2012−180546号公報Japanese Unexamined Patent Publication No. 2012-180546 特開2012−57221号公報Japanese Unexamined Patent Publication No. 2012-57221 特開2013−194251号公報Japanese Unexamined Patent Publication No. 2013-194251 国際公開第2015/147166号International Publication No. 2015/147166 特開2009−173995号公報JP-A-2009-173995 特開平6−240414号公報Japanese Unexamined Patent Publication No. 6-24014

特許文献6の技術によって、Sb添加に頼らずに耐硫酸露点腐食性および耐塩酸露点腐食性を同時に改善した鋼板を工業的に歩留り良く生産することが容易になった。しかし、そのような鋼板を溶接造管して得られた「鋼管」においては、溶接部での耐硫酸性が低下してしまうという問題がある。これは、Sを含有させて耐硫酸性の向上を図っている鋼に特有の問題であり、上述のSb添加鋼においても同様である。すなわち溶接部では、溶接後の急冷過程でMnS系介在物の周囲のマトリックスにS濃化領域が形成され、地鉄とS濃化領域の間の電位差によって腐食が進行すると考えられている。そのため従来は、溶接造管後に、鋼管を炉内で加熱処理することによって、溶接部の金属組織が母材部とほとんど区別できなくなる程度にまで組織の均一化を図る処理がなされていた。一般的に溶接部も含めて優れた耐硫酸露点腐食性を呈する鋼管を製造するためには連続式焼鈍炉等を用いて無酸化雰囲気に制御の上、比較的長時間高温の加熱が施されるので、高コストを要するのが現状である。 According to the technique of Patent Document 6, it has become easy to industrially produce a steel sheet having improved sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance at the same time without relying on the addition of Sb with good yield. However, in the "steel pipe" obtained by welding such a steel plate, there is a problem that the sulfuric acid resistance at the welded portion is lowered. This is a problem peculiar to steels containing S to improve sulfuric acid resistance, and the same applies to the above-mentioned Sb-added steels. That is, it is considered that in the welded portion, an S-enriched region is formed in the matrix around the MnS-based inclusions in the quenching process after welding, and corrosion proceeds due to the potential difference between the base iron and the S-enriched region. Therefore, conventionally, after welding pipe making, the steel pipe is heat-treated in the furnace to make the structure uniform to the extent that the metal structure of the welded portion is almost indistinguishable from the base metal portion. Generally, in order to manufacture a steel pipe that exhibits excellent sulfuric acid dew point corrosion resistance including welded parts, high temperature heating is applied for a relatively long time after controlling the non-oxidizing atmosphere using a continuous annealing furnace or the like. Therefore, the current situation is that high cost is required.

一方、鋼管の溶接部を高周波誘導加熱装置で再加熱することにより、溶接部の加工性や靭性を改善する技術(シームアニール)が知られている(例えば特許文献7)。また、焼入れ性を高めた成分設計の鋼管を高周波加熱装置にて加熱、冷却する焼入れ処理技術(高周波焼入れ)が知られている(例えば特許文献8)。しかし、そのような短時間の処理で上述のような組織の均一化を実現することは難しい。 On the other hand, a technique (seam annealing) for improving the workability and toughness of a welded portion by reheating the welded portion of the steel pipe with a high-frequency induction heating device is known (for example, Patent Document 7). Further, there is known a quenching treatment technique (induction hardening) in which a steel pipe having an enhanced hardenability is heated and cooled by an induction heating device (for example, Patent Document 8). However, it is difficult to achieve the above-mentioned uniformization of the structure by such a short-time treatment.

本発明は、耐硫酸露点腐食性および耐塩酸露点腐食性に優れる鋼板を素材とする溶接鋼管において、溶接部の耐硫酸性を改善した低コストなものであって、特に、母材が過度に軟質化されておらず、強度も十分に高いものを提供することを目的とする。 The present invention is a low-cost welded steel pipe made of a steel plate having excellent sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance, in which the sulfuric acid resistance of the welded portion is improved, and in particular, the base material is excessively used. It is an object of the present invention to provide a product which is not softened and has sufficiently high strength.

上述のように、溶接後の鋼管に、組織を均一化するための入念な熱処理を施すことは、コスト上昇の大きな要因となる。発明者らは種々検討の結果、Sを含有させ、Cu、CrおよびMoを複合添加したタイプの耐酸露点腐食鋼を使用した溶接鋼管の場合、溶接部の金属組織が母材とほとんど区別できなくなる程の入念な均一化の熱処理を施さなくても、上記のようなシームアニールあるいは高周波焼入れの技術を利用した溶接部の短時間な熱処理によって、溶接部の耐硫酸性を顕著に改善することができ、条件制御によっては溶接部の耐硫酸性を母材と同等レベルに引き上げることが可能になることを知見した。すなわち、溶接時の冷却過程で硬化した溶接部の硬さが、必ずしも母材の硬さと同レベルにまでは低下しない組織状態(換言すれば、溶接部と母材の硬さにある程度の差が生じている組織状態)の鋼管においても、溶接部の耐硫酸性を顕著に改善することが可能である。特に、溶接部の硬さが母材の硬さに近くなる(両者の差が例えば20HV以内となる)ような短時間加熱条件を適用すれば、溶接部の耐硫酸性を母材と同等レベルに改善されることがわかった。本発明はこのような知見に基づくものである。 As described above, applying careful heat treatment to the welded steel pipe to make the structure uniform is a major factor in increasing the cost. As a result of various studies, the inventors have made it almost impossible to distinguish the metal structure of the welded part from the base metal in the case of a welded steel pipe using a type of acid-resistant dew point corrosion steel containing S and compoundly adding Cu, Cr and Mo. The sulfuric acid resistance of the weld can be significantly improved by short-time heat treatment of the weld using the seam annealing or high-frequency quenching technology described above, without the need for careful homogenization heat treatment. It was found that the sulfuric acid resistance of the weld can be raised to the same level as the base metal depending on the condition control. That is, the hardness of the welded portion hardened in the cooling process during welding does not necessarily decrease to the same level as the hardness of the base metal (in other words, there is a certain difference in the hardness of the welded portion and the base metal. It is possible to remarkably improve the sulfuric acid resistance of the welded portion even in the steel pipe in the generated microstructure state). In particular, if short-time heating conditions are applied such that the hardness of the weld is close to the hardness of the base metal (the difference between the two is, for example, within 20 HV), the sulfuric acid resistance of the weld is at the same level as that of the base metal. It turned out to be improved. The present invention is based on such findings.

具体的には、質量%で、C:0.001〜0.15%、Si:0.005〜0.80%、Mn:0.10〜1.50%、P:0.002〜0.025%、S:0.010〜0.030%、Cu:0.08〜1.20%、Ni:0.005〜0.50%、Cr:0.04〜0.25%、Mo:0.010〜0.085%、Al:0.005〜0.100%、N:0.001〜0.015%、Ti、Nb、V:合計0〜0.20%、B:0〜0.010%、Sb、Sn:合計0〜0.10%、残部Feおよび不可避的不純物からなる化学組成を有する鋼管であって、管の長手方向に伸びる溶接部を持ち、管の長手方向に垂直な断面の肉厚中央において、溶接部の硬さHw(HV)と母材部の平均硬さHp(HV)の差Hw−Hpが70HV以下である耐酸露点腐食性に優れる鋼管によって、上記目的が達成される。母材部の肉厚は例えば1.0〜5.0mmである。母材部の平均硬さHpは例えば135HV以上である。前記Hw−Hpは20HV以下とすることができる。 Specifically, in terms of mass%, C: 0.001 to 0.15%, Si: 0.005 to 0.80%, Mn: 0.1 to 1.50%, P: 0.002 to 0. 025%, S: 0.010 to 0.030%, Cu: 0.08 to 1.20%, Ni: 0.005 to 0.50%, Cr: 0.04 to 0.25%, Mo: 0 .010 to 0.085%, Al: 0.005 to 0.10%, N: 0.001 to 0.015%, Ti, Nb, V: Total 0 to 0.20%, B: 0 to 0. 010%, Sb, Sn: A steel pipe having a chemical composition of 0 to 0.10% in total, the balance Fe and unavoidable impurities, having a welded portion extending in the longitudinal direction of the pipe, and perpendicular to the longitudinal direction of the pipe. In the center of the wall thickness of the cross section, the difference Hw-Hp between the hardness Hw (HV) of the welded portion and the average hardness Hp (HV) of the base metal portion is 70 HV or less. Achieved. The wall thickness of the base metal portion is, for example, 1.0 to 5.0 mm. The average hardness Hp of the base metal portion is, for example, 135 HV or more. The Hw-Hp can be 20 HV or less.

ここで、「母材」は溶接される材料、「溶接金属」は溶接中に溶融凝固した金属、「溶接部」は「溶接金属」と「熱影響部(HAZ)」を含んだ部分をそれぞれ意味する(JIS Z3001−1:2013参照)。溶接後の材料における「母材部」は、溶接部を除く母材由来の部分を意味する。管の長手方向に垂直な断面の硬さ測定は、JIS Z2244:2009に従うマイクロビッカース硬さ試験において、HV0.03(試験力0.2942N)で測定することができる。母材部の平均硬さHpは以下のようにして定めることができる。 Here, the "base metal" is the material to be welded, the "welded metal" is the metal melted and solidified during welding, and the "welded portion" is the portion including the "welded metal" and the "heat-affected zone (HAZ)". Means (see JIS Z3001-1: 2013). The "base material portion" in the material after welding means a portion derived from the base metal excluding the welded portion. The hardness of the cross section perpendicular to the longitudinal direction of the tube can be measured at HV0.03 (test force 0.2942N) in the Micro Vickers hardness test according to JIS Z2244: 2009. The average hardness Hp of the base metal portion can be determined as follows.

〔母材部の平均硬さHpの求め方〕
管の長手方向に垂直な断面を硬さ測定面として調製し、その測定面内に管の外面側より肉厚の1/4深さの位置を結ぶ環状のライン(以下「環状ライン」という。)を想定する。母材部の平均肉厚をt(mm)、環状ライン上の溶接部中心位置をP0とし、P0から環状ライン上を一方向に距離tだけ進んだ点をPA、P0から環状ライン上をPAと反対方向に距離tだけ進んだ点をPBとする。そのPAまたはPBが熱影響部を外れた位置にあるか否かが疑わしい場合は、更に環状ライン上をtだけ進んだ点をそれぞれPA、PBとする。PAから溶接部を通らない方向に環状ライン上をPBまで進むルートにおいて、環状ライン上にPAおよびPBを含むほぼ等間隔の9点を設定し、それら9点の位置でビッカース硬さを測定し、それらの測定値の総和を9で除した値を母材部の平均硬さHp(HV)とする。ここで、「ほぼ等間隔」とは、隣接する2点間の環状ライン上距離(合計8箇所)の最大値が最小値の2倍を超えないことを意味する。
[How to find the average hardness Hp of the base metal part]
An annular line (hereinafter referred to as "annular line") is prepared by preparing a cross section perpendicular to the longitudinal direction of the pipe as a hardness measuring surface and connecting a position having a depth of 1/4 of the wall thickness from the outer surface side of the pipe in the measuring surface. ) Is assumed. Cyclic average thickness of the base metal t (mm), the weld center position on the annular line and P 0, the point advanced from P 0 on the annular line in one direction by a distance t P A, from P 0 Let P B be a point on the line that is advanced by a distance t in the direction opposite to P A. If whether the P A or P B is in a position out of the heat affected zone in doubt, P A further upper annular line t advanced by points, respectively, and P B. In the route from P A to P B on the annular line in the direction not passing through the weld, set 9 points on the annular line at approximately equal intervals including P A and P B , and Vickers hardness at these 9 points. The value obtained by dividing the sum of these measured values by 9 is defined as the average hardness Hp (HV) of the base metal portion. Here, "almost equidistant" means that the maximum value of the distance (8 points in total) on the circular line between two adjacent points does not exceed twice the minimum value.

上記鋼管の製造方法として、上記化学組成の鋼板を管状に溶接造管して、管の長手方向に伸びる溶接部を形成させた鋼管に対して、高周波誘導加熱による入熱を付与して溶接部または管全周を650℃以上1000℃以下、あるいは700℃以上1000℃以下の温度まで昇温させたのち冷却する熱処理を施す製造法が提供される。この熱処理においては、溶接部が650℃以上1000℃以下、あるいは700℃以上1000℃以下の温度に保持される時間を10秒以下とすることができる。また、上記冷却を水冷とする場合には、例えば材料の最高到達温度を650℃以上800℃以下の範囲とすることができる。材料の最高到達温度を700℃以上1000℃以下の範囲とし、冷却において、少なくとも550℃までの温度域を空冷とするヒートパターンを採用してもよい。この場合、常温まで空冷を続けることもできるし、550℃を下回ったのち水冷に切り替えることもできる。 As a method for manufacturing the steel pipe, a steel pipe having the above chemical composition is welded into a tubular shape to form a welded portion extending in the longitudinal direction of the pipe, and heat is applied by high-frequency induced heating to the welded portion. Alternatively, there is provided a manufacturing method in which the entire circumference of the pipe is heated to a temperature of 650 ° C. or higher and 1000 ° C. or lower, or 700 ° C. or higher and 1000 ° C. or lower, and then cooled. In this heat treatment, the time for which the welded portion is held at a temperature of 650 ° C. or higher and 1000 ° C. or lower, or 700 ° C. or higher and 1000 ° C. or lower can be set to 10 seconds or shorter. When the cooling is water cooling, for example, the maximum temperature of the material can be set in the range of 650 ° C. or higher and 800 ° C. or lower. A heat pattern may be adopted in which the maximum temperature reached of the material is in the range of 700 ° C. or higher and 1000 ° C. or lower, and the temperature range of at least 550 ° C. is air-cooled for cooling. In this case, air cooling can be continued to room temperature, or water cooling can be switched to after the temperature drops below 550 ° C.

このようにして得られた前記の鋼管は、例えば石炭焚火力発電所の燃焼排ガスまたは廃棄物焼却施設の燃焼排ガスに曝される熱交換部材に適用できる。特に、前記排ガスに曝されて表面に凝結が生じる部材に好適である。 The steel pipe thus obtained can be applied to, for example, a heat exchange member exposed to the combustion exhaust gas of a coal-fired power plant or the combustion exhaust gas of a waste incineration facility. In particular, it is suitable for a member whose surface is condensed when exposed to the exhaust gas.

本発明によれば、耐硫酸露点腐食性および耐塩酸露点腐食性に優れる鋼板を素材とする溶接鋼管において、溶接部の耐硫酸性を改善した低コストなものが実現できた。従来行われている、溶接部を含めた金属組織を均一化する入念な熱処理によって溶接部の耐硫酸性を改善する手法では、母材部の強度レベルが軟質化によって低下する。ロールフォーミングや冷間引抜など後処理によって強度レベルを上げるには更にコストがかかる。本発明に従う鋼管では母材部の強度低下が小さいので、溶接造管より前に行う加工(鋼板での冷間圧延など)により、適度な強度レベルに調整することができる。例えば最終的な母材部の平均硬さHpを135HV以上とした鋼管は、入念な組織の均一化熱処理を施した軟質な鋼管と比べ、強度レベルが高い。このような高強度化は部材の薄肉化に対応でき、熱交換器の高効率化に寄与しうる。 According to the present invention, in a welded steel pipe made of a steel plate having excellent sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance, a low-cost welded steel pipe having improved sulfuric acid resistance can be realized. In the conventional method of improving the sulfuric acid resistance of the welded portion by careful heat treatment for homogenizing the metal structure including the welded portion, the strength level of the base metal portion is lowered by softening. It is even more costly to increase the strength level by post-treatment such as roll forming or cold drawing. Since the strength decrease of the base metal portion is small in the steel pipe according to the present invention, it can be adjusted to an appropriate strength level by processing performed before welding pipe making (cold rolling on a steel plate, etc.). For example, a steel pipe having an average hardness Hp of 135 HV or more in the final base metal portion has a higher strength level than a soft steel pipe that has undergone a careful heat treatment for homogenizing the structure. Such high strength can cope with thinning of members and can contribute to high efficiency of heat exchangers.

溶接鋼管Aの硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面を例示した写真。A photograph illustrating a cross section of a welded steel pipe A after a sulfuric acid immersion test, cut perpendicularly to the longitudinal direction of the pipe. 図1における管の外面側表面付近の拡大写真。An enlarged photograph of the vicinity of the outer surface of the pipe in FIG. 溶接鋼管Bの硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面を例示した写真。A photograph illustrating a cross section of a welded steel pipe B after a sulfuric acid immersion test, which is cut perpendicular to the longitudinal direction of the pipe. 図3における管の外面側表面付近の拡大写真。An enlarged photograph of the vicinity of the outer surface of the pipe in FIG. 従来例の溶接鋼管の硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面を例示した写真。A photograph exemplifying a cross section of a test piece after a sulfuric acid immersion test of a conventional welded steel pipe, which is cut perpendicular to the longitudinal direction of the pipe.

〔化学組成〕
本発明に適用する鋼の成分元素について説明する。成分元素に関する「%」は特に断らない限り質量%を意味する。
[Chemical composition]
The constituent elements of steel applied to the present invention will be described. Unless otherwise specified, "%" for a component element means mass%.

Cは、耐酸露点腐食性に大きな影響を及ぼさないが、多量のC含有は加工性の低下を招く要因となるので、C含有量は0.15%以下とする。一方、過度の低C化は製造コストの上昇を招く。ここではC含有量0.001%以上のものを対象とする。 C does not have a great influence on the acid dew point corrosion resistance, but a large amount of C content causes a decrease in workability, so the C content is set to 0.15% or less. On the other hand, excessively low C causes an increase in manufacturing cost. Here, those having a C content of 0.001% or more are targeted.

Siは、製鋼時の脱酸のために有効である他、耐酸腐食性の向上および構造材料としての強度確保のためにも有効である。0.005%以上のSi含有量を確保することがより効果的である。過度のSi添加は熱延時のデスケール性を低下させ、スケール疵の増大を招く。さらに溶接性を低下させる要因ともなる。Si含有量は0.80%以下に制限される。 Si is effective not only for deoxidation during steelmaking, but also for improving acid corrosion resistance and ensuring strength as a structural material. It is more effective to secure a Si content of 0.005% or more. Excessive addition of Si reduces the descalability during hot spreading and causes an increase in scale flaws. Furthermore, it becomes a factor that lowers the weldability. The Si content is limited to 0.80% or less.

Mnは、鋼の強度調整に有効であり、またSによる熱間脆性を防止する作用を有する。Mn含有量は0.10%以上とすることがより効果的であり、0.30%以上、あるいは0.50%以上のMn含有量に管理してもよい。ただし、Mnは耐塩酸腐食性を低下させる要因となる。Mn含有量は1.50%まで許容され、1.20%以下、あるいは1.00%以下の範囲に管理してもよい。 Mn is effective in adjusting the strength of steel and has an effect of preventing hot brittleness due to S. It is more effective that the Mn content is 0.10% or more, and the Mn content may be controlled to 0.30% or more or 0.50% or more. However, Mn is a factor that lowers the hydrochloric acid corrosion resistance. The Mn content is allowed up to 1.50% and may be controlled in the range of 1.20% or less, or 1.00% or less.

Pは、熱間加工性や溶接性を劣化させるので0.025%以下に制限される。耐硫酸露点腐食性および耐塩酸露点腐食性をより一層向上させるためにはP含有量の低減が有効となるが、過度の低減は製鋼負荷を増大させコストを押し上げる要因となる。P含有量は0.002〜0.025%の範囲で調整すればよい。0.005〜0.015%とすることがより好ましい。 P is limited to 0.025% or less because it deteriorates hot workability and weldability. In order to further improve the sulfuric acid dew point corrosion resistance and the hydrochloric acid dew point corrosion resistance, it is effective to reduce the P content, but an excessive reduction becomes a factor of increasing the steelmaking load and pushing up the cost. The P content may be adjusted in the range of 0.002 to 0.025%. More preferably, it is 0.005 to 0.015%.

Sは、耐硫酸露点腐食性を向上させるために有効な元素である。その作用を十分発揮させるために、0.010%以上のS含有量とする。0.010%を超える範囲に管理してもよい。ただし、S含有量が増えると溶接部での耐硫酸性が低下し、後述の加熱処理を行っても、S含有による本来の耐硫酸露点腐食性向上作用が鋼管全体としては活かせなくなる。種々検討の結果、S含有量は0.030%以下に制限される。 S is an element effective for improving the sulfuric acid dew point corrosion resistance. In order to fully exert its action, the S content is set to 0.010% or more. It may be managed in the range exceeding 0.010%. However, as the S content increases, the sulfuric acid resistance at the welded portion decreases, and even if the heat treatment described later is performed, the original effect of improving the sulfuric acid dew point corrosion resistance due to the S content cannot be utilized as a whole steel pipe. As a result of various studies, the S content is limited to 0.030% or less.

Cuは、耐硫酸露点腐食性および耐塩酸露点腐食性を向上させるために有効であり、本発明では0.08%以上のCu含有量を確保する必要がある。しかし、過度のCu含有は熱間加工性を低下させる要因となるので、1.20%以下の含有量とすることが望ましい。 Cu is effective for improving sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance, and in the present invention, it is necessary to secure a Cu content of 0.08% or more. However, since an excessive Cu content causes a decrease in hot workability, it is desirable to set the content to 1.20% or less.

Niは、耐酸露点腐食性の向上に直接的には作用しないが、Cu添加による熱間加工性の低下を抑制する作用を発揮する元素であり、0.005%以上の含有量とすることが望ましい。熱間加工性を重視する場合は0.05%以上のNi含有量を確保することがより効果的であり、0.10%以上とすることがより効果的である。ただし、0.50%を超えるとその効果が飽和しコスト高となる。Ni含有量は0.50%以下の範囲で設定する。 Ni does not directly affect the improvement of acid dew point corrosion resistance, but is an element that exerts an effect of suppressing the decrease in hot workability due to the addition of Cu, and the content may be 0.005% or more. desirable. When importance is attached to hot workability, it is more effective to secure a Ni content of 0.05% or more, and it is more effective to set it to 0.10% or more. However, if it exceeds 0.50%, the effect is saturated and the cost becomes high. The Ni content is set in the range of 0.50% or less.

CrとMoは、Sb等の特殊元素に頼らずに耐硫酸露点腐食性と耐塩酸露点腐食性を同時に向上させる上で重要な元素である。種々検討の結果、Crを0.04〜0.25%、かつMoを0.010〜0.085%の範囲で複合添加することにより、耐硫酸露点腐食性と耐塩酸露点腐食性の同時改善が可能となる。Cr含有量については0.10〜0.25%とすることが一層効果的である。またMo含有量については0.03〜0.07%とすることが一層効果的である。 Cr and Mo are important elements for simultaneously improving the sulfuric acid dew point corrosion resistance and the hydrochloric acid dew point corrosion resistance without relying on special elements such as Sb. As a result of various studies, simultaneous improvement of sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance by compound addition of Cr in the range of 0.04 to 0.25% and Mo in the range of 0.01 to 0.085%. Is possible. It is more effective to set the Cr content to 0.1 to 0.25%. Further, it is more effective to set the Mo content to 0.03 to 0.07%.

Alは、製鋼時の脱酸のために必要な元素である。0.005%以上のAl含有量に調整することが効果的であり、0.010%以上とすることがさらに効果的である。しかし、Alは熱間加工性を低下させる要因となる。種々検討の結果、Al含有量は0.100%以下に制限され、0.050%以下に管理してもよい。 Al is an element required for deoxidation during steelmaking. It is effective to adjust the Al content to 0.005% or more, and it is more effective to adjust the Al content to 0.0010% or more. However, Al becomes a factor that lowers the hot workability. As a result of various studies, the Al content is limited to 0.10% or less, and may be controlled to 0.050% or less.

Nは、Cと同様、耐酸露点腐食性に大きな影響を及ぼさないが、多量のN含有は加工性の低下を招く要因となるので、N含有量は0.015%以下とする。一方、過度の低N化は製造コストの上昇を招く。 Like C, N does not have a large effect on acid dew point corrosion resistance, but a large amount of N content causes a decrease in processability, so the N content is set to 0.015% or less. On the other hand, excessively low N causes an increase in manufacturing cost.

Ti、Nb、Vは、フェライト結晶粒径の微細化作用を有し、耐酸露点腐食性の改善に有効である。そのため、必要に応じてこれらの1種以上を添加することができる。その場合、Ti、Nb、Vの1種以上の合計含有量を0.005%以上とすることがより効果的である。ただし、過剰に添加しても上記作用は飽和し、製造コストが上昇する。Ti、Nb、Vの1種以上を添加する場合は、それらの合計含有量を0.20%以下とすることが望ましい。 Ti, Nb, and V have the effect of refining the ferrite crystal grain size and are effective in improving the acid dew point corrosion resistance. Therefore, one or more of these can be added as needed. In that case, it is more effective to set the total content of one or more of Ti, Nb, and V to 0.005% or more. However, even if it is added in an excessive amount, the above action is saturated and the manufacturing cost increases. When one or more of Ti, Nb, and V are added, it is desirable that the total content thereof is 0.20% or less.

Bは、微量の添加でフェライト結晶粒径の微細化作用を発揮しうる元素であるため、必要に応じて添加することができる。その場合、Bの含有量は0.0005%以上とすることがより効果的である。ただし、過剰にBを添加しても上記作用は飽和し、製造コストが上昇する。Bを添加する場合は0.010%以下の含有量範囲で行うことが望ましい。 Since B is an element that can exhibit the effect of refining the ferrite crystal particle size with a small amount of addition, it can be added as needed. In that case, it is more effective that the content of B is 0.0005% or more. However, even if B is added in excess, the above action is saturated and the manufacturing cost increases. When B is added, it is desirable to add it in a content range of 0.010% or less.

Sb、Snは、CrやMoと同様に電気化学的なアノード・カソード反応を緩慢にさせる作用を通じて耐酸露点腐食性を改善するのに有効な元素である。本発明ではS含有量を狭い範囲に厳密にコントロールし、かつCu、Cr、Moを複合添加する手法により、優れた耐酸露点腐食性を付与するので、Sb、Snの添加は必ずしも必要ではない。ただし、Sb、Snを添加した場合には、耐酸露点腐食性を更に向上させることが可能となる。従って、耐酸露点腐食性のレベルアップを重視する場合には、必要に応じてSb、Snの1種以上を添加することができる。これらの元素の添加効果を十分に発揮させるためには、Sb、Snの合計含有量が0.005%以上となるようにこれらの1種以上を含有させることが望ましい。ただし、過剰に添加しても上記作用は飽和し、製造コストが上昇する。Sb、Snの1種以上を添加する場合は、それらの合計含有量を0.10%以下とすることが望ましい。 Similar to Cr and Mo, Sb and Sn are elements effective for improving acid dew point corrosion resistance through the action of slowing the electrochemical anode-cathode reaction. In the present invention, excellent acid dew point corrosion resistance is imparted by a method in which the S content is strictly controlled in a narrow range and Cu, Cr, and Mo are added in combination. Therefore, addition of Sb and Sn is not always necessary. However, when Sb and Sn are added, the acid dew point corrosion resistance can be further improved. Therefore, when it is important to increase the level of acid dew point corrosion resistance, one or more of Sb and Sn can be added as needed. In order to fully exert the effect of adding these elements, it is desirable to contain one or more of them so that the total content of Sb and Sn is 0.005% or more. However, even if it is added in an excessive amount, the above action is saturated and the manufacturing cost increases. When one or more of Sb and Sn are added, it is desirable that the total content thereof is 0.10% or less.

〔金属組織〕
本発明で対象とする溶接鋼管の母材部は、例えば再結晶フェライト相を主体とする金属組織を有する。フェライト単相組織である場合の他、セメンタイト、パーライトの1種以上を合計10体積%以下の範囲で含有し残部がフェライト相である組織であっても構わない。高周波焼入れ装置を用いて管全周をオーステナイト域まで加熱し急冷した場合などには、母材部は、マルテンサイト単相またはフェライト、マルテンサイト、ベイナイトの1種以上を含む金属組織となることがある。なお、本明細書では、セメンタイト、パーライトを第二相と呼ぶことがある。このうちパーライトは薄いフェライト相とセメンタイト相で構成される層状組織であるが、本明細書において第二相の残部として記述されるフェライト相、すなわちフェライト結晶粒度の測定対象となるフェライト相には、パーライトを構成するフェライト相は含まれない。同様に第二相の構成要素としてパーライトと同列に記述されるセメンタイトにも、パーライトを構成するセメンタイトは含まれない。母材部の平均硬さHpが135HV以上に調整されていることが好ましく、145HV以上であるものがより好ましい。
[Metal structure]
The base metal portion of the welded steel pipe targeted in the present invention has, for example, a metal structure mainly composed of a recrystallized ferrite phase. In addition to the case of a ferrite single-phase structure, a structure may be a structure in which one or more of cementite and pearlite are contained in a total range of 10% by volume or less and the balance is a ferrite phase. When the entire circumference of the tube is heated to the austenite region and rapidly cooled using an induction hardening device, the base metal part may have a martensite single phase or a metal structure containing one or more of ferrite, martensite, and bainite. is there. In this specification, cementite and pearlite may be referred to as the second phase. Of these, pearlite is a layered structure composed of a thin ferrite phase and a cementite phase, but the ferrite phase described as the rest of the second phase in the present specification, that is, the ferrite phase whose ferrite crystal grain size is to be measured, is included in the ferrite phase. The ferrite phase that constitutes pearlite is not included. Similarly, cementite described in the same row as pearlite as a component of the second phase does not include cementite constituting pearlite. The average hardness Hp of the base metal portion is preferably adjusted to 135 HV or more, and more preferably 145 HV or more.

一方、溶接部については、後述の熱処理の前後で組織が変化する。造管時に溶接を行うと、その溶接部にはマルテンサイト相が混在する硬質の組織が生成する。その状態の鋼管に後述の熱処理を施して得られる本発明に従う鋼管は、加熱条件によっては溶接部にマルテンサイト相に由来する変態相が残存するが、軟質化はある程度進行している。ただし、溶接部の硬さHwは、母材部の平均硬さHpに比べ、硬い状態であっても構わない。この場合、溶接鋼管の溶接部は、更に熱エネルギーを加えると、それに伴って更に軟質化する余地を残した組織状態であると言うことができる。このような、母材部との完全な均一化には至っていない組織状態の溶接部であっても、耐硫酸性を調べると溶接直後よりも顕著に改善されている。その原因として、溶接時の急昇温・急冷過程でMnS系介在物から生じた不安定で容易に溶解可能なMn・Fe系硫化物が、後述の熱処理によって再び安定な構造のMnSへと戻るのではないかと考えられる。すなわち、短時間であっても一旦650℃以上1000℃以下、好ましくは700℃以上1000℃以下の温度域まで加熱して空冷等の冷却を施せば、不安定なMn・Fe系硫化物が母材部と同様に安定なMnSへと変わり、その結果、溶接部にも母材部と変わらない耐硫酸腐食性を付与することが可能となる。 On the other hand, the structure of the welded portion changes before and after the heat treatment described later. When welding is performed during pipe formation, a hard structure in which the martensite phase is mixed is formed in the welded portion. In the steel pipe according to the present invention obtained by subjecting the steel pipe in that state to the heat treatment described later, a transformation phase derived from the martensite phase remains in the welded portion depending on the heating conditions, but the softening has progressed to some extent. However, the hardness Hw of the welded portion may be in a harder state than the average hardness Hp of the base metal portion. In this case, it can be said that the welded portion of the welded steel pipe is in a textured state in which there is room for further softening when further heat energy is applied. Even in such a welded portion having a structure that has not been completely made uniform with the base metal portion, the sulfuric acid resistance is significantly improved as compared with that immediately after welding. The cause is that the unstable and easily soluble Mn / Fe-based sulfide generated from the MnS-based inclusions during the rapid heating / cooling process during welding returns to MnS with a stable structure by the heat treatment described later. It is thought that it may be. That is, even for a short time, once heated to a temperature range of 650 ° C. or higher and 1000 ° C. or lower, preferably 700 ° C. or higher and 1000 ° C. or lower, and cooled by air cooling or the like, unstable Mn / Fe sulfide becomes a mother. It changes to a stable MnS like the material part, and as a result, it becomes possible to impart the same sulfuric acid corrosion resistance to the welded part as the base material part.

上記のような耐硫酸性が改善された溶接部の組織状態は、溶接部の硬さHwと母材部の平均硬さHpの差Hw−Hpによって特定することができる。具体的には、上述の化学組成を満たす鋼種の場合、管の長手方向に垂直な断面の肉厚中央(具体的には管の外面側より肉厚の1/4深さの位置)において、溶接部の硬さHw(HV)と母材部の平均硬さHp(HV)の差Hw−Hpが70HV以下である場合に、溶接部の耐硫酸性は顕著に改善されることがわかった。特に、Hw−Hpが20HV以下である場合には、溶接部の耐硫酸性は母材とほぼ同等にまで回復している。 The structural state of the welded portion with improved sulfuric acid resistance as described above can be specified by the difference Hw-Hp between the hardness Hw of the welded portion and the average hardness Hp of the base metal portion. Specifically, in the case of a steel type satisfying the above-mentioned chemical composition, at the center of the wall thickness of the cross section perpendicular to the longitudinal direction of the pipe (specifically, a position at a depth of 1/4 of the wall thickness from the outer surface side of the pipe). It was found that the sulfuric acid resistance of the welded portion was significantly improved when the difference Hw-Hp between the hardness Hw (HV) of the welded portion and the average hardness Hp (HV) of the base metal portion was 70 HV or less. .. In particular, when Hw-Hp is 20 HV or less, the sulfuric acid resistance of the welded portion is restored to almost the same level as that of the base metal.

〔製造方法〕
上記の組織状態を有する溶接鋼管は、素材鋼板に溶接造管を施して鋼管を製造し、その鋼管に短時間の熱処理を施すことによって製造することができる。
素材鋼板は、熱延鋼板または冷延鋼板のいずれでも良く、鋳造、熱間圧延、冷間圧延、焼鈍を上記の順に有する一般的な鋼板製造工程によって製造することができる。必要に応じて調質圧延を施すことができる。板厚は、目標とする鋼管の肉厚に応じて例えば1.0〜5.0mmとすることができる。
〔Production method〕
The welded steel pipe having the above-mentioned structural state can be manufactured by subjecting a raw steel sheet to a welded pipe to produce a steel pipe, and then subjecting the steel pipe to a short-time heat treatment.
The material steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet, and can be manufactured by a general steel sheet manufacturing process having casting, hot rolling, cold rolling, and annealing in the above order. If necessary, temper rolling can be performed. The plate thickness can be, for example, 1.0 to 5.0 mm depending on the target wall thickness of the steel pipe.

溶接造管は、鋼板を筒状に成形して鋼板幅方向端部のエッジ同士を溶接接合していく公知の高周波溶接造管方法によって行うことができる。溶接造管された鋼管は、管の長手方向に伸びる溶接部を有している。溶接ビード部は、切削バイト等を用いて切除することができる。本発明では、この溶接されたままの組織状態を有する鋼管に対して、管の外周面全体が炉中で高温の雰囲気に曝される熱処理を施すのではなく、高周波誘導加熱により入熱を付与する方法で短時間の熱処理を施す。この短時間の熱処理は、従来、溶接熱影響部の加工性や靭性を改善する手段として行われる熱処理(いわゆるシームアニール)を施す加熱設備、あるいは高周波焼入れ装置を利用して実施することが可能である。高周波焼入れ装置を用いて加熱する場合には、管全周が短時間加熱される。特に、溶接部を含めた管全周を800℃以上に加熱したのち冷却すれば、溶接部と母材部の金属組織は同等となり耐硫酸腐食性も同等の特性となる。この場合、高周波加熱後直ちに水冷を施せば、溶接部も母材部も等しくマルテンサイトを主体とする金属組織の高強度鋼管とすることも可能である。シームアニール、全周加熱のいずれであっても、最高到達温度から550℃までの平均冷却速度を50℃/s以下に制御すればフェライト、パーライトを主体とする金属組織となり、鋼管の加工性に有利となる上、安定なMnSを十分に形成することが可能となり、耐硫酸腐食性の改善効果も大きくなる。例えば少なくとも550℃に到達するまでの冷却を空冷とすることによって、上記の冷却速度の制御が可能である。この場合、550℃以下の温度域では水冷を行ってもよい。例えば、少なくとも550℃まで空冷とし、450℃以上の温度から水冷を行うといったヒートパターンを採用することができる。一方、最高到達温度を650℃以上800℃以下、好ましくは700℃以上800℃以下とし、高周波加熱後直ちに水冷を施しても、金属組織がフェライト主体の組織となり、加工性に有利な組織状態の鋼管を生産性良く製造できる。 Welded pipe forming can be performed by a known high-frequency welded pipe forming method in which a steel plate is formed into a tubular shape and the edges of the steel plate width direction ends are welded and joined to each other. The welded steel pipe has a welded portion extending in the longitudinal direction of the pipe. The weld bead portion can be cut using a cutting tool or the like. In the present invention, the steel pipe having the welded structure is not heat-treated so that the entire outer peripheral surface of the pipe is exposed to a high temperature atmosphere in the furnace, but heat is applied by high frequency induction heating. Heat treatment is performed for a short time by the method described above. This short-time heat treatment can be carried out by using a heating facility that performs heat treatment (so-called seam annealing), which is conventionally performed as a means for improving the workability and toughness of the weld heat-affected zone, or an induction hardening apparatus. is there. When heating using an induction hardening device, the entire circumference of the pipe is heated for a short time. In particular, if the entire circumference of the pipe including the welded portion is heated to 800 ° C. or higher and then cooled, the metal structures of the welded portion and the base metal portion become the same, and the sulfuric acid corrosion resistance becomes the same. In this case, if water cooling is applied immediately after high-frequency heating, it is possible to obtain a high-strength steel pipe having a metal structure mainly composed of martensite in both the welded portion and the base metal portion. Regardless of seam annealing or all-around heating, if the average cooling rate from the maximum temperature reached to 550 ° C is controlled to 50 ° C / s or less, the metal structure will be mainly ferrite and pearlite, and the workability of steel pipes will be improved. In addition to being advantageous, stable MnS can be sufficiently formed, and the effect of improving sulfuric acid corrosion resistance is also increased. For example, the cooling rate can be controlled by air-cooling until the temperature reaches at least 550 ° C. In this case, water cooling may be performed in a temperature range of 550 ° C. or lower. For example, a heat pattern such as air cooling up to at least 550 ° C. and water cooling from a temperature of 450 ° C. or higher can be adopted. On the other hand, even if the maximum reached temperature is set to 650 ° C. or higher and 800 ° C. or lower, preferably 700 ° C. or higher and 800 ° C. or lower, and water cooling is performed immediately after high-frequency heating, the metal structure becomes a ferrite-based structure, which is advantageous for workability. Steel pipes can be manufactured with high productivity.

上記の熱処理は、高周波誘導加熱コイルが配置されている加熱処理ラインに、鋼管を長手方向に進行させながら行うことによって実施できる。管の長手方向に垂直な断面内において溶接部(すなわち溶接金属+熱影響部)または全周が650℃以上1000℃以下、あるいは700℃以上1000℃以下の温度域まで昇温され、その後冷却されるように、入熱量および管の移動速度をコントロールする。高周波加熱のような短時間加熱では溶接部において上記温度域まで昇温しない部分があると、その部分に不安定で容易に溶解可能なMn・Fe系硫化物が残存しやすく、溶接部の耐硫酸性を安定して十分に改善することが難しい。加熱温度が1000℃を超えると加熱に必要なエネルギーが非常に大きくなり、製造コストの上昇を招く。従って、最高到達温度は1000℃以下とすることが望ましく、800℃以上950℃以下とすることがより好ましい。 The above heat treatment can be carried out by carrying out the heat treatment while advancing the steel pipe in the longitudinal direction on the heat treatment line in which the high frequency induction heating coil is arranged. In the cross section perpendicular to the longitudinal direction of the pipe, the welded part (that is, weld metal + heat affected zone) or the entire circumference is heated to a temperature range of 650 ° C or higher and 1000 ° C or lower, or 700 ° C or higher and 1000 ° C or lower, and then cooled. As a result, the amount of heat input and the moving speed of the pipe are controlled. If there is a part of the weld that does not rise to the above temperature range by short-time heating such as high-frequency heating, unstable and easily soluble Mn / Fe-based sulfide tends to remain in that part, and the resistance of the weld It is difficult to stabilize and sufficiently improve the sulfate property. If the heating temperature exceeds 1000 ° C., the energy required for heating becomes very large, which leads to an increase in manufacturing cost. Therefore, the maximum temperature reached is preferably 1000 ° C. or lower, and more preferably 800 ° C. or higher and 950 ° C. or lower.

溶接部の材料温度が650℃以上1000℃以下、あるいは700℃以上1000℃以下の範囲に滞在する時間は、10秒以下とすることが望ましい。それより長時間の加熱はコストを引き上げる要因となり不経済である。発明者らは前記化学組成範囲の種々の鋼について、ソルトバスを用いて、熱電対を取り付けた試料により種々の昇温曲線となる熱処理実験を行った。その結果、650℃以上1000℃以下、あるいは700℃以上1000℃以下の温度域の滞在時間を0秒以上とすれば、溶接部の耐硫酸性の明らかな改善が認められた。ここで、滞在時間0秒は650℃、あるいは700℃に到達した時点で直ちに冷却を開始する場合に相当する。650℃以上1000℃以下、あるいは700℃以上1000℃以下の温度域の滞在時間を1秒以上10秒以下の範囲とすることがより好ましい。 It is desirable that the time for staying in the range where the material temperature of the welded portion is 650 ° C. or higher and 1000 ° C. or lower, or 700 ° C. or higher and 1000 ° C. or lower is 10 seconds or less. Heating for a longer time is uneconomical because it raises the cost. The inventors conducted heat treatment experiments on various steels in the chemical composition range using salt baths to obtain various temperature rise curves depending on a sample to which a thermocouple was attached. As a result, when the residence time in the temperature range of 650 ° C. or higher and 1000 ° C. or lower, or 700 ° C. or higher and 1000 ° C. or lower was set to 0 seconds or longer, a clear improvement in sulfuric acid resistance of the welded portion was observed. Here, the residence time of 0 seconds corresponds to the case where cooling is started immediately when the temperature reaches 650 ° C. or 700 ° C. It is more preferable that the residence time in the temperature range of 650 ° C. or higher and 1000 ° C. or lower, or 700 ° C. or higher and 1000 ° C. or lower is in the range of 1 second or more and 10 seconds or less.

最高到達温度を800℃以上1000℃以下とする場合は、800℃以上1000℃以下の温度域の滞在時間を1秒以上10秒以下の範囲とすることがより好ましい。 When the maximum temperature reached is 800 ° C. or higher and 1000 ° C. or lower, it is more preferable that the staying time in the temperature range of 800 ° C. or higher and 1000 ° C. or lower is in the range of 1 second or longer and 10 seconds or lower.

高周波誘導加熱装置を備える製造ラインにおける材料のヒートカーブ(昇温・冷却曲線)は、設備仕様および予備実験データに基づいてプログラミングされたソフトウェアを用いて、管径、肉厚、ライン速度、高周波出力等の製造条件を入力することによりシミュレートすることができる。 The heat curve (heating / cooling curve) of a material in a production line equipped with a high-frequency induction heating device uses software programmed based on equipment specifications and preliminary experimental data, and uses tube diameter, wall thickness, line speed, and high-frequency output. It can be simulated by inputting manufacturing conditions such as.

上記の加熱後には、例えば「空冷」、「水冷」、または「空冷および水冷」にて冷却することができる。加熱後すぐに水冷を行うヒートパターンは、最高到達温度650℃以上800℃以下の場合に適用することが好適である。空冷および水冷にて冷却するヒートパターンの場合は、少なくとも550℃以下の温度まで空冷した後水冷に切り替えることが好ましい。 After the above heating, it can be cooled by, for example, "air cooling", "water cooling", or "air cooling and water cooling". The heat pattern in which water cooling is performed immediately after heating is preferably applied when the maximum temperature reached is 650 ° C. or higher and 800 ° C. or lower. In the case of a heat pattern of cooling by air cooling and water cooling, it is preferable to switch to water cooling after air cooling to a temperature of at least 550 ° C. or lower.

《溶接造管ままの鋼管の特性調査》
以下の化学組成を有する板厚3mmの熱延鋼板を用意した。
質量%で、C:0.05%、Si:0.31%、Mn:0.93、P:0.011%、S:0.014%、Cu:0.34%、Ni:0.16%、Cr:0.22%、Mo:0.05%、Al:0.028%、N:0.0026%、残部Fe。
この鋼板を素材として、高周波溶接造管ラインにて外径34.0mmの円形断面を持つ溶接鋼管を製造した。溶接造管後にライン内にて外面および内面の溶接ビード研削を行った。このようにして、溶接したままの金属組織を有する溶接鋼管Aを得た。
<< Characteristics survey of steel pipes as welded pipes >>
A hot-rolled steel sheet having the following chemical composition and having a thickness of 3 mm was prepared.
By mass%, C: 0.05%, Si: 0.31%, Mn: 0.93, P: 0.011%, S: 0.014%, Cu: 0.34%, Ni: 0.16 %, Cr: 0.22%, Mo: 0.05%, Al: 0.028%, N: 0.026%, balance Fe.
Using this steel plate as a material, a welded steel pipe having a circular cross section with an outer diameter of 34.0 mm was manufactured by a high-frequency welded pipe making line. After welding pipe formation, weld bead grinding of the outer and inner surfaces was performed in the line. In this way, a welded steel pipe A having a metal structure as welded was obtained.

溶接鋼管Aについて、管の長手方向に垂直な断面を観察面とする試料を作製し、その断面についてJIS Z2244:2009に従いHV0.03(試験力0.2942N)での硬さ測定を行い、肉厚中央の溶接部の硬さHwと母材部の平均硬さHpを求めた。母材部の平均硬さHpは上掲の「母材部の平均硬さHpの求め方」に従って求めた。測定試験片の数はn=3とし、それぞれの試験片で求めたHwの総和のおよびHpの総和を試験数3で除した値を、それぞれ当該溶接鋼管のHwおよびHpの値として採用した。
その結果、この溶接鋼管Aの溶接部の硬さHwは271HV、母材部の平均硬さHpは165HVであった。それらの差Hw−Hpは106HVである。
For the welded steel pipe A, a sample was prepared with the cross section perpendicular to the longitudinal direction of the pipe as the observation surface, and the hardness of the cross section was measured at HV0.03 (test force 0.2942N) according to JIS Z2244: 2009. The hardness Hw of the welded portion at the center of the thickness and the average hardness Hp of the base metal portion were determined. The average hardness Hp of the base metal portion was determined according to the above-mentioned "How to obtain the average hardness Hp of the base metal portion". The number of measurement test pieces was n = 3, and the values obtained by dividing the total Hw and the total Hp obtained from each test piece by the number of tests 3 were adopted as the values of Hw and Hp of the welded steel pipe, respectively.
As a result, the hardness Hw of the welded portion of the welded steel pipe A was 271 HV, and the average hardness Hp of the base metal portion was 165 HV. Their difference Hw-Hp is 106 HV.

溶接鋼管Aから溶接部を中央に含む腐食試験片(幅25mm、長さ30mm)を切り出し、硫酸濃度40質量%、温度60℃の硫酸水溶液中に4時間浸漬する硫酸浸漬試験を実施した。硫酸浸漬試験前後の重量変化を電子天秤にて測定し、溶接部を含む試験片における単位面積当たりの腐食減量を計算により求めた。
その結果、溶接鋼管Aの溶接部を含まない母材部の試験片(母材部リファレンス)の腐食減量は65mg/cm2、溶接鋼管Aの溶接部を含む試験片(溶接ままのリファレンス)の腐食減量は162mg/cm2であった。
A corrosion test piece (width 25 mm, length 30 mm) containing the welded portion in the center was cut out from the welded steel pipe A and immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 40% by mass and a temperature of 60 ° C. for 4 hours. The weight change before and after the sulfuric acid immersion test was measured with an electronic balance, and the corrosion loss per unit area of the test piece including the weld was calculated.
As a result, the corrosion weight loss of the test piece (base material reference) of the base metal part not including the welded part of the welded steel pipe A was 65 mg / cm 2 , and that of the test piece (reference as it was welded) including the welded part of the welded steel pipe A. The corrosion weight loss was 162 mg / cm 2 .

図1に、溶接鋼管Aの硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面の写真を例示する。切断面は、結晶粒が現れるようにエッチングしてある。溶接部には管の内面および外面ともに、溝状の減肉が見られる。上記の腐食試験条件は鋼材にとって非常に厳しい硫酸腐食環境であるが、この鋼は耐硫酸性が本質的に高いので、母材部の溶解量(肉厚減少)は少ない。しかし、その優れた耐硫酸性は溶接部において低下していることがわかる。図2に、図1における管の外面側表面付近の拡大写真を示す。(a)が溶接部左側、(b)が溶接部中央、(c)が溶接部右側である。溶接熱影響部の端部付近における減肉が著しい。 FIG. 1 exemplifies a photograph of a cross section of a welded steel pipe A after a sulfuric acid immersion test, cut perpendicularly to the longitudinal direction of the pipe. The cut surface is etched so that crystal grains appear. Groove-shaped wall thinning can be seen on both the inner and outer surfaces of the pipe at the weld. The above corrosion test conditions are a very severe sulfuric acid corrosion environment for steel materials, but since this steel has inherently high sulfuric acid resistance, the amount of dissolution (thickness reduction) of the base material is small. However, it can be seen that its excellent sulfuric acid resistance is reduced at the weld. FIG. 2 shows an enlarged photograph of the vicinity of the outer surface side surface of the pipe in FIG. (A) is the left side of the welded portion, (b) is the center of the welded portion, and (c) is the right side of the welded portion. Significant wall thinning near the end of the weld heat affected zone.

《シームアニールによる熱処理例》
溶接鋼管Aと同様の条件で製造した溶接鋼管の溶接部に、インラインにて高周波誘導加熱による入熱を付与するシームアニールを施した。この加熱処理ラインでのヒートカーブを、管径、肉厚、ライン速度、高周波出力等の条件からシミュレートして、溶接部の最高到達温度が700℃となり、650℃から最高到達温度までの滞在時間が約1秒となり、かつ溶接部の全体が650℃以上に昇温される条件で加熱した。最高到達温度に到達したのち、直ちに水を吹き付ける水冷処理により冷却した。このようにして、熱処理後の溶接鋼管Bを得た。
<< Example of heat treatment by seam annealing >>
The welded portion of the welded steel pipe manufactured under the same conditions as the welded steel pipe A was subjected to seam annealing in-line to apply heat by high-frequency induction heating. By simulating the heat curve in this heat treatment line from the conditions such as pipe diameter, wall thickness, line speed, high frequency output, etc., the maximum temperature reached at the weld is 700 ° C, and the stay from 650 ° C to the maximum temperature is reached. The heating was performed under a condition that the time was about 1 second and the temperature of the entire welded portion was raised to 650 ° C. or higher. After reaching the maximum temperature, it was immediately cooled by water cooling treatment by spraying water. In this way, the welded steel pipe B after the heat treatment was obtained.

また、溶接鋼管Aと同様の条件で製造した溶接鋼管の溶接部に、インラインにて高周波誘導加熱による入熱を付与するシームアニールを施した。この加熱処理ラインでのヒートカーブを、管径、肉厚、ライン速度、高周波出力等の条件からシミュレートして、溶接部の最高到達温度が750℃となり、700℃から最高到達温度までの滞在時間が約1秒となり、かつ溶接部の全体が700℃以上に昇温される条件で加熱した。最高到達温度に到達したのち加熱を止めて空冷し、溶接部の温度が550℃となったのち水を吹き付ける水冷処理により冷却した。このようにして、熱処理後の溶接鋼管Gを得た。 Further, the welded portion of the welded steel pipe manufactured under the same conditions as the welded steel pipe A was subjected to seam annealing in-line to apply heat by high-frequency induction heating. By simulating the heat curve in this heat treatment line from the conditions such as pipe diameter, wall thickness, line speed, high frequency output, etc., the maximum temperature reached at the weld is 750 ° C, and the stay from 700 ° C to the maximum temperature is reached. The heating was performed under a condition that the time was about 1 second and the temperature of the entire welded portion was raised to 700 ° C. or higher. After reaching the maximum temperature reached, heating was stopped and air-cooled, and after the temperature of the welded portion reached 550 ° C., it was cooled by water cooling treatment by spraying water. In this way, the welded steel pipe G after the heat treatment was obtained.

溶接鋼管BおよびGについて、上記溶接鋼管Aの場合と同様の方法で肉厚中央の溶接部の硬さHwと母材部の平均硬さHpを求めた。
その結果、溶接鋼管Bの溶接部の硬さHwは227HV、母材部の平均硬さHpは169HVであり、それらの差Hw−Hpは58HVであった。また、溶接鋼管Gの溶接部の硬さHwは219HV、母材部の平均硬さHpは169HVであり、それらの差Hw−Hpは50HVであった。いずれも溶接造管後の熱処理によって溶接部は軟化しているが、母材部と同等レベルまでの軟化は認められなかった。
For the welded steel pipes B and G, the hardness Hw of the welded portion at the center of the wall thickness and the average hardness Hp of the base metal portion were determined by the same method as in the case of the welded steel pipe A.
As a result, the hardness Hw of the welded portion of the welded steel pipe B was 227 HV, the average hardness Hp of the base metal portion was 169 HV, and the difference Hw-Hp between them was 58 HV. The hardness Hw of the welded portion of the welded steel pipe G was 219 HV, the average hardness Hp of the base metal portion was 169 HV, and the difference Hw-Hp between them was 50 HV. In each case, the welded portion was softened by the heat treatment after the welded pipe formation, but the softening to the same level as the base metal portion was not observed.

溶接鋼管BおよびGから溶接部を中央に含む腐食試験片(幅25mm、長さ30mm)を切り出し、上述の溶接鋼管Aの場合と同様に、硫酸濃度40質量%、温度60℃の硫酸水溶液中に4時間浸漬する硫酸浸漬試験を実施した。
その結果、溶接鋼管BおよびGの溶接部を含む試験片の腐食減量はそれぞれ85mg/cm2および73mg/cm2であり、上述の溶接ままのリファレンスにおける腐食減量162mg/cm2と比べ、非常に良好な耐硫酸腐食性を有していた。
A corrosion test piece (width 25 mm, length 30 mm) containing the welded portion in the center is cut out from the welded steel pipes B and G, and in a sulfuric acid aqueous solution having a sulfuric acid concentration of 40% by mass and a temperature of 60 ° C. as in the case of the welded steel pipe A described above. A sulfuric acid immersion test was carried out.
As a result, the corrosion loss of the test piece including the welded portion of the welded steel pipes B and G was 85 mg / cm 2 and 73 mg / cm 2 , respectively, which is much higher than the corrosion loss of 162 mg / cm 2 in the above-mentioned as-welded reference. It had good sulfuric acid corrosion resistance.

図3に、溶接鋼管Bの硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面の写真を例示する。切断面は、結晶粒が現れるようにエッチングしてある。図4に、図3における管の外面側表面付近の拡大写真を示す。(a)が溶接部左側、(b)が溶接部中央、(c)が溶接部右側である。溶接部は母材部よりも溶解量が若干多い。しかし、溶接ままの溶接鋼管Aと比べ、溶接部の浸食は明らかに少ない。本発明で規定される化学組成の溶接鋼管において、溶接造管後に溶接部を短時間加熱する熱処理を施すことにより、溶接部の耐硫酸性が顕著に改善された。 FIG. 3 exemplifies a photograph of a cross section of the test piece after the sulfuric acid immersion test of the welded steel pipe B, which is cut perpendicular to the longitudinal direction of the pipe. The cut surface is etched so that crystal grains appear. FIG. 4 shows an enlarged photograph of the vicinity of the outer surface side surface of the pipe in FIG. (A) is the left side of the welded portion, (b) is the center of the welded portion, and (c) is the right side of the welded portion. The welded part has a slightly larger amount of dissolution than the base material part. However, the erosion of the welded portion is clearly less than that of the welded steel pipe A as it is welded. In the welded steel pipe having the chemical composition specified in the present invention, the sulfuric acid resistance of the welded portion was remarkably improved by subjecting the welded portion to a heat treatment for a short time after the welded pipe was formed.

《全周加熱による熱処理例》
溶接鋼管Aと同様の条件で製造した溶接鋼管について、高周波焼入れ装置を用いて、管全周に高周波誘導加熱による入熱を付与する熱処理を施した。加熱温度は放射温度計を用いて測定した。580℃もしくは680℃まで昇温したのち1秒以内に水冷処理を施す熱処理、または800℃もしくは950℃まで昇温したのち空冷する熱処理を施すことにより、熱処理後の溶接鋼管C(580℃/水冷)、D(680℃/水冷)、E(800℃/空冷)、F(950℃/空冷)を得た。また、850℃または950℃まで昇温したのち500℃まで空冷し、その後、水冷する熱処理を施すことにより、熱処理後の溶接鋼管H(850℃/空冷→水冷)、I(950℃/空冷→水冷)を得た。
<< Example of heat treatment by heating all around >>
A welded steel pipe manufactured under the same conditions as the welded steel pipe A was subjected to a heat treatment using an induction hardening device to apply heat input by high frequency induction heating to the entire circumference of the pipe. The heating temperature was measured using a radiation thermometer. Welded steel tube C (580 ° C / water cooling) after heat treatment by heat treatment that heats to 580 ° C or 680 ° C and then water-cools within 1 second, or heat treatment that heats to 800 ° C or 950 ° C and then air-cools. ), D (680 ° C / water cooling), E (800 ° C / air cooling), and F (950 ° C / air cooling) were obtained. Further, by performing a heat treatment of heating to 850 ° C. or 950 ° C., then air-cooling to 500 ° C., and then water-cooling, the welded steel pipe H (850 ° C./air-cooled → water-cooled) and I (950 ° C./air-cooled →) after the heat treatment. Water-cooled) was obtained.

これら熱処理後の溶接鋼管C、D、E、F、H、Iについて、上記溶接鋼管Aの場合と同様の方法で肉厚中央の溶接部の硬さHwと母材部の平均硬さHpを求めた。
その結果、これらの熱処理後の溶接鋼管はいずれも、母材部の平均硬さHpが135HV以上と、上記従来例の市販品より高強度である。溶接部の硬さHwと母材部の平均硬さHpの差Hw−Hpについては、最高到達温度を800℃以上としたE、F、H、Iにおいて20HV以下に収まっていた。
For the welded steel pipes C, D, E, F, H, and I after these heat treatments, the hardness Hw of the welded portion at the center of the wall thickness and the average hardness Hp of the base metal portion are obtained by the same method as in the case of the welded steel pipe A. I asked.
As a result, the average hardness Hp of the base metal portion of each of these heat-treated welded steel pipes is 135 HV or more, which is higher than that of the commercially available products of the above-mentioned conventional examples. The difference Hw-Hp between the hardness Hw of the welded portion and the average hardness Hp of the base metal portion was within 20 HV in E, F, H, and I at which the maximum temperature reached was 800 ° C. or higher.

溶接鋼管C、D、E、F、H、Iから溶接部を中央に含む腐食試験片(幅25mm、長さ30mm)を切り出し、上述の溶接鋼管Aの場合と同様に、硫酸濃度40質量%、温度60℃の硫酸水溶液中に4時間浸漬する硫酸浸漬試験を実施した。
その結果、溶接部を含む試験片の腐食減量はそれぞれ、C(580℃/水冷):104mg/cm2、D(680℃/水冷):86mg/cm2、E(800℃/空冷):68mg/cm2、F(950℃/空冷):64mg/cm2、H(850℃/空冷→水冷):70mg/cm2、I(950℃/空冷→水冷):68mg/cm2であった。580℃の加熱でも、熱処理を施していない溶接鋼管A(溶接ままのリファレンス)よりも耐硫酸腐食性は改善されるが、650℃以上の温度域まで昇温させると大幅に良好となることがわかる。また、800℃以上の温度域まで昇温させたE、F、H、Iでは、短時間の加熱であるにもかかわらず母材部と概ね同等の耐硫酸腐食性を有することが確認された。
A corrosion test piece (width 25 mm, length 30 mm) containing the welded portion in the center is cut out from the welded steel pipes C, D, E, F, H, and I, and the sulfuric acid concentration is 40% by mass as in the case of the welded steel pipe A described above. , A sulfuric acid immersion test was carried out in which the mixture was immersed in a sulfuric acid aqueous solution at a temperature of 60 ° C. for 4 hours.
As a result, the corrosion weight loss of the test piece including the welded part was C (580 ° C / water-cooled): 104 mg / cm 2 , D (680 ° C / water-cooled): 86 mg / cm 2 , E (800 ° C / air-cooled): 68 mg, respectively. / cm 2, F (950 ℃ / air cooling): 64mg / cm 2, H (850 ℃ / air cooling → water-cooled): 70mg / cm 2, I (950 ℃ / air cooling → water-cooled): was 68mg / cm 2. Even when heated at 580 ° C, the sulfuric acid corrosion resistance is improved as compared with the welded steel pipe A (reference as it is welded) which has not been heat-treated, but it can be significantly improved when the temperature is raised to a temperature range of 650 ° C or higher. Understand. Further, it was confirmed that E, F, H, and I, which were heated to a temperature range of 800 ° C. or higher, had substantially the same sulfuric acid corrosion resistance as the base metal portion even though the heating was performed for a short time. ..

以上の結果を表1にまとめて示す。 The above results are summarized in Table 1.

《従来例》
市販の耐酸露点腐食性に優れる溶接鋼管について、上記と同様の硫酸浸漬試験を実施した。この鋼管は、Sbを約0.1質量%含有することによって耐酸露点腐食性を高めた鋼を使用している。硫酸浸漬試験の結果、この鋼管の溶接部を含む試験片の腐食減量は66mg/cm2であった。
<< Conventional example >>
A sulfuric acid immersion test similar to the above was carried out on a commercially available welded steel pipe having excellent acid dew point corrosion resistance. This steel pipe uses steel having improved acid dew point corrosion resistance by containing about 0.1% by mass of Sb. As a result of the sulfuric acid immersion test, the corrosion weight loss of the test piece including the welded portion of this steel pipe was 66 mg / cm 2 .

図5に、この溶接鋼管の硫酸浸漬試験後の試験片について、管の長手方向に垂直に切断した断面の写真を例示する。切断面は、結晶粒が現れるようにエッチングしてある。図5の中央に溶接部が位置しているが、溶接部の金属組織が母材部とほとんど区別できなくなる程度にまで入念に組織が均一化されていることがわかる。このように入念に均一化を図る熱処理を施した場合には、溶接部に由来する箇所と母材部との間で、耐硫酸性の差はほとんど見られなくなる。ただし、一般的な鋼管の熱処理では管全体を高温に保持する必要があり、製造コストが高くなる。この鋼管の断面硬さは、溶接部に由来する箇所および母材部とも、約120HV程度であり、熱処理によって軟化が進行していると考えられる。強度が要求される部材に適用する場合は肉厚が厚い鋼管を選択することが望まれる。 FIG. 5 exemplifies a photograph of a cross section of the test piece after the sulfuric acid immersion test of the welded steel pipe, which is cut perpendicular to the longitudinal direction of the pipe. The cut surface is etched so that crystal grains appear. Although the welded portion is located in the center of FIG. 5, it can be seen that the texture is carefully uniformed to the extent that the metal structure of the welded portion is almost indistinguishable from the base metal portion. When the heat treatment for uniformization is performed in this way, there is almost no difference in sulfuric acid resistance between the portion derived from the welded portion and the base metal portion. However, in general heat treatment of steel pipes, it is necessary to keep the entire pipe at a high temperature, which increases the manufacturing cost. The cross-sectional hardness of this steel pipe is about 120 HV in both the welded portion and the base metal portion, and it is considered that the softening is progressing by the heat treatment. When applied to a member that requires strength, it is desirable to select a thick steel pipe.

Claims (9)

質量%で、C:0.001〜0.15%、Si:0.005〜0.80%、Mn:0.10〜1.50%、P:0.002〜0.025%、S:0.010〜0.030%、Cu:0.08〜1.20%、Ni:0.005〜0.50%、Cr:0.04〜0.25%、Mo:0.010〜0.085%、Al:0.005〜0.100%、N:0.001〜0.015%、Ti、Nb、V:合計0〜0.20%、B:0〜0.010%、Sb、Sn:合計0〜0.10%、残部Feおよび不可避的不純物からなる化学組成を有する鋼管であって、管の長手方向に伸びる溶接部を持ち、管の長手方向に垂直な断面の肉厚中央において、溶接部の硬さHw(HV)と母材部の平均硬さHp(HV)の差Hw−Hpが70HV以下、母材部の平均硬さHpが135HV以上であり、かつ母材部の金属組織が再結晶フェライト単相組織またはセメンタイト、パーライトの1種以上を合計10体積%以下の範囲で含有し残部が再結晶フェライト相である組織である、耐酸露点腐食性に優れる鋼管。 In terms of mass%, C: 0.001 to 0.15%, Si: 0.005 to 0.80%, Mn: 0.1 to 1.50%, P: 0.002 to 0.025%, S: 0.010 to 0.030%, Cu: 0.08 to 1.20%, Ni: 0.005 to 0.50%, Cr: 0.04 to 0.25%, Mo: 0.001 to 0. 085%, Al: 0.005 to 0.10%, N: 0.001 to 0.015%, Ti, Nb, V: total 0 to 0.20%, B: 0 to 0.010%, Sb, Sn: A steel tube having a total of 0 to 0.10%, a chemical composition consisting of the balance Fe and unavoidable impurities, having a welded portion extending in the longitudinal direction of the tube, and a wall thickness center of a cross section perpendicular to the longitudinal direction of the tube. The difference Hw-Hp between the hardness Hw (HV) of the welded portion and the average hardness Hp (HV) of the base metal portion is 70 HV or less , the average hardness Hp of the base metal portion is 135 HV or more, and the base metal portion is A steel tube having excellent acid dew point corrosion resistance , which has a recrystallized ferrite single-phase structure or a structure in which one or more of cementite and pearlite are contained in a total range of 10% by volume or less and the balance is a recrystallized ferrite phase . 前記Hw−Hpが20HV以下である請求項に記載の鋼管。 The steel pipe according to claim 1 , wherein the Hw-Hp is 20 HV or less. 母材部の肉厚が1.0〜5.0mmである請求項1または2に記載の鋼管。 The steel pipe according to claim 1 or 2 , wherein the base metal portion has a wall thickness of 1.0 to 5.0 mm. 質量%で、C:0.001〜0.15%、Si:0.005〜0.80%、Mn:0.10〜1.50%、P:0.002〜0.025%、S:0.010〜0.030%、Cu:0.08〜1.20%、Ni:0.005〜0.50%、Cr:0.04〜0.25%、Mo:0.010〜0.085%、Al:0.005〜0.100%、N:0.001〜0.015%、Ti、Nb、V:合計0〜0.20%、B:0〜0.010%、Sb、Sn:合計0〜0.10%、残部Feおよび不可避的不純物からなる化学組成の鋼板を管状に溶接造管して、管の長手方向に伸びる溶接部を形成させた鋼管に対して、高周波誘導加熱による入熱を付与して溶接部または管全周を650℃以上1000℃以下の温度まで昇温させ、溶接部が650℃以上1000℃以下の温度に保持される時間を10秒以下としたのち冷却する熱処理を施すことにより溶接部の硬さHw(HV)と母材部の平均硬さHp(HV)の差Hw−Hpを70HV以下とする、耐酸露点腐食性に優れる鋼管の製造法。 In terms of mass%, C: 0.001 to 0.15%, Si: 0.005 to 0.80%, Mn: 0.1 to 1.50%, P: 0.002 to 0.025%, S: 0.010 to 0.030%, Cu: 0.08 to 1.20%, Ni: 0.005 to 0.50%, Cr: 0.04 to 0.25%, Mo: 0.001 to 0. 085%, Al: 0.005 to 0.10%, N: 0.001 to 0.015%, Ti, Nb, V: total 0 to 0.20%, B: 0 to 0.010%, Sb, Sn: High frequency induction for a steel pipe in which a steel plate having a chemical composition consisting of 0 to 0.10% in total, the balance Fe and unavoidable impurities is welded into a tubular shape to form a welded portion extending in the longitudinal direction of the pipe. The heat input by heating was applied to raise the temperature of the welded portion or the entire circumference of the pipe to a temperature of 650 ° C. or higher and 1000 ° C. or lower, and the time for which the welded portion was maintained at a temperature of 650 ° C. or higher and 1000 ° C. or lower was set to 10 seconds or less . A method for producing a steel pipe having excellent acid dew point corrosion resistance, in which the difference Hw-Hp between the hardness Hw (HV) of the welded portion and the average hardness Hp (HV) of the base metal portion is 70 HV or less by applying a heat treatment for cooling the welded portion. .. 最高到達温度を650℃以上800℃以下とし、冷却を水冷とする請求項に記載の鋼管の製造法。 The method for manufacturing a steel pipe according to claim 4 , wherein the maximum temperature reached is 650 ° C. or higher and 800 ° C. or lower, and the cooling is water cooling. 質量%で、C:0.001〜0.15%、Si:0.005〜0.80%、Mn:0.10〜1.50%、P:0.002〜0.025%、S:0.010〜0.030%、Cu:0.08〜1.20%、Ni:0.005〜0.50%、Cr:0.04〜0.25%、Mo:0.010〜0.085%、Al:0.005〜0.100%、N:0.001〜0.015%、Ti、Nb、V:合計0〜0.20%、B:0〜0.010%、Sb、Sn:合計0〜0.10%、残部Feおよび不可避的不純物からなる化学組成の鋼板を管状に溶接造管して、管の長手方向に伸びる溶接部を形成させた鋼管に対して、高周波誘導加熱による入熱を付与して溶接部または管全周を700℃以上1000℃以下の温度まで昇温させ、溶接部が700℃以上1000℃以下の温度に保持される時間を10秒以下としたのち冷却する熱処理を施すことにより溶接部の硬さHw(HV)と母材部の平均硬さHp(HV)の差Hw−Hpを70HV以下とする、耐酸露点腐食性に優れる鋼管の製造法。 In terms of mass%, C: 0.001 to 0.15%, Si: 0.005 to 0.80%, Mn: 0.1 to 1.50%, P: 0.002 to 0.025%, S: 0.010 to 0.030%, Cu: 0.08 to 1.20%, Ni: 0.005 to 0.50%, Cr: 0.04 to 0.25%, Mo: 0.001 to 0. 085%, Al: 0.005 to 0.10%, N: 0.001 to 0.015%, Ti, Nb, V: total 0 to 0.20%, B: 0 to 0.010%, Sb, Sn: High frequency induction for a steel pipe in which a steel plate having a chemical composition consisting of 0 to 0.10% in total, the balance Fe and unavoidable impurities is welded into a tubular shape to form a welded portion extending in the longitudinal direction of the pipe. The heat input by heating was applied to raise the temperature of the welded part or the entire circumference of the pipe to 700 ° C. or more and 1000 ° C. or less, and the time for the welded part to be maintained at the temperature of 700 ° C. or more and 1000 ° C. or less was set to 10 seconds or less . A method for producing a steel pipe having excellent acid dew point corrosion resistance, in which the difference Hw-Hp between the hardness Hw (HV) of the welded portion and the average hardness Hp (HV) of the base metal portion is 70 HV or less by applying a heat treatment for cooling the welded portion. .. 前記冷却において、少なくとも550℃までの温度域を空冷とする請求項に記載の鋼管の製造法。 The method for manufacturing a steel pipe according to claim 6 , wherein in the cooling, a temperature range up to at least 550 ° C. is air-cooled. 溶接造管に供する鋼板の板厚が1.0〜5.0mmである請求項のいずれか1項に記載の鋼管の製造法。 The method for manufacturing a steel pipe according to any one of claims 4 to 7 , wherein the thickness of the steel plate to be used for welded pipe making is 1.0 to 5.0 mm. 石炭焚火力発電所の燃焼排ガスまたは廃棄物焼却施設の燃焼排ガスに曝される熱交換部材に請求項1〜のいずれか1項に記載の鋼管を用いた熱交換器。 A heat exchanger using the steel pipe according to any one of claims 1 to 3 for a heat exchange member exposed to the combustion exhaust gas of a coal-fired power plant or the combustion exhaust gas of a waste incineration facility.
JP2017014922A 2016-03-30 2017-01-30 Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger Active JP6831254B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067104 2016-03-30
JP2016067104 2016-03-30

Publications (2)

Publication Number Publication Date
JP2017186650A JP2017186650A (en) 2017-10-12
JP6831254B2 true JP6831254B2 (en) 2021-02-17

Family

ID=60043967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014922A Active JP6831254B2 (en) 2016-03-30 2017-01-30 Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger

Country Status (1)

Country Link
JP (1) JP6831254B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725454B (en) * 2018-06-22 2021-04-21 日商日本製鐵股份有限公司 Steel sheet, tailor welded blank, hot press formed product, steel pipe, hollow quenched product, and manufacturing method of steel sheet
JP7091947B2 (en) * 2018-08-30 2022-06-28 日本製鉄株式会社 Seamless steel pipe
WO2021005960A1 (en) * 2019-07-09 2021-01-14 Jfeスチール株式会社 Seamless steel pipe having exceptional resistance to sulfuric acid dew-point corrosion, and method for manufacturing said seamless steel pipe
CN112375980A (en) * 2020-11-02 2021-02-19 舞阳钢铁有限责任公司 Large-thickness large-unit-weight vanadium-chromium-molybdenum steel plate and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201688A (en) * 1996-01-22 1997-08-05 Sumitomo Metal Ind Ltd Manufacture of welded steel tube excellent in strength in weld zone
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP2006274347A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Electric-resistance-welded steel tube to be flare-worked
WO2012144248A1 (en) * 2011-04-19 2012-10-26 新日本製鐵株式会社 Electric resistance welded (erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use
US10351925B2 (en) * 2014-03-28 2019-07-16 Nippon Steel Nisshin Co., Ltd. Steel plate having excellent acid dew point corrosion resistance, method of production, and exhaust gas channel constituent member

Also Published As

Publication number Publication date
JP2017186650A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6831254B2 (en) Welded steel pipe with excellent acid dew point corrosion resistance, its manufacturing method, and heat exchanger
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP2007177318A (en) High-tension steel sheet and method for producing the same
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP2015180771A (en) Wear-resistant steel sheet excellent in low-temperature toughness and low-temperature temper embrittlement cracking resistance characteristic and production method thereof
JP2010106287A (en) High-tension steel excellent in fatigue characteristic, and producing method thereof
JP2006265698A (en) Method for producing large thickness low yield ratio high tensile strength steel plate
JP6632388B2 (en) Acid dew point corrosion-resistant steel sheet excellent in workability, manufacturing method, and exhaust gas flow path constituent member
JP2005023423A (en) Method for producing low-yield-ratio high-strength high-toughness steel sheet
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
CA2952255A1 (en) High strength iron-based alloys, processes for making same, and articles resulting therefrom
JP4325326B2 (en) Manufacturing method of high-tensile steel sheet
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP6984785B2 (en) Square steel pipe and its manufacturing method and building structure
JP6947332B1 (en) Electric pipe and its manufacturing method
JPS6028885B2 (en) UOE steel pipe heat treatment method that yields high toughness weld metal
JP4770293B2 (en) Manufacturing method of high-tensile steel sheet
JP4765678B2 (en) Martensitic stainless steel with excellent tempering efficiency

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R150 Certificate of patent or registration of utility model

Ref document number: 6831254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250