JP6984785B2 - Square steel pipe and its manufacturing method and building structure - Google Patents

Square steel pipe and its manufacturing method and building structure Download PDF

Info

Publication number
JP6984785B2
JP6984785B2 JP2021510989A JP2021510989A JP6984785B2 JP 6984785 B2 JP6984785 B2 JP 6984785B2 JP 2021510989 A JP2021510989 A JP 2021510989A JP 2021510989 A JP2021510989 A JP 2021510989A JP 6984785 B2 JP6984785 B2 JP 6984785B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
square steel
square
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021510989A
Other languages
Japanese (ja)
Other versions
JPWO2021065493A1 (en
Inventor
昌士 松本
晃英 松本
能知 岡部
信介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2021065493A1 publication Critical patent/JPWO2021065493A1/ja
Application granted granted Critical
Publication of JP6984785B2 publication Critical patent/JP6984785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/06Metal-working plant comprising a number of associated machines or apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築構造物の柱材に用いられ、変形能力が優れ、角部の加工硬化の影響が小さな角形鋼管およびその製造方法並びに建築構造物に関する。 The present invention relates to a square steel pipe which is used as a pillar material of a building structure, has excellent deformation ability, and is less affected by work hardening of corners, a method for manufacturing the same, and a building structure.

従来、建築物の柱材として用いられる角形鋼管は、厚肉の鋼板をプレス機により角形状にプレス成形した後、溶接する方法(BCP法)により製造していた。一方、近年、生産性の低いBCP法に代わって、コストダウンを図るという点から、ロール成形した後、溶接し、角成形して角鋼管を得る方法(BCR法)により、角鋼管を製造する試みがなされるようになった。 Conventionally, a square steel pipe used as a pillar material of a building has been manufactured by a method (BCP method) in which a thick steel plate is press-formed into a square shape by a press machine and then welded. On the other hand, in recent years, instead of the low-productivity BCP method, square steel pipes are manufactured by a method (BCR method) of roll forming, welding, and square forming to obtain square steel pipes from the viewpoint of cost reduction. Attempts have come to be made.

BCR法は、熱延鋼板をロール成形により円筒状のオープン管形状となし、その突合せ部分を電縫溶接した後、上下左右に配置されたロールにより円筒状のまま管軸方向に数%の絞りを加え、続けて角形に成形して製造される。ロール成形による角形鋼管の製造は冷間で行われるため、加工硬化の影響が顕著である。そのため、BCP法によって得られる角形鋼管と比較して、特に平板部の塑性変形能が損なわれることになり、設計上の制限を課されている。 In the BCR method, a hot-rolled steel sheet is rolled into a cylindrical open tube shape, and the butt joints are welded by electric stitching. Is added, and the product is subsequently molded into a square shape. Since the production of square steel pipes by roll forming is carried out cold, the influence of work hardening is remarkable. Therefore, as compared with the square steel pipe obtained by the BCP method, the plastic deformability of the flat plate portion is particularly impaired, and design restrictions are imposed.

この設計上の制限を緩和するためには、BCR法によって得られる角形鋼管の平板部の降伏比YRをBCP法によって得られる角形鋼管の平板部相当にする必要があり、その降伏比YRは0.80以下である。 In order to relax this design limitation, the yield ratio YR of the flat plate portion of the square steel pipe obtained by the BCR method must be equivalent to that of the flat plate portion of the square steel pipe obtained by the BCP method, and the yield ratio YR is 0. It is .80 or less.

さらに、BCR法による角形鋼管の角部内面では、後工程にあるZnめっき処理が温間で行われるため、残留応力の解放が発生し、加工硬化により脆化した部位を起点に脆化割れが発生するという問題があった。そのため、角成形工程において、角形鋼管の角部内面の過度な加工硬化を抑制する製造条件を選定する必要がある。 Furthermore, on the inner surface of the corner of the square steel pipe by the BCR method, the Zn plating process in the subsequent process is performed warmly, so that residual stress is released and embrittlement cracks occur starting from the part embrittled by work hardening. There was a problem that it occurred. Therefore, in the square forming step, it is necessary to select manufacturing conditions that suppress excessive work hardening of the inner surface of the corner of the square steel pipe.

上記のことから、BCR法による角形鋼管を製造する場合には、冷間成形時の加工硬化による平板部の降伏比YRの増加を小さくするような素材の選定や、角部内面の残留応力の発生を抑制するような製造方法の選定などが有効であるが、その中で角形鋼管全体を加熱する熱処理を行うことも有効な手段である。 From the above, when manufacturing a square steel pipe by the BCR method, select a material that reduces the increase in the yield ratio YR of the flat plate due to work hardening during cold forming, and select a material that reduces the residual stress on the inner surface of the corner. It is effective to select a manufacturing method that suppresses the generation, but it is also an effective means to perform heat treatment to heat the entire square steel pipe.

特許文献1では、BCR法による角形鋼管の成形と、誘導加熱装置により角形鋼管の歪取り焼鈍を行う熱処理、溶融亜鉛めっきを施すめっき処理を連続的に行う角形鋼管の製造方法が提案されている。 Patent Document 1 proposes a method for manufacturing a square steel pipe by continuously forming a square steel pipe by the BCR method, heat treatment for strain removal and annealing of the square steel pipe by an induction heating device, and plating treatment for hot dip galvanizing. ..

特許文献2では、冷間成形により得られた角形鋼管に対し、Ac変態点以下の温度で焼戻し熱処理を行う製造方法が提案されている。Patent Document 2 proposes a manufacturing method in which a square steel pipe obtained by cold forming is tempered at a temperature equal to or lower than the Ac 1 transformation point.

特許文献3では、あらかじめ角形鋼管の仕上げ成形まで角成形を行い、中間に加熱処理を行い、Ac変態点超の温度域で仕上げの角成形を行う製造方法が提案されている。Patent Document 3 proposes a manufacturing method in which square forming is performed in advance up to finish forming of a square steel pipe, heat treatment is performed in the middle, and finish square forming is performed in a temperature range exceeding the Ac 3 transformation point.

特開平9−155447号公報Japanese Unexamined Patent Publication No. 9-155447 特開2005−163159号公報Japanese Unexamined Patent Publication No. 2005-163159 特許第2852317号公報Japanese Patent No. 28522317

ところで、近年、耐震性能に優れた建築構造物等に用いるための角形鋼管としては、平板部の機械的特性として、降伏強度と引張強度を所定値以上にすると共に、前述したように降伏比を0.80以下とすることが求められている。
また、角部としては、靭性を十分に確保すると共に、前述したように加工硬化を抑制することが求められている。
さらに、管の内外表面に形成される酸化スケールに関し、保護膜としての機能を確保しつつ、スケール剥離を抑制することも求められている。
しかしながら、前述の特許文献1〜3に記載の技術は、これらの要求を満足する角形鋼管を得る技術としては、まだ十分であるとは言えなかった。
By the way, in recent years, as a square steel pipe for use in building structures having excellent seismic performance, the yield strength and the tensile strength are set to a predetermined value or more as the mechanical properties of the flat plate portion, and the yield ratio is set as described above. It is required to be 0.80 or less.
Further, the corners are required to sufficiently secure toughness and suppress work hardening as described above.
Further, regarding the oxide scale formed on the inner and outer surfaces of the tube, it is also required to suppress scale peeling while ensuring the function as a protective film.
However, it cannot be said that the techniques described in the above-mentioned Patent Documents 1 to 3 are sufficient as a technique for obtaining a square steel pipe satisfying these requirements.

本発明は上記の事情を鑑みてなされたものであって、平板部の機械的特性を優れたものとし、管の内外表面に形成される酸化スケールの機能を十分に確保し、更に、角部において、靭性を十分に確保すると共に、加工硬化を抑制した角形鋼管およびその製造方法ならびにこの角形鋼管を用いた建築構造物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has excellent mechanical properties of the flat plate portion, sufficiently secures the function of the oxide scale formed on the inner and outer surfaces of the pipe, and further, the corner portion. It is an object of the present invention to provide a square steel pipe having sufficient toughness and suppressed work hardening, a method for manufacturing the square steel pipe, and a building structure using the square steel pipe.

本発明者らは上記課題を解決すべく鋭意検討を行った。
まず、本発明で平板部(管軸方向垂直断面における辺部)に求められる機械的特性としては、降伏強度YSを295MPa以上とし、引張強度TSを400MPa以上とし、降伏比YRを0.80以下にすればよいと判断した。また、角部に求められる靭性として、0℃におけるシャルピー吸収エネルギーを70J以上にすればよいと判断した。
また、管の内外表面に発生する酸化スケールの機能を十分に確保するために、具体的には、酸化スケールの剥離を抑制しつつ、保護膜としての機能を確保するためには、本発明ではその厚みを1μm以上20μm以下にすればよいことを知見した。
また、角部の加工硬化を十分に抑制するためには、角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差を5HV以上60HV以下にすればよいことを知見した。
The present inventors have made diligent studies to solve the above problems.
First, as the mechanical characteristics required for the flat plate portion (side portion in the vertical cross section in the pipe axis direction) in the present invention, the yield strength YS is 295 MPa or more, the tensile strength TS is 400 MPa or more, and the yield ratio YR is 0.80 or less. I decided that I should do it. Further, it was determined that the charpy absorption energy at 0 ° C. should be 70 J or more as the toughness required for the corners.
Further, in order to sufficiently secure the function of the oxide scale generated on the inner and outer surfaces of the tube, specifically, in order to secure the function as a protective film while suppressing the peeling of the oxide scale, in the present invention. It was found that the thickness should be 1 μm or more and 20 μm or less.
Further, in order to sufficiently suppress work hardening of the corner portion, the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the corner apex and the outer surface of the central portion in the tube circumferential direction of the flat plate portion are required. It was found that the difference from the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm should be 5 HV or more and 60 HV or less.

また、本発明者らは、角形鋼管が上記の特性を有するようにするためには、冷間成形により鋼板から角形状へ仕上げた特定の角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上として焼鈍熱処理を行えばよいことを知見した。詳細には、まず、Ac変態点以上の温度で熱処理を行うと、靱性が著しく悪化する場合があることに着目した。
また、本発明者らは、管の肉厚方向の加熱温度偏差と管の機械的特性の関係性について検討した。
具体的には、管の肉厚方向の加熱温度偏差について、歪取り焼鈍処理等の焼鈍熱処理は加熱温度の影響が大きいことに着目した。また、誘導加熱等の焼鈍熱処理においては外面側が電気抵抗によって加熱され、内面側の温度は外面側よりも低温になることにも着目した。これらより、加熱温度偏差が大きいと、管の外面、内面で、歪取り焼鈍等の焼鈍熱処理の影響の差が大きくなり、結果として管の外面および内面で機械的特性の差異が大きくなり、不均一な特性をもった管になるということを知見し、この点について鋭意検討した。また、歪取り焼鈍処理において、歪みを除去するために十分な加熱保持時間を確保する必要があることに着目し、検討した。
Further, in order for the square steel pipe to have the above-mentioned characteristics, the present inventors have a temperature of less than the Ac 1 transformation point with respect to a specific square steel pipe finished from a steel plate to a square shape by cold forming. It was found that the annealing heat treatment should be performed with the heating temperature deviation in the wall thickness direction of the pipe set to 50 ° C. or less and the heating holding time of 500 ° C. or higher set to 100 sec or more. In detail, first, attention was paid to the fact that the toughness may be significantly deteriorated when the heat treatment is performed at a temperature higher than the Ac 1 transformation point.
In addition, the present inventors investigated the relationship between the heating temperature deviation in the wall thickness direction of the pipe and the mechanical properties of the pipe.
Specifically, we focused on the fact that the annealing heat treatment such as strain removal annealing has a large effect on the heating temperature deviation in the thickness direction of the pipe. It was also noted that in the annealing heat treatment such as induction heating, the outer surface side is heated by electric resistance, and the temperature on the inner surface side is lower than that on the outer surface side. From these, if the heating temperature deviation is large, the difference in the influence of annealing heat treatment such as strain removal annealing becomes large on the outer and inner surfaces of the pipe, and as a result, the difference in mechanical properties on the outer and inner surfaces of the pipe becomes large, which is not possible. We found that the tube had uniform characteristics, and studied this point diligently. In addition, in the strain-removing annealing treatment, we focused on the need to secure a sufficient heating and holding time to remove the strain.

このような検討により、角形鋼管が前述した特性を有するようにするためには、冷間成形により鋼板から角形状へ仕上げた角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上として焼鈍熱処理を行えばよいことを知見した。Based on these studies, in order for the square steel pipe to have the above-mentioned characteristics, the square steel pipe finished from a steel plate to a square shape by cold forming is heated at a temperature below the Ac 1 transformation point. It was found that the annealing heat treatment should be performed with the heating temperature deviation in the wall thickness direction of the pipe set to 50 ° C. or less and the heating holding time of 500 ° C. or higher set to 100 sec or more.

上記の知見については、本発明者らは、焼鈍熱処理の一例として、角形鋼管に対し、ワークコイルを用いた高周波誘導加熱を行うことを検討することで実証した。 The above findings were demonstrated by the present inventors by examining performing high-frequency induction heating using a work coil on a square steel pipe as an example of annealing heat treatment.

この高周波誘導加熱では、交流電源に接続されたワークコイルの中にある被加熱体を電気抵抗によるジュール熱で加熱する。そのため、高周波誘導加熱は、熱損失が小さく、加熱効率が優れている。
また、加熱の周波数を制御することによって、ジュール熱を発生させる要因である渦電流の浸透深さを調整することができ、周波数を小さくすることで、被加熱体のより内部側まで加熱することができる。そのため、高周波誘導加熱では、被加熱体の厚みが増加しても、周波数を適切に制御することで、被加熱体の表面と内部の加熱温度の温度偏差を小さくすることができる。
In this high-frequency induction heating, the heated element in the work coil connected to the AC power source is heated by Joule heat due to electric resistance. Therefore, high frequency induction heating has a small heat loss and excellent heating efficiency.
In addition, by controlling the heating frequency, the penetration depth of the eddy current, which is a factor that generates Joule heat, can be adjusted, and by reducing the frequency, heating is performed to the inner side of the object to be heated. Can be done. Therefore, in high-frequency induction heating, even if the thickness of the heated body increases, the temperature deviation between the surface and the inside of the heated body can be reduced by appropriately controlling the frequency.

本発明者らは、建築構造物の柱材に用いられる種々の角形鋼管を、ワークコイルの中に搬送させながら、高周波誘導加熱による角形鋼管の全体加熱を行った。その結果、周波数を適正範囲に設定することで、肉厚方向に均一な加熱分布を得ることができた。また、電流の浸透深さを大きくすることによって、表皮効果による表面の加熱集中を抑制したり、鋼管内面の目標温度の到達時間を短縮したりすることができた。さらに、ワークコイルの全長が数m程度の小型の加熱設備でも上記の効果が得られることを確認した。
なお、上記の表皮効果とは、以下の現象を指す。
まず、高周波電流の磁場により被加熱体(鋼管)の表面に磁場を打ち消す電流(渦電流)が発生する。この渦電流により、電気抵抗で被加熱体が加熱され、上記表面に近付くほどこの加熱が集中する。この現象を表皮効果という。
The present inventors heated the entire square steel pipe by high-frequency induction heating while transporting various square steel pipes used for pillar materials of building structures into a work coil. As a result, by setting the frequency in an appropriate range, it was possible to obtain a uniform heat distribution in the wall thickness direction. In addition, by increasing the penetration depth of the electric current, it was possible to suppress the heat concentration on the surface due to the skin effect and shorten the time to reach the target temperature on the inner surface of the steel pipe. Furthermore, it was confirmed that the above effect can be obtained even with a small heating facility having a total length of the work coil of about several meters.
The above-mentioned skin effect refers to the following phenomena.
First, a magnetic field of high-frequency current generates a current (eddy current) that cancels the magnetic field on the surface of the heated body (steel pipe). Due to this eddy current, the heated body is heated by the electric resistance, and the heating is concentrated as it approaches the surface. This phenomenon is called the skin effect.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]管周方向に平板部と角部とが交互に夫々複数形成されており、
前記平板部の降伏強度YSが295MPa以上であり、
前記平板部の引張強度TSが400MPa以上であり、
前記平板部の降伏比YRが0.80以下であり、
前記角部の0℃におけるシャルピー吸収エネルギーが70J以上であり、
管の内外表面の酸化スケールの厚みが1μm以上20μm以下であり、
角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、前記平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差が、5HV以上60HV以下である角形鋼管。
[2]角部頂点の内表面および外表面における管周方向の残留応力の絶対値が、10MPa以上200MPa以下である前記[1]に記載の角形鋼管。
[3]角部頂点の内表面および外表面から6mm±1mmの肉厚方向位置における均一伸びが5%以上である前記[1]または[2]に記載の角形鋼管。
[4]前記[1]〜[3]のいずれかに記載の角形鋼管の製造方法であって、
冷間成形により鋼板から角形状へ仕上げた角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行う角形鋼管の製造方法。
[5]前記焼鈍熱処理で、加熱温度が500℃以上700℃以下である前記[4]に記載の角形鋼管の製造方法。
[6]前記焼鈍熱処理の加熱を誘導加熱とし、該誘導加熱における周波数を100Hz以上1000Hz以下にする前記[4]または[5]に記載の角形鋼管の製造方法。
[7]前記[1]〜[3]のいずれかに記載の角形鋼管が、柱材として用いられる建築構造物。
The present invention is based on the above findings, and its features are as follows.
[1] A plurality of flat plate portions and corner portions are alternately formed in the circumferential direction of the pipe.
The yield strength YS of the flat plate portion is 295 MPa or more, and the yield strength is 295 MPa or more.
The tensile strength TS of the flat plate portion is 400 MPa or more, and the plate portion has a tensile strength TS of 400 MPa or more.
The yield ratio YR of the flat plate portion is 0.80 or less, and the flat plate portion has a yield ratio of 0.80 or less.
The Charpy absorption energy at 0 ° C. of the corner is 70 J or more, and the charpy absorption energy is 70 J or more.
The thickness of the oxidation scale on the inner and outer surfaces of the tube is 1 μm or more and 20 μm or less.
The average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner, and the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the circumferential direction of the flat plate portion. A square steel pipe whose difference from the above is 5 HV or more and 60 HV or less.
[2] The square steel pipe according to the above [1], wherein the absolute value of the residual stress in the circumferential direction of the inner surface and the outer surface of the apex of the corner portion is 10 MPa or more and 200 MPa or less.
[3] The square steel pipe according to the above [1] or [2], wherein the uniform elongation at the position in the wall thickness direction of 6 mm ± 1 mm from the inner surface and the outer surface of the apex of the corner portion is 5% or more.
[4] The method for manufacturing a square steel pipe according to any one of the above [1] to [3].
A square raw pipe finished from a steel plate to a square shape by cold forming is heated at a temperature less than the Ac 1 transformation point, the heating temperature deviation in the thickness direction of the pipe is 50 ° C. or less, and 500 ° C. or more. A method for manufacturing a square steel pipe, which is subjected to an annealing heat treatment with a heating holding time of 100 sec or more.
[5] The method for manufacturing a square steel pipe according to the above [4], wherein the heating temperature is 500 ° C. or higher and 700 ° C. or lower in the annealing heat treatment.
[6] The method for manufacturing a square steel pipe according to the above [4] or [5], wherein the heating of the annealing heat treatment is induction heating, and the frequency in the induction heating is 100 Hz or more and 1000 Hz or less.
[7] A building structure in which the square steel pipe according to any one of [1] to [3] above is used as a pillar material.

本発明によれば、平板部の機械的特性を優れたものとし、管の内外表面に発生する酸化スケールの機能を十分に確保し、更に、角部において、靭性を十分に確保すると共に、加工硬化を抑制した角形鋼管およびその製造方法ならびにこの角形鋼管を用いた建築構造物を提供することが可能となる。 According to the present invention, the mechanical properties of the flat plate portion are excellent, the function of the oxide scale generated on the inner and outer surfaces of the pipe is sufficiently secured, and further, the toughness is sufficiently secured at the corner portion and the processing is performed. It is possible to provide a square steel pipe with suppressed hardening, a method for manufacturing the same, and a building structure using the square steel pipe.

角形鋼管の平板部と角部を説明するための管軸方向垂直断面図である。It is a pipe axial vertical sectional view for demonstrating the flat plate part and the corner part of a square steel pipe. 酸化スケールを説明するための模式図である。It is a schematic diagram for demonstrating the oxidation scale. 電縫鋼管の製造設備の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing equipment of the electric resistance pipe. 本発明の角形鋼管の製造設備の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing equipment of the square steel pipe of this invention. 角形素管の熱処理過程を示す模式図である。It is a schematic diagram which shows the heat treatment process of a square raw tube. 建築構造物の一例を示す模式図である。It is a schematic diagram which shows an example of a building structure.

本発明について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 The present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

<角形鋼管>
図1は、本発明の角形鋼管の管軸方向垂直断面視の形状の一例を示す。
本発明の角形鋼管1は、管の長手方向(管軸方向)に垂直な断面(管軸方向垂直断面)が正方形または長方形であり、管周方向に平板部(管軸方向垂直断面における辺部)101と角部102とが交互に夫々複数形成されており、上記平板部101の降伏強度YSが295MPa以上であり、上記平板部101の引張強度TSが400MPa以上であり、かつ、上記平板部101の降伏比YR(=降伏強度/引張強度)が0.80以下であり、上記角部102の0℃におけるシャルピー吸収エネルギーが70J以上であり、管の内外表面の酸化スケールの厚みが1μm以上20μm以下であり、角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、平板部101の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差が、5HV以上60HV以下である。
また、本発明の角形鋼管1は、電縫鋼管から得られる鋼管であり、平板部101上に溶接部(電縫溶接部)103を有することができる。
<Square steel pipe>
FIG. 1 shows an example of the shape of the square steel pipe of the present invention in a vertical cross-sectional view in the pipe axis direction.
The square steel pipe 1 of the present invention has a square or rectangular cross section (vertical cross section in the pipe axis direction) perpendicular to the longitudinal direction (pipe axis direction) of the pipe, and a flat plate portion (side portion in the pipe axis vertical cross section) in the circumferential direction of the pipe. ) 101 and a plurality of square portions 102 are alternately formed, the yield strength YS of the flat plate portion 101 is 295 MPa or more, the tensile strength TS of the flat plate portion 101 is 400 MPa or more, and the flat plate portion The yield ratio YR (= yield strength / tensile strength) of 101 is 0.80 or less, the charmy absorption energy of the square portion 102 at 0 ° C. is 70 J or more, and the thickness of the oxidation scale on the inner and outer surfaces of the tube is 1 μm or more. It is 20 μm or less, and has an average Vickers hardness at a position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner, and a wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the circumferential direction of the flat plate portion 101. The difference from the average Vickers hardness at the position is 5 HV or more and 60 HV or less.
Further, the square steel pipe 1 of the present invention is a steel pipe obtained from an electrosewn steel pipe, and can have a welded portion (electrosewn welded portion) 103 on a flat plate portion 101.

本発明では、特に限定されないが、角形鋼管1の管軸方向垂直断面における平板部101の辺長Hは300〜550mmであり、肉厚tは16〜30mmであることが好ましい。
角形鋼管1の管軸方向垂直断面視の形状は、各平板部101の四辺の辺長Hが全て同じである正方形(略正方形)であることが好ましく、その他に長方形(略長方形)であってもよい。長方形である場合の辺長Hは、縦の辺長H1(mm)と横の辺長H2(mm)の平均(H=(H1+H2)/2)とする。
In the present invention, the side length H of the flat plate portion 101 in the vertical cross section of the square steel pipe 1 in the pipe axis direction is preferably 300 to 550 mm, and the wall thickness t is preferably 16 to 30 mm.
The shape of the square steel pipe 1 in the vertical cross-sectional view in the pipe axis direction is preferably a square (substantially square) in which the side lengths H of all four sides of each flat plate portion 101 are the same, and is also a rectangle (substantially rectangular). May be good. The side length H in the case of a rectangle is the average of the vertical side length H1 (mm) and the horizontal side length H2 (mm) (H = (H1 + H2) / 2).

本発明において特定される平板部101における降伏強度YS:295MPa以上、引張強度TS:400MPa以上、降伏比YR:0.80以下は、特定の角形素管に対し、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行うことにより調整することができる。The yield strength YS: 295 MPa or more, the tensile strength TS: 400 MPa or more, and the yield ratio YR: 0.80 or less in the flat plate portion 101 specified in the present invention are at temperatures less than the Ac 1 transformation point with respect to the specific rectangular tube. It can be adjusted by heating and performing an annealing heat treatment in which the heating temperature deviation in the wall thickness direction of the tube is 50 ° C. or less and the heating holding time of 500 ° C. or higher is 100 sec or more.

また、本発明において特定される角部102の0℃におけるシャルピー吸収エネルギー:70J以上は、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行うことにより調整することができる。Further, the charpy absorption energy of the corner 102 specified in the present invention at 0 ° C.: 70 J or more is heated at a temperature lower than the Ac 1 transformation point, the heating temperature deviation in the wall thickness direction of the tube is set to 50 ° C. or less, and It can be adjusted by performing an annealing heat treatment with a heating holding time of 500 ° C. or higher for 100 sec or longer.

平板部101の降伏強度YS、引張強度TS、降伏比YRは、引張方向が管軸方向と平行になるように、角形鋼管1の平板部101からJIS5号引張試験片を採取し、これを用いてJIS Z 2241の規定に準拠して実施することで測定できる。 For the yield strength YS, tensile strength TS, and yield ratio YR of the flat plate portion 101, a JIS No. 5 tensile test piece was collected from the flat plate portion 101 of the square steel pipe 1 so that the tensile direction was parallel to the pipe axis direction, and the JIS No. 5 tensile test piece was used. It can be measured by carrying out in accordance with the regulations of JIS Z 2241.

また、角部102の0℃におけるシャルピー吸収エネルギーは、角形鋼管1の角部102の管外面からt/4において試験片長手方向が管長手方向と平行となるように採取したVノッチ試験片を用い、JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施して得られる。 Further, the Charpy absorption energy of the corner portion 102 at 0 ° C. is obtained from a V-notch test piece collected from the outer surface of the corner portion 102 of the square steel pipe 1 so that the longitudinal direction of the test piece is parallel to the longitudinal direction of the pipe at t / 4. It is obtained by performing a Charpy impact test at a test temperature of 0 ° C. in accordance with the regulations of JIS Z 2242.

図2は、本発明の角形鋼管1で形成される酸化スケールを説明するための模式図である。
上記の鋼管1の内外表面に存在する酸化スケールは図2に示すような構造をしており、ウスタイト(FeO)、マグネタイト(Fe)、ヘマタイト(Fe)が地鉄(母材)側から表面側へ順に層状で構成されている。
FIG. 2 is a schematic diagram for explaining an oxidation scale formed by the square steel pipe 1 of the present invention.
The oxide scale existing on the inner and outer surfaces of the steel pipe 1 has a structure as shown in FIG. 2, and wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ) are ground iron (mother). It is composed of layers in order from the material) side to the surface side.

本発明では、誘導加熱等の焼鈍熱処理において、Ac変態点未満の温度で加熱を行うことで、鋼管1表面の酸化スケールの成長が抑制される。一方、Ac変態点以上の温度で加熱した場合等では、酸化スケールが成長する。酸化スケールの厚み(以下、スケール厚とも記す。)が増加して、20μm超になると、外部からの衝撃力などによる歪みがスケール層に蓄積されやすくなり、スケールの剥離が生じる。一方、スケール厚が1μm未満であると、冷間成形時にスケールの保護膜としての効果が消失し、十分な防食効果が得られなくなる。
よって、管の内外表面のスケール厚は1μm以上20μm以下とする。好ましくは、スケール厚は、2μm以上であり、より好ましくは、4μm以上である。また、好ましくは、スケール厚は、10μm以下であり、より好ましくは8μm以下である。
In the present invention, in the annealing heat treatment such as induction heating, the growth of the oxidation scale on the surface of the steel pipe 1 is suppressed by heating at a temperature lower than the Ac 1 transformation point. On the other hand, when heated at a temperature equal to or higher than the Ac 1 transformation point, the oxidation scale grows. When the thickness of the oxide scale (hereinafter, also referred to as scale thickness) increases and exceeds 20 μm, strain due to an impact force from the outside is likely to be accumulated in the scale layer, and scale peeling occurs. On the other hand, if the scale thickness is less than 1 μm, the effect of the scale as a protective film disappears during cold molding, and a sufficient anticorrosion effect cannot be obtained.
Therefore, the scale thickness of the inner and outer surfaces of the pipe is set to 1 μm or more and 20 μm or less. The scale thickness is preferably 2 μm or more, more preferably 4 μm or more. Further, the scale thickness is preferably 10 μm or less, and more preferably 8 μm or less.

上記のスケール厚については、熱間圧延において高温の素板を大気に暴露する時間を調整することにより、1μm以上にすることができる。また、焼鈍熱処理の加熱温度をAc1変態点未満とすることでスケール厚を20μm以下にすることができる。
また、鋼管1の内外表面に形成される酸化スケールの厚みは、走査型電子顕微鏡(SEM)を用いて測定することができる。
The scale thickness can be increased to 1 μm or more by adjusting the time for exposing the high-temperature raw plate to the atmosphere in hot rolling. Further, by setting the heating temperature of the annealing heat treatment to be less than the Ac1 transformation point, the scale thickness can be reduced to 20 μm or less.
Further, the thickness of the oxide scale formed on the inner and outer surfaces of the steel pipe 1 can be measured by using a scanning electron microscope (SEM).

後述するような誘導加熱等の焼鈍熱処理、およびサイジング工程、または矯正工程を経た後の角形鋼管1では、熱処理によって残留応力が解放されている。
未熱処理の角形鋼管では、特に角部の外表面および内表面においてそれぞれ、大きな圧縮の残留応力と引張の残留応力が発生している。
このとき、角部の外表面に過剰な残留応力が作用している場合、外表面の加工硬化の進行が顕著で、角形鋼管にダイヤフラムなどで建築部材としての溶接を行う際に、溶接部近傍の加熱部に生じる熱膨張によって、亀裂が発生する場合がある。
また、角部の内表面に過剰な残留応力が作用している場合、角形鋼管の成形後に行うZnめっき処理にて、残留応力が解放され、角部内面にめっき割れが生じる場合がある。
管周方向の残留応力が鋼板母材の降伏応力(角部表面の降伏応力)以上であるとき、角形鋼管の角部における欠陥が生じやすくなる。よって、角部102における欠陥を抑制するためには、角部頂点における内表面および外表面の管周方向の残留応力を小さくする必要があり、その残留応力の絶対値が角部表面の降伏応力未満であることが望ましい。より具体的に、成形後の角形鋼管1を切断した時に生じる異常な切り口変形を防止するために、残留応力の絶対値は200MPa以下とすることが好ましい。
また、残留応力の絶対値が10MPa未満の場合、矯正不足により材料の降伏伸びが消失できない場合がある。よって、角部頂点の内表面および外表面における管周方向の残留応力の絶対値は、10MPa以上200MPa以下であることが好ましい。より好ましくは、20MPa以上であり、さらに好ましくは、50MPa以上である。また、より好ましくは、150MPa以下であり、さらに好ましくは、100MPa以下である。
また、本発明では、熱処理後の矯正加工の加工量を制御すること、また、Ac変態点未満の温度で加熱し、かつ、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行うことにより、残留応力の絶対値を10MPa以上200MPa以下にすることができる。
In the square steel pipe 1 after undergoing an annealing heat treatment such as induction heating as described later, a sizing step, or a straightening step, residual stress is released by the heat treatment.
In the unheat-treated square steel pipe, a large compressive residual stress and a tensile residual stress are generated, respectively, especially on the outer surface and the inner surface of the corner portion.
At this time, if excessive residual stress is applied to the outer surface of the corner, the progress of work hardening of the outer surface is remarkable, and when welding a square steel pipe as a building member with a diaphragm or the like, the vicinity of the weld is formed. Cracks may occur due to the thermal expansion that occurs in the heated part of the.
Further, when an excessive residual stress acts on the inner surface of the corner portion, the residual stress may be released by the Zn plating treatment performed after forming the square steel pipe, and plating cracks may occur on the inner surface of the corner portion.
When the residual stress in the pipe circumferential direction is equal to or greater than the yield stress of the steel plate base material (yield stress on the surface of the corners), defects are likely to occur at the corners of the square steel pipe. Therefore, in order to suppress defects in the corner 102, it is necessary to reduce the residual stress in the circumferential direction of the inner and outer surfaces at the apex of the corner, and the absolute value of the residual stress is the yield stress on the surface of the corner. It is desirable that it is less than. More specifically, the absolute value of the residual stress is preferably 200 MPa or less in order to prevent abnormal cut deformation that occurs when the square steel pipe 1 after forming is cut.
Further, when the absolute value of the residual stress is less than 10 MPa, the yield elongation of the material may not be eliminated due to insufficient straightening. Therefore, the absolute value of the residual stress in the tube circumferential direction on the inner surface and the outer surface of the corner apex is preferably 10 MPa or more and 200 MPa or less. It is more preferably 20 MPa or more, and even more preferably 50 MPa or more. Further, it is more preferably 150 MPa or less, and further preferably 100 MPa or less.
Further, in the present invention, the processing amount of the straightening process after the heat treatment is controlled , the heating is performed at a temperature lower than the Ac 1 transformation point, and the heating temperature deviation in the wall thickness direction of the tube is set to 50 ° C. or less. By performing an annealing heat treatment with a heating holding time of 500 ° C. or higher for 100 sec or longer, the absolute value of the residual stress can be reduced to 10 MPa or higher and 200 MPa or lower.

また、残留応力の測定としては、鋼管を切断し、測定位置の表層から50μm深さまでの部材を電解エッチングにより除去してから、X線回折のcosα法により周方向の残留応力を測定する。測定位置は鋼管の長手中央部であり、四隅の角部頂点位置とする。 To measure the residual stress, the steel pipe is cut, the member up to a depth of 50 μm from the surface layer at the measurement position is removed by electrolytic etching, and then the residual stress in the circumferential direction is measured by the cosα method of X-ray diffraction. The measurement position is the central part of the longitudinal direction of the steel pipe, and is the position of the apex of the corners at the four corners.

ここで、角部頂点とは、図1に示すように、角形鋼管1の管軸方向垂直断面における平板部101の短辺(H1<H2の場合、H1)の中心位置から鋼管内部に向かって、より具体的には対向する短辺の中心位置に向かって引いた直線上において、角形鋼管中央部から長辺(H1<H2の場合、H2)方向に1/2×|H2−H1|(すなわち、辺長H2と辺長H1の差の半分)だけオフセットさせた点(オフセット点)を起点として、上記の対向する短辺の中心位置に向かって引いた直線に対し、オフセット点が位置する側と反対側に形成される平板部101の長辺と45°をなす線と角部102外側の交点とすることができる。
また、この角部頂点は、角形鋼管1の管軸方向垂直断面における平板部101の長辺(H1<H2の場合、H2)の中心位置から、対向する長辺の中心位置に向かって引いた直線上において、角形鋼管中央部から短辺(H1<H2の場合、H1)方向に1/2×|H2−H1|だけオフセットさせた点(オフセット点)を起点として、上記の対向する長辺の中心位置に向かって引いた直線に対し、角形鋼管1の管軸方向垂直断面における平板部101の短辺(H1<H2の場合、H1)の中心位置から鋼管内部に向かって、オフセット点が位置する側に形成される平板部101の短辺と45°をなす線と角部102外側の交点とも言える。
また、管軸方向垂直断面視の形状が正方形(略正方形)である場合には、角部頂点は、鋼管1の中心軸を起点として、平板部101と45°をなす線と角部102外側の交点とすることができる。
Here, as shown in FIG. 1, the corner apex is from the center position of the short side (H1 in the case of H1 <H2) of the flat plate portion 101 in the vertical cross section in the pipe axis direction of the square steel pipe 1 toward the inside of the steel pipe. More specifically, on a straight line drawn toward the center position of the opposite short side, 1/2 × | H2-H1 | (in the case of H1 <H2, H2) direction from the center of the square steel pipe. That is, the offset point is located with respect to the straight line drawn toward the center position of the opposite short side from the point (offset point) offset by half the difference between the side length H2 and the side length H1. It can be an intersection of a line forming 45 ° with the long side of the flat plate portion 101 formed on the opposite side to the side and the outside of the corner portion 102.
Further, the apex of the corner portion is drawn from the center position of the long side (H2 in the case of H1 <H2) of the flat plate portion 101 in the vertical cross section of the square steel pipe 1 toward the center position of the opposite long side. On a straight line, starting from a point (offset point) offset by 1/2 × | H2-H1 | in the short side (H1 in the case of H1 <H2) direction from the center of the square steel pipe, the above-mentioned opposed long sides The offset point is toward the inside of the steel pipe from the center position of the short side (H1 in the case of H1 <H2) of the flat plate portion 101 in the vertical cross section in the pipe axis direction of the square steel pipe 1 with respect to the straight line drawn toward the center position of. It can be said that it is the intersection of the line forming 45 ° with the short side of the flat plate portion 101 formed on the position side and the outside of the corner portion 102.
When the shape of the vertical cross-sectional view in the pipe axis direction is a square (substantially square), the corner apex is a line forming 45 ° with the flat plate portion 101 and the outside of the corner portion 102 with the central axis of the steel pipe 1 as the starting point. Can be the intersection of.

冷間成形直後の鋼管は加工硬化の影響が著しく、特に平板部と比較して、四隅の角部の加工硬化が進行している。
ロール成形角形鋼管の場合、最も加工硬化の影響が大きいのは角部の内表面側であり、延性が損なわれている。誘導加熱による歪取り焼鈍等の熱処理を経た後の角形鋼管の組織は、回復により歪みが除去されているため、延性が向上し、加工硬化の影響がほぼ解消される。このとき、角部頂点の内表面および外表面から6mm±1mmの肉厚方向位置における均一伸びが5%未満の場合、歪取り焼鈍が不十分であり、角部に亀裂が発生する可能性がある。よって、角部頂点の内表面および外表面から6mm±1mmの肉厚方向位置における均一伸びが5%以上であることが好ましい。より好ましくは、10%以上である。
The steel pipe immediately after cold forming is significantly affected by work hardening, and work hardening is progressing at the corners of the four corners as compared with the flat plate portion.
In the case of roll-formed square steel pipes, work hardening has the greatest effect on the inner surface side of the corners, and ductility is impaired. Strain removal by induction heating After heat treatment such as annealing, the structure of the square steel pipe is strain-removed by recovery, so that the ductility is improved and the influence of work hardening is almost eliminated. At this time, if the uniform elongation at the position in the wall thickness direction of 6 mm ± 1 mm from the inner surface and the outer surface of the corner apex is less than 5%, the strain removing annealing is insufficient and the corner may be cracked. be. Therefore, it is preferable that the uniform elongation at the position in the wall thickness direction of 6 mm ± 1 mm from the inner surface and the outer surface of the apex of the corner is 5% or more. More preferably, it is 10% or more.

上記の均一伸びは、引張方向が管軸方向と平行になるように、角形鋼管の頂点の内外表面から6mm±1mmの肉厚方向の位置からJIS5号引張試験片を採取し、これを用いてJIS Z 2241の規定に準拠して実施することで測定できる。 For the above uniform elongation, JIS No. 5 tensile test pieces were taken from a position in the wall thickness direction of 6 mm ± 1 mm from the inner and outer surfaces of the apex of the square steel pipe so that the tensile direction was parallel to the pipe axis direction, and this was used. It can be measured by carrying out in accordance with the regulations of JIS Z 2241.

本発明では、特定の角形素管に対し、Ac変態点未満の温度で加熱し、かつ、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行うことにより、均一伸びを5%以上にすることができる。In the present invention, a specific square tube is heated at a temperature lower than the Ac 1 transformation point, the heating temperature deviation in the thickness direction of the tube is set to 50 ° C. or less, and the heating holding time is set to 500 ° C. or higher. By performing the annealing heat treatment for 100 sec or more, the uniform elongation can be 5% or more.

また、後述する熱処理を鋼管全体で行うことで、平板部101と角部102の各部位における機械的特性がほぼ均一である角形鋼管1を得ることができる。 Further, by performing the heat treatment described later on the entire steel pipe, it is possible to obtain a square steel pipe 1 having substantially uniform mechanical properties at each portion of the flat plate portion 101 and the square portion 102.

本発明では、角形鋼管1のビッカース硬さは、特に限定されないが、熱処理後の矯正工程において矯正不足や過度な加工硬化を防止するために、100〜300HVとしてよい。 In the present invention, the Vickers hardness of the square steel pipe 1 is not particularly limited, but may be 100 to 300 HV in order to prevent insufficient straightening and excessive work hardening in the straightening step after the heat treatment.

また、本発明の角形鋼管1は、熱処理前の角部頂点のビッカース硬さが平板部のビッカース硬さよりも高く、歪取り焼鈍後もその影響が残るため、角部頂点のビッカース硬さが、平板部101のビッカース硬さより高くてよい。 Further, in the square steel pipe 1 of the present invention, the Vickers hardness of the apex of the corner before heat treatment is higher than the Vickers hardness of the flat plate portion, and the influence remains even after the strain is removed and annealed. It may be higher than the Vickers hardness of the flat plate portion 101.

角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差((角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さ)−(平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さ))が5HV未満の場合、矯正不足により材料の降伏伸びを消失できていない。一方、平均ビッカース硬さの差が60HV超えであると、歪取り焼鈍が不十分であり、平板部と角部の機械的特性が不均一になる。よって、角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、平板部101の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差は、5HV以上60HV以下である。好ましくは、10HV以上であり、より好ましくは、15HV以上である。また、好ましくは、40HV以下であり、より好ましくは、30HV以下である。
本発明では、特定の角形素管に対し、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行うこと、更に好ましくは歪取り焼鈍等の焼鈍熱処理における加熱温度および焼鈍熱処理時間の制御により、上記の平均ビッカース硬さの差を5HV以上60HV以下にすることができる。
The average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner, and the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central part in the circumferential direction of the flat plate portion. ((Average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner)-(Thickness direction of 1 mm ± 0.1 mm from the outer surface of the central part in the circumferential direction of the flat plate portion) When the average Vickers hardness)) at the position is less than 5 HV, the yield elongation of the material cannot be eliminated due to insufficient correction. On the other hand, if the difference in average Vickers hardness exceeds 60 HV, the strain removing annealing is insufficient, and the mechanical properties of the flat plate portion and the corner portion become non-uniform. Therefore, the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner and the average at the position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the circumferential direction of the flat plate portion 101. The difference from the Vickers hardness is 5 HV or more and 60 HV or less. It is preferably 10 HV or more, and more preferably 15 HV or more. Further, it is preferably 40 HV or less, and more preferably 30 HV or less.
In the present invention, a specific square elemental tube is heated at a temperature less than the Ac 1 transformation point, the heating temperature deviation in the thickness direction of the tube is set to 50 ° C. or less, and the heating holding time of 500 ° C. or higher is 100 sec or longer. By performing the annealing heat treatment, and more preferably by controlling the heating temperature and the annealing heat treatment time in the annealing heat treatment such as strain removal annealing, the difference in the average Vickers hardness can be reduced to 5 HV or more and 60 HV or less.

ビッカース硬さとしては、マイクロビッカース硬さ試験(JIS Z2244:2009)の規定に準拠し、四隅の角部頂点の内表面から1mm±0.1mmの肉厚方向位置と、平板部101の管周方向中央部の外表面から1mm±0.1mmの肉厚方向の位置におけるビッカース硬さを測定する。試験力は9.8Nとして、ビッカース硬さを測定する。 As the Vickers hardness, in accordance with the regulations of the Micro Vickers hardness test (JIS Z2244: 2009), the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the corner apex of the four corners and the tube circumference of the flat plate portion 101. The Vickers hardness at a position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the direction is measured. The test force is 9.8 N, and the Vickers hardness is measured.

本発明の角形鋼管1の成分組成は、特に制限されないが、質量%で、C:0.07〜0.20%、Si:0.4%未満、Mn:0.3〜2.0%、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成であることが好ましい。以下に、各成分の限定理由を述べる。以下、各成分の説明においては、とくに断らない限り、質量%は単に%で記す。 The composition of the square steel tube 1 of the present invention is not particularly limited, but in terms of mass%, C: 0.07 to 0.20%, Si: less than 0.4%, Mn: 0.3 to 2.0%, It is a component composition containing P: 0.030% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N: 0.006% or less, and the balance Fe and unavoidable impurities. Is preferable. The reasons for limiting each component are described below. Hereinafter, in the description of each component, the mass% is simply expressed as% unless otherwise specified.

C:0.07〜0.20%
Cは、固溶強化により鋼の強度を増加させるとともに、第二相の一つであるパーライトの形成に寄与する元素である。所望の引張特性、靭性、さらに所望の鋼組織を確保するためには、Cを0.07%以上含有することが好ましい。一方、0.20%を超えるCの含有は、角形鋼管の溶接時(例えば、角形鋼管同士の溶接時)にマルテンサイト組織が生成し溶接割れの原因となる懸念がある。このため、C含有量は0.07〜0.20%の範囲であることが好ましい。C含有量は、より好ましくは下限が0.09%であり、上限がより好ましくは0.18%である。
C: 0.07 to 0.20%
C is an element that increases the strength of steel by solid solution strengthening and contributes to the formation of pearlite, which is one of the second phases. In order to secure the desired tensile properties, toughness, and desired steel structure, it is preferable to contain C in 0.07% or more. On the other hand, if the content of C exceeds 0.20%, a martensite structure is generated at the time of welding of square steel pipes (for example, at the time of welding of square steel pipes), and there is a concern that it causes welding cracks. Therefore, the C content is preferably in the range of 0.07 to 0.20%. The C content is more preferably 0.09% at the lower limit and 0.18% at the upper limit.

Si:0.4%未満
Siは、固溶強化で鋼の強度増加に寄与する元素であり、所望の鋼強度を確保するために、必要に応じて含有できる。このような効果を得るためには、0.01%を超えてSiを含有することが好ましい。しかし、0.4%以上のSiの含有は、鋼表面に赤スケールと称するファイアライトが形成されやすくなり、表面の外観性状が低下する場合が多くなる。このため、Siを含有する場合には、Si含有量を0.4%未満とすることが好ましい。なお、特にSiを添加しない場合、Si含有量は不可避的不純物として、0.01%以下である。
Si: Less than 0.4% Si is an element that contributes to increasing the strength of steel by solid solution strengthening, and can be contained as necessary in order to secure the desired steel strength. In order to obtain such an effect, it is preferable to contain Si in an amount of more than 0.01%. However, if the content of Si is 0.4% or more, firelite called red scale is likely to be formed on the steel surface, and the appearance of the surface is often deteriorated. Therefore, when Si is contained, the Si content is preferably less than 0.4%. In particular, when Si is not added, the Si content is 0.01% or less as an unavoidable impurity.

Mn:0.3〜2.0%
Mnは、固溶強化を介して鋼板の強度を増加させる元素であり、所望の鋼板強度を確保するために、0.3%以上含有することが好ましい。0.3%未満のMnの含有では、フェライト変態開始温度の上昇を招き、組織が過度に粗大化しやすい。一方、2.0%を超えてMnを含有すると、中心偏析部の硬度が上昇し、角形鋼管を用いた柱の継手溶接やダイアフラムとの溶接時等の割れの原因となる懸念がある。このため、Mn含有量は0.3〜2.0%であることが好ましい。Mn含有量は、より好ましくは上限が1.6%である。さらにより好ましくは、上限が1.4%である。
Mn: 0.3-2.0%
Mn is an element that increases the strength of the steel sheet through solid solution strengthening, and is preferably contained in an amount of 0.3% or more in order to secure the desired strength of the steel sheet. If the content of Mn is less than 0.3%, the ferrite transformation start temperature is increased and the structure tends to be excessively coarsened. On the other hand, if Mn is contained in an amount of more than 2.0%, the hardness of the central segregated portion increases, and there is a concern that it may cause cracking during joint welding of columns using a square steel pipe or welding with a diaphragm. Therefore, the Mn content is preferably 0.3 to 2.0%. The Mn content is more preferably 1.6% at the upper limit. Even more preferably, the upper limit is 1.4%.

P:0.030%以下
Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減させることが好ましい。しかし、過度の低減は、精錬コストの高騰を招くため、P含有量は0.002%以上とすることが好ましい。なお、P含有量は0.030%までは許容できる。このため、P含有量は0.030%以下であることが好ましい。P含有量は、より好ましくは0.025%以下である。
P: 0.030% or less P is an element having an action of segregating into ferrite grain boundaries and lowering toughness, and in the present invention, it is preferable to reduce it as an impurity as much as possible. However, since excessive reduction causes an increase in refining cost, the P content is preferably 0.002% or more. The P content can be up to 0.030%. Therefore, the P content is preferably 0.030% or less. The P content is more preferably 0.025% or less.

S:0.015%以下
Sは、鋼中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけMnSは低減させることが好ましい。しかし、過度の低減は、精錬コストの高騰を招くため、S含有量は0.0002%以上とすることが好ましい。なお、S含有量は0.015%までは許容できる。このため、S含有量は0.015%以下であることが好ましい。S含有量は、より好ましくは0.010%以下である。
S: 0.015% or less S exists as a sulfide in steel and mainly exists as MnS within the composition range of the present invention. Since MnS is thinly stretched in the hot rolling step and adversely affects the ductility and toughness, it is preferable to reduce MnS as much as possible in the present invention. However, since excessive reduction causes an increase in refining cost, the S content is preferably 0.0002% or more. The S content is acceptable up to 0.015%. Therefore, the S content is preferably 0.015% or less. The S content is more preferably 0.010% or less.

Al:0.01〜0.06%
Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.01%以上のAlの含有を必要とする。Al含有量が0.01%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼の清浄度が低下する。一方、0.06%を超えるAlの含有は、固溶Al量が増加し、角形鋼管の長手溶接時(角形鋼管の製造時の溶接時)に、特に大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管の溶接部の靭性が低下する。このため、Al含有量は0.01〜0.06%であることが好ましい。Al含有量は、より好ましくは、下限が0.02%であり、上限が0.05%である。
Al: 0.01-0.06%
Al is an element that acts as a deoxidizing agent and also has an action of fixing N as AlN. In order to obtain such an effect, the content of Al of 0.01% or more is required. When the Al content is less than 0.01%, the deoxidizing power is insufficient when Si is not added, oxide-based inclusions increase, and the cleanliness of the steel decreases. On the other hand, if the Al content exceeds 0.06%, the amount of solid-dissolved Al increases, and welding is performed during longitudinal welding of square steel pipes (during welding during manufacturing of square steel pipes), especially in the case of welding in the atmosphere. The risk of forming oxides in the portion increases, and the toughness of the welded portion of the square steel pipe decreases. Therefore, the Al content is preferably 0.01 to 0.06%. The Al content is more preferably 0.02% at the lower limit and 0.05% at the upper limit.

N:0.006%以下
Nは、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましく、0.006%までは許容できる。このため、N含有量は0.006%以下であることが好ましい。N含有量は、より好ましくは0.005%以下である。
N: 0.006% or less N is an element having an action of lowering toughness by firmly fixing the motion of dislocations. In the present invention, it is desirable to reduce N as an impurity as much as possible, and up to 0.006% is acceptable. Therefore, the N content is preferably 0.006% or less. The N content is more preferably 0.005% or less.

上記以外の残部はFeおよび不可避的不純物である。上記の成分が本発明における鋼素材の基本の成分組成であるが、これらに加えてさらに、Nb:0.005〜0.150%、Ti:0.005〜0.150%、V:0.005〜0.150%以下のうちから選ばれる1種または2種以上を含有させてもよい。 The rest other than the above is Fe and unavoidable impurities. The above components are the basic composition of the steel material in the present invention, but in addition to these, Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: 0. It may contain one kind or two or more kinds selected from 005 to 0.150% or less.

Nb:0.005〜0.150%、Ti:0.005〜0.150%、V:0.005%〜0.150%のうちから選ばれる1種または2種以上
Nb、Ti、Vは、いずれも鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Nb:0.005%以上、Ti:0.005%以上、V:0.005%以上の含有が好ましい。一方で、過度の含有は降伏比の上昇および靱性の低下を招く。このため、Nb、Ti、Vを含有する場合は、Nb:0.005〜0.150%、Ti:0.005〜0.150%、V:0.005〜0.150%とする。好ましくは、Nb:0.008%以上、Ti:0.008%以上、V:0.008%以上である。また、好ましくは、Nb:0.10%以下、Ti:0.10%以下、V:0.10%以下である。
Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: One or more selected from 0.005% to 0.150% Nb, Ti, V , Both are elements that form fine carbides and nitrides in steel and contribute to the improvement of steel strength through precipitation strengthening, and can be contained as needed. In order to obtain such an effect, it is preferable to contain Nb: 0.005% or more, Ti: 0.005% or more, and V: 0.005% or more. On the other hand, excessive content leads to an increase in yield ratio and a decrease in toughness. Therefore, when Nb, Ti, and V are contained, Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, and V: 0.005 to 0.150%. Preferably, Nb: 0.008% or more, Ti: 0.008% or more, V: 0.008% or more. Further, Nb: 0.10% or less, Ti: 0.10% or less, V: 0.10% or less are preferable.

上記に加えてさらに、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.0005〜0.010%、B:0.0003〜0.010%のうちから選ばれる1種または2種以上を含有させてもよい。 In addition to the above, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, It may contain one or more selected from Ca: 0.0005 to 0.010% and B: 0.0003 to 0.010%.

Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.0005〜0.010%、B:0.0003〜0.010%のうちから選ばれる1種または2種以上
Cr、Mo、Cu、Niは、固溶強化により鋼の強度を上昇させる元素であり、また、いずれも鋼の焼入れ性を高め、オーステナイトの安定化に寄与する元素であることから、硬質なマルテンサイトおよびオーステナイトの形成に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Cr:0.01%以上、Mo:0.01%以上、Cu:0.01%以上、Ni:0.01%以上の含有が好ましい。一方で、過度の含有は靱性の低下および溶接性の悪化を招く。このため、Cr、Mo、Cu、Niを含有する場合は、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%とする。好ましくは、Cr:0.1%以上、Mo:0.1%以上、Cu:0.1%以上、Ni:0.1%以上である。また、好ましくは、Cr:0.5%以下、Mo:0.5%以下、Cu:0.40%以下、Ni:0.20%以下である。
Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, Ca: 0.0005 to One or more selected from 0.010%, B: 0.0003 to 0.010% Cr, Mo, Cu, and Ni are elements that increase the strength of steel by solid solution strengthening. Since both are elements that enhance the hardenability of steel and contribute to the stabilization of austenite, they are elements that contribute to the formation of hard martensite and austenite, and can be contained as needed. In order to obtain such an effect, it is preferable to contain Cr: 0.01% or more, Mo: 0.01% or more, Cu: 0.01% or more, and Ni: 0.01% or more. On the other hand, excessive content causes a decrease in toughness and a deterioration in weldability. Therefore, when Cr, Mo, Cu, and Ni are contained, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni. : 0.01 to 0.30%. Preferably, Cr: 0.1% or more, Mo: 0.1% or more, Cu: 0.1% or more, Ni: 0.1% or more. Further, Cr: 0.5% or less, Mo: 0.5% or less, Cu: 0.40% or less, Ni: 0.20% or less are preferable.

Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0005%以上のCaを含有することが好ましい。しかしながら、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され靱性が悪化する場合がある。このため、Caを含有する場合は、Ca含有量は0.0005〜0.010%とする。好ましくは、Ca含有量は0.001%以上である。また、好ましくは、Ca含有量は0.0050%以下である。 Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Ca. However, if the Ca content exceeds 0.010%, Ca oxide clusters may be formed in the steel and the toughness may deteriorate. Therefore, when Ca is contained, the Ca content is 0.0005 to 0.010%. Preferably, the Ca content is 0.001% or more. Further, the Ca content is preferably 0.0050% or less.

Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るためには、0.0003%以上のBを含有することが好ましい。しかしながら、B含有量が0.010%を超えると降伏比が上昇する。このため、Bを含有する場合は、B含有量は0.0003%〜0.010%とする。好ましくは、B含有量は0.0005%以上である。また、好ましくは、B含有量は0.0050%以下である。 B is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it is preferable to contain 0.0003% or more of B. However, when the B content exceeds 0.010%, the yield ratio increases. Therefore, when B is contained, the B content is set to 0.0003% to 0.010%. Preferably, the B content is 0.0005% or more. Moreover, the B content is preferably 0.0050% or less.

また、上記の成分組成を有した際に、溶接性を確保するために、(1)式で定義されるCeqが0.15%以上0.50%以下、および(2)式で定義されるPcmが0.30%以下であることが好ましい。ただし、(1)式および(2)式中の各種元素の成分組成はいずれも質量%である。 Further, in order to ensure weldability when having the above-mentioned composition, the Ceq defined by the formula (1) is defined by the formula (1) of 0.15% or more and 0.50% or less, and the formula (2). The Pcm is preferably 0.30% or less. However, the component compositions of the various elements in the formulas (1) and (2) are all mass%.

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
ここで、式(1)中、C、Mn、Si、Ni、Cr、Mo、Vは、各元素の含有量(質量%)である。(但し、含有しない元素は0(零)%とする。)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B・・・(2)
ここで、式(2)中、C、Si、Mn、Cu、Ni、Cr、Mo、V、Bは、各元素の含有量(質量%)である。(但し、含有しない元素は0(零)%とする。)
(1)式中のCeqは炭素当量であり、溶接部および熱影響部の硬さの指標となる。Ceqが0.15%未満であると建築構造物の柱材として必要な強度が得られない可能性がある。また、Ceqが0.50%を超えると溶接部および熱影響部が過度に硬化し、周断面強度のばらつきが大きくなる。よって、Ceqは、0.15%以上0.50%以下とすることが好ましい。
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ... (1)
Here, in the formula (1), C, Mn, Si, Ni, Cr, Mo, and V are the contents (mass%) of each element. (However, the element not contained is 0 (zero)%.)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B ... (2)
Here, in the formula (2), C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents (mass%) of each element. (However, the element not contained is 0 (zero)%.)
Ceq in the formula (1) is a carbon equivalent and is an index of the hardness of the welded portion and the heat-affected zone. If Ceq is less than 0.15%, the strength required for pillars of building structures may not be obtained. Further, when Ceq exceeds 0.50%, the welded portion and the heat-affected zone are excessively hardened, and the variation in the peripheral cross-sectional strength becomes large. Therefore, the Ceq is preferably 0.15% or more and 0.50% or less.

(2)式中のPcmは溶接割れ感受性であり、Pcmが0.30%を超えると溶接部および熱影響部において低温割れが起こりやすくなる。よって、Pcmは0.30%以下であることが好ましく、さらに好ましくは0.25%以下である。 Pcm in the formula (2) is susceptible to weld cracking, and when Pcm exceeds 0.30%, low temperature cracking is likely to occur in the welded portion and the heat-affected zone. Therefore, the Pcm is preferably 0.30% or less, more preferably 0.25% or less.

<角形鋼管の製造方法>
次に、本発明の角形鋼管1の製造方法について説明する。本発明の角形鋼管1の製造方法では、冷間成形により鋼板から角形状へ仕上げた角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上として焼鈍熱処理を行う。
なお、上記の鋼板を得る際、最終的に得られる角形鋼管の内外表面に形成される酸化スケールの厚みを1μm以上にするために、熱間圧延の仕上げ圧延後において高温の素板を大気に暴露する時間を調整する。具体的には、熱間圧延の仕上げ圧延後において表面温度が900℃以下である素板を5〜400sec大気に暴露することが好ましい。その後、得られた鋼板を冷間成形により角形状に仕上げることで、角形素管を得ることができる。
<Manufacturing method of square steel pipe>
Next, a method for manufacturing the square steel pipe 1 of the present invention will be described. In the method for manufacturing a square steel pipe 1 of the present invention, a square raw pipe finished from a steel plate to a square shape by cold forming is heated at a temperature less than the Ac 1 transformation point, and the heating temperature deviation in the thickness direction of the pipe is measured. The annealing heat treatment is performed with the temperature set to 50 ° C. or lower and the heating holding time of 500 ° C. or higher set to 100 sec or longer.
In order to obtain the above-mentioned steel sheet, in order to make the thickness of the oxide scale formed on the inner and outer surfaces of the finally obtained square steel pipe 1 μm or more, the high-temperature raw plate is exposed to the atmosphere after the finish rolling of hot rolling. Adjust the exposure time. Specifically, it is preferable to expose the base plate having a surface temperature of 900 ° C. or lower to the atmosphere for 5 to 400 sec after the finish rolling of hot rolling. After that, the obtained steel plate is cold-formed to form a square shape, whereby a square raw tube can be obtained.

ここで、上記の角形素管を得るための方法を説明する。図3は、角形素管を得るために用いられる電縫鋼管の製造設備の一例を示す模式図である。
図3に示すように、コイルに巻き取られた鋼帯(以下、鋼板とも記す。)4を払い出してレベラー5によって矯正し、複数のロールからなるケージロール群6で中間成形してオープン管とした後、複数のロールからなるフィンパスロール群7で仕上げ成形する。上記オープン管は、冷間ロール成形により得られる円筒状とすることができる。
仕上げ成形の後は、スクイズロール8で圧接しながら鋼帯4の周方向突合せ部を溶接機9で電気抵抗溶接して、電縫鋼管10とする。なお本発明では、電縫鋼管10の製造設備は図3のような造管工程に限定されない。また、上記の電縫溶接においては、突合せ部が加熱され溶融し、圧接され凝固することで接合が完了する。
Here, a method for obtaining the above-mentioned square tube will be described. FIG. 3 is a schematic view showing an example of a manufacturing facility for an electric resistance sewn steel pipe used for obtaining a square steel pipe.
As shown in FIG. 3, a steel strip (hereinafter, also referred to as a steel plate) 4 wound around a coil is dispensed, straightened by a leveler 5, and intermediately formed by a cage roll group 6 composed of a plurality of rolls to form an open pipe. After that, finish molding is performed with a finpass roll group 7 composed of a plurality of rolls. The open tube can be formed into a cylindrical shape obtained by cold roll molding.
After the finish forming, the circumferential butt portion of the steel strip 4 is electrically resistance welded by the welding machine 9 while being pressure-welded with the squeeze roll 8 to obtain the electrosewn steel pipe 10. In the present invention, the manufacturing equipment for the electrosewn steel pipe 10 is not limited to the pipe making process as shown in FIG. Further, in the above-mentioned electric sewing welding, the butt portion is heated, melted, pressed and solidified, and the joining is completed.

その後の工程については図4等を参照しながら後述もするが、電縫溶接後のサイジング工程においては、本発明で必要とする真円度および管軸方向の残留応力を満足するために、鋼管周長が合計で0.30%以上の割合で減少するように鋼管を縮径することが好ましい。一方、鋼管周長が合計で5.0%超の割合で減少するように縮径した場合、ロール通過時の管軸方向の曲げ量が大きくなり、縮径後の管軸方向の残留応力がかえって上昇してしまう可能性がある。このため、縮径前の鋼管周長に対し縮径後の鋼管周長が0.30%以上5.0%以下の割合で減少するように縮径することが好ましい。 The subsequent steps will be described later with reference to FIG. 4 and the like, but in the sizing step after the electric resistance welding, in order to satisfy the roundness and the residual stress in the pipe axial direction required in the present invention, the steel pipe is used. It is preferable to reduce the diameter of the steel pipe so that the circumference is reduced at a rate of 0.30% or more in total. On the other hand, when the diameter is reduced so that the circumference of the steel pipe decreases at a rate of more than 5.0% in total, the bending amount in the pipe axis direction when passing through the roll becomes large, and the residual stress in the pipe axis direction after the diameter reduction increases. On the contrary, it may rise. Therefore, it is preferable to reduce the diameter so that the circumference of the steel pipe after the diameter is reduced by 0.30% or more and 5.0% or less with respect to the circumference of the steel pipe before the diameter is reduced.

なお、サイジング工程においては、ロール通過時の管軸方向の曲げ量を極力小さくし、管軸方向の残留応力の発生を抑制するために、複数スタンドによる多段階の縮径を行うことが好ましく、各スタンドにおける縮径は、管周長が1.0%以下の割合で減少するように行うことが好ましい。 In the sizing step, it is preferable to perform multi-step diameter reduction with a plurality of stands in order to minimize the bending amount in the pipe axis direction when passing through the roll and suppress the generation of residual stress in the pipe axis direction. The diameter reduction in each stand is preferably performed so that the tube circumference is reduced at a rate of 1.0% or less.

角形鋼管(角形素管)が電縫鋼管から得られているかどうかは、角形鋼管(角形素管)を管軸方向に垂直に切断し、溶接部を含む切断面を研磨した後ナイタールで腐食し、光学顕微鏡で観察することにより判断できる。溶接部の板厚中央部における溶融凝固部の管周方向幅が1mm以下であれば、電縫鋼管である。 Whether or not a square steel pipe (square steel pipe) is obtained from an electrosewn steel pipe is determined by cutting the square steel pipe (square steel pipe) vertically in the pipe axis direction, polishing the cut surface including the welded part, and then corroding it with nital. , Can be judged by observing with an optical microscope. If the width of the melt-solidified portion in the pipe circumferential direction at the center of the plate thickness of the welded portion is 1 mm or less, the pipe is an electrosewn steel pipe.

図4は、電縫鋼管から角形素管を成形する過程を示す模式図である。
図4に示すように、電縫鋼管10は複数のロールからなるサイジングロール群(サイジングスタンド)11によって円筒形状のまま縮径された後、複数のロールからなる角成形ロール群(角成形スタンド)12によって、順次R1、R2、R3のような形状に成形され、角形素管となる。なお、サイジングロール群11および角成形ロール群12のスタンド数は特に限定されない。また、サイジングロール群11もしくは角成形ロール群12のカリバー曲率は、1条件であることが好ましい。
FIG. 4 is a schematic view showing a process of forming a square steel pipe from an electrosewn steel pipe.
As shown in FIG. 4, the electrosewn steel pipe 10 is reduced in diameter by a sizing roll group (sizing stand) 11 composed of a plurality of rolls while maintaining a cylindrical shape, and then a square forming roll group (square forming stand) composed of a plurality of rolls. By 12, the pipes are sequentially formed into shapes such as R1, R2, and R3 to form a square pipe. The number of stands of the sizing roll group 11 and the square forming roll group 12 is not particularly limited. Further, the caliber curvature of the sizing roll group 11 or the square forming roll group 12 is preferably one condition.

図5は、上記の角形素管から角形鋼管を製造するための設備の一例を示す模式図である。
図5に示す例では、サイジング工程の後、所定の長さに切断された角形素管は搬送テーブル2上で所定の速度で長手方向に搬送される。このとき、ワークコイル3は固定されており、搬送テーブルによって送り出された角形鋼管1がワークコイルの中を通過しながら加熱される。
FIG. 5 is a schematic view showing an example of equipment for manufacturing a square steel pipe from the above-mentioned square raw pipe.
In the example shown in FIG. 5, after the sizing step, the square tube cut to a predetermined length is transported in the longitudinal direction on the transport table 2 at a predetermined speed. At this time, the work coil 3 is fixed, and the square steel pipe 1 sent out by the transport table is heated while passing through the work coil.

前述したように、本発明では、冷間成形により鋼板から角形状へ仕上げた角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行う。As described above, in the present invention, a square raw tube finished from a steel plate to a square shape by cold forming is heated at a temperature lower than the Ac 1 transformation point, and the heating temperature deviation in the thickness direction of the tube is 50 ° C. The annealing heat treatment is performed with the following, and the heating holding time at 500 ° C. or higher is 100 sec or longer.

上記焼鈍熱処理では、冷間成形によって蓄積された歪みを解放させるために、歪取り焼鈍の温度域で熱処理を行う。Ac変態点以上まで加熱をした場合、鋼管の組織が二相組織になり、靱性が悪化するという問題がある。また、管の内外表面の酸化スケールの厚みが20μmを超えてしまう。よって、本発明の焼鈍熱処理では、Ac変態点未満の温度で加熱を行う。In the above annealing heat treatment, in order to release the strain accumulated by the cold forming, the heat treatment is performed in the temperature range of the strain removing annealing. When heated to the Ac 1 transformation point or higher, the structure of the steel pipe becomes a two-phase structure, and there is a problem that the toughness deteriorates. In addition, the thickness of the oxidation scale on the inner and outer surfaces of the tube exceeds 20 μm. Therefore, in the annealing heat treatment of the present invention, heating is performed at a temperature lower than the Ac 1 transformation point.

また、上記焼鈍熱処理では、鋼管外面から誘導加熱等の加熱を行うために、加熱時の鋼管の内外面に温度偏差が発生する。Ac変態点未満の加熱で歪取り焼鈍を行う場合、加熱温度が低温であるほど、歪みが完全に除去されるまでに、時間を要する。このような場合、加熱温度が低温になりやすい内面側では歪みの解放の進行度が遅延し、管の肉厚方向で機械的特性が不均一になりやすいという問題がある。このような外面および内面の加熱温度の温度偏差の問題については、管の肉厚方向の加熱温度偏差が50℃以下であれば、管の肉厚方向に均一な機械的特性が得られる。よって、本発明の焼鈍熱処理では、管の肉厚方向の加熱温度偏差を50℃以下とする。好ましくは、30℃以下であり、より好ましくは、10℃以下である。Further, in the above annealing heat treatment, heating such as induction heating is performed from the outer surface of the steel pipe, so that a temperature deviation occurs on the inner and outer surfaces of the steel pipe during heating. When strain removal annealing is performed by heating below the Ac 1 transformation point, the lower the heating temperature, the longer it takes for the strain to be completely removed. In such a case, there is a problem that the progress of strain release is delayed on the inner surface side where the heating temperature tends to be low, and the mechanical properties tend to be non-uniform in the wall thickness direction of the pipe. Regarding the problem of the temperature deviation of the heating temperature of the outer surface and the inner surface, if the heating temperature deviation in the wall thickness direction of the pipe is 50 ° C. or less, uniform mechanical characteristics can be obtained in the wall thickness direction of the pipe. Therefore, in the annealing heat treatment of the present invention, the heating temperature deviation in the wall thickness direction of the pipe is set to 50 ° C. or less. It is preferably 30 ° C. or lower, and more preferably 10 ° C. or lower.

また、焼鈍熱処理による加熱温度は500℃以上700℃以下であることが好ましい。500℃未満で熱処理を行う場合は歪みが完全に除去されるまで長時間を要する。 Further, the heating temperature by the annealing heat treatment is preferably 500 ° C. or higher and 700 ° C. or lower. When the heat treatment is performed at a temperature lower than 500 ° C., it takes a long time until the strain is completely removed.

500℃以上で歪取り焼鈍を行う場合、歪みを除去するためには100sec以上の加熱保持時間を確保することが好ましい。誘導加熱で管を加熱した後に自然放冷する場合は、管の内外面における表面の冷却速度は約0.5℃/sec程度である。そのため、加熱後100sec以上で500℃以上の加熱保持時間を確保するためには、焼鈍熱処理における加熱温度の下限は550℃(=500℃+0.5℃/sec×100sec)とすることが好ましい。
焼鈍熱処理による熱処理の温度は、好ましくは550℃以上700℃以下であり、さらに好ましくは600℃以上である。また、さらに好ましくは650℃以下である。
When the strain is removed and annealed at 500 ° C. or higher, it is preferable to secure a heating holding time of 100 sec or longer in order to remove the strain. When the tube is heated by induction heating and then naturally allowed to cool, the cooling rate of the surface on the inner and outer surfaces of the tube is about 0.5 ° C./sec. Therefore, in order to secure a heating holding time of 500 ° C. or higher at 100 sec or longer after heating, the lower limit of the heating temperature in the annealing heat treatment is preferably 550 ° C. (= 500 ° C. + 0.5 ° C./sec × 100 sec).
The temperature of the heat treatment by the annealing heat treatment is preferably 550 ° C. or higher and 700 ° C. or lower, and more preferably 600 ° C. or higher. Further, it is more preferably 650 ° C. or lower.

上記の焼鈍熱処理における加熱は、誘導加熱とすることが好ましく、誘導加熱装置を用いて行うことができる。 The heating in the above annealing heat treatment is preferably induction heating, and can be performed using an induction heating device.

上記誘導加熱において、周波数が100Hz未満の場合、電流の浸透深さが大きくなり過ぎ、表皮効果が小さくなるために、加熱集中部の加熱温度が低下する可能性がある。その結果、加熱された高温部から鋼管の内面側への熱伝導が小さくなるため、管全体の加熱効率が悪化し、設備が大型になる。一方、周波数が1000Hz超えの場合、表皮効果が大きくなるため、管の外表面と内表面の加熱温度の温度偏差が大きくなる可能性がある。そのため、誘導加熱の周波数は100Hz以上1000Hz以下に設定することが好ましい。より好ましくは、誘導加熱の周波数は150Hz以上である。また、より好ましくは、誘導加熱の周波数は500Hz以下であり、さらにより好ましくは300Hz以下である。
なお、上記の表皮効果とは、以下の現象を指す。
まず、高周波電流の磁場により被加熱体(鋼管)の表面に磁場を打ち消す電流(渦電流)が発生する。この渦電流により、電気抵抗で被加熱体が加熱され、上記表面に近付くほどこの加熱が集中する。この現象を表皮効果という。
In the above induction heating, when the frequency is less than 100 Hz, the penetration depth of the current becomes too large and the skin effect becomes small, so that the heating temperature of the heating concentration portion may decrease. As a result, the heat conduction from the heated high temperature portion to the inner surface side of the steel pipe becomes small, so that the heating efficiency of the entire pipe deteriorates and the equipment becomes large. On the other hand, when the frequency exceeds 1000 Hz, the skin effect becomes large, so that the temperature deviation between the heating temperature of the outer surface and the inner surface of the tube may become large. Therefore, it is preferable to set the frequency of induction heating to 100 Hz or more and 1000 Hz or less. More preferably, the frequency of induction heating is 150 Hz or higher. Further, the frequency of induction heating is more preferably 500 Hz or less, and even more preferably 300 Hz or less.
The above-mentioned skin effect refers to the following phenomena.
First, a magnetic field of high-frequency current generates a current (eddy current) that cancels the magnetic field on the surface of the heated body (steel pipe). Due to this eddy current, the heated body is heated by the electric resistance, and the heating is concentrated as it approaches the surface. This phenomenon is called the skin effect.

また、誘導加熱において、角形素管の搬送速度については、特に限定されないが、製造効率と断面の加熱温度均一化の点から、0.2〜4m/minとすることが好ましい。さらに、誘導加熱装置における電力量は、特に限定されないが、所望の搬送速度を確保するために、3〜12MWとすることが好ましい。 Further, in the induction heating, the transport speed of the square tube is not particularly limited, but is preferably 0.2 to 4 m / min from the viewpoint of manufacturing efficiency and uniform heating temperature of the cross section. Further, the amount of electric power in the induction heating device is not particularly limited, but is preferably 3 to 12 MW in order to secure a desired transfer speed.

前述した鋼管の温度管理方法としては、管外表面温度については、放射温度計により測定して、また、管内表面および肉厚内部における温度については、熱解析に基づく2次元モデルによる温度計算により、鋼管の全周にわたって肉厚方向の温度分布を計算する方法で管理することができる。 As the above-mentioned temperature control method for steel pipes, the temperature on the outer surface of the pipe is measured by a radiation thermometer, and the temperature on the inner surface of the pipe and the temperature inside the wall thickness is calculated by a two-dimensional model based on thermal analysis. It can be controlled by a method of calculating the temperature distribution in the wall thickness direction over the entire circumference of the steel pipe.

前述した誘導加熱等による焼鈍熱処理後の角形鋼管に対し、再度サイジング工程及び/または矯正工程を経ることができる。これらは、熱処理後の鋼管母材に引張変形を加えたときに生じる降伏伸びを消失させるためのものであり、管全周にわたって0.5〜3%の歪みが付与できるようであれば、この限りではない。 The square steel pipe after the annealing heat treatment by induction heating or the like described above can be subjected to the sizing step and / or the straightening step again. These are for eliminating the yield elongation that occurs when tensile deformation is applied to the steel pipe base material after heat treatment, and if a strain of 0.5 to 3% can be applied over the entire circumference of the pipe, this is used. Not as long.

<建築構造物>
図6は、本発明の建築構造物の一例を示す模式図である。
<Building structure>
FIG. 6 is a schematic view showing an example of the building structure of the present invention.

本発明の建築構造物は、前述した本発明の角形鋼管1を柱材として使用される。
符号13、14、15、16は、順にダイアフラム、大梁、小梁、間柱を示す。
本発明の角形鋼管は、前述したように、平板部の機械的特性に優れ、管の内外表面に形成される酸化スケールの機能を十分に確保し、更に、角部においては、靭性を十分に確保すると共に、加工硬化が抑制される。そのため、この角形鋼管を柱材として使用した本発明の建築構造物は、優れた耐震性能を発揮する。
In the building structure of the present invention, the square steel pipe 1 of the present invention described above is used as a pillar material.
Reference numerals 13, 14, 15, and 16 indicate diaphragms, girders, girders, and studs in that order.
As described above, the square steel pipe of the present invention has excellent mechanical properties of the flat plate portion, sufficiently secures the function of the oxide scale formed on the inner and outer surfaces of the pipe, and further provides sufficient toughness at the corner portion. While ensuring, work hardening is suppressed. Therefore, the building structure of the present invention using this square steel pipe as a column material exhibits excellent seismic performance.

以下、実施例に基づき、本発明についてさらに説明する。 Hereinafter, the present invention will be further described based on Examples.

表1に示す成分組成を有する熱延鋼板を、ケージロール群およびフィンパスロール群により楕円形断面のオープン管に連続成形し、次いでオープン管の相対する端面を高周波誘導加熱または高周波抵抗加熱で融点以上に加熱し、スクイズロールで圧接し、電縫鋼管を得た。なお、最終的に得られる角形鋼管の内外表面に形成される酸化スケールの厚みを1μm以上にするために、熱間圧延の仕上げ圧延後において、高温の素板を大気に暴露する時間を調整し、具体的には、熱間圧延の仕上げ圧延後において表面温度が900℃以下である素板を大気に暴露する時間を5〜400secとした。 A hot-rolled steel sheet having the composition shown in Table 1 is continuously formed into an open pipe having an elliptical cross section by a cage roll group and a fin pass roll group, and then the opposite end faces of the open pipe are melted by high-frequency induction heating or high-frequency resistance heating. After heating above, pressure welding was performed with a squeeze roll to obtain an electrosewn steel pipe. In order to make the thickness of the oxide scale formed on the inner and outer surfaces of the finally obtained square steel pipe 1 μm or more, the time for exposing the high temperature base plate to the atmosphere after the finish rolling of hot rolling was adjusted. Specifically, the time for exposing the base plate having a surface temperature of 900 ° C. or lower to the atmosphere after the finish rolling of hot rolling was set to 5 to 400 sec.

得られた円筒鋼管から、2段のサイジングスタンドを経た後、4段の角成形スタンドを経て角部の曲率が板厚の(2.5±0.5)倍となる角形素管を得た。 From the obtained cylindrical steel pipe, a square raw pipe having a curvature of the corner portion (2.5 ± 0.5) times the plate thickness was obtained through a two-stage sizing stand and then a four-stage square forming stand. ..

次いで、上記角形素管を所定の長さに切断し、円筒形状のワークコイルを有する高周波加熱装置(誘導加熱装置)を用いて熱処理(焼鈍熱処理)を行い、角形鋼管を得た。
上記のワークコイルの内径Dは960mmであり、搬送方向(円柱形と仮定した際の高さ方向)の長さは1mである。
角形素管は搬送台車によりワークコイルの中へ挿入しながら加熱した。その際、所定の加熱温度になるように、搬送速度、加熱の周波数、電力量を制御した。
Next, the square raw pipe was cut to a predetermined length and heat-treated (annealed heat treatment) using a high-frequency heating device (induction heating device) having a cylindrical work coil to obtain a square steel pipe.
The inner diameter D of the work coil is 960 mm, and the length in the transport direction (height direction assuming a cylindrical shape) is 1 m.
The square raw tube was heated while being inserted into the work coil by a transport carriage. At that time, the transport speed, the heating frequency, and the amount of electric power were controlled so as to reach a predetermined heating temperature.

鋼管の温度管理について、管外表面温度は放射温度計により測定し、管内表面および肉厚内部における温度は熱解析に基づく2次元モデルによる温度計算により温度分布を算出した。
表2では、加熱温度(外面最高温度と内面最高温度)(℃)がAc変態点未満であるか否かを示す(表2の「加熱温度<Ac変態点(℃)」の欄参照)。表2中、「○」は、加熱温度がAc1変態点未満であることを示し、「×」は、加熱温度がAc変態点以上であることを示す。
また、加熱温度偏差は、外面最高温度(℃)と内面最高温度(℃)の差として算出した(表2の「外面温度−内面温度(℃)」の欄参照)。
また、表2中、「保持時間」とは、500℃以上の加熱保持時間のことを指す。
Regarding the temperature control of the steel pipe, the temperature on the outer surface of the pipe was measured by a radiation thermometer, and the temperature on the inner surface of the pipe and the temperature inside the wall thickness was calculated by temperature calculation using a two-dimensional model based on thermal analysis.
In Table 2, the heating temperature (the outer surface maximum temperature and the inner surface maximum temperature) (℃) indicates whether Ac less than 1 transformation point (Table 2 "heating temperature <Ac 1 transformation point (℃)" column references ). In Table 2, "○" indicates that the heating temperature is less than Ac1 transformation point, "×" indicates that the heating temperature is Ac 1 transformation point or more.
The heating temperature deviation was calculated as the difference between the maximum outer surface temperature (° C.) and the maximum inner surface temperature (° C.) (see the column "Outer surface temperature-inner surface temperature (° C.)" in Table 2).
Further, in Table 2, the "holding time" refers to a heating holding time of 500 ° C. or higher.

その後、傾斜ロール矯正機を用いて矯正加工を行い、2%の歪みを鋼管に付与した。
得られた角形鋼管から試験片を採取して、引張試験、シャルピー衝撃試験、残留応力測定、スケール厚さ測定、硬さ測定を実施した。
Then, a straightening process was performed using an inclined roll straightening machine, and a strain of 2% was applied to the steel pipe.
A test piece was collected from the obtained square steel pipe, and a tensile test, a Charpy impact test, a residual stress measurement, a scale thickness measurement, and a hardness measurement were performed.

平板部の引張試験として、引張方向が管軸方向と平行になるように、角形鋼管の平板部からJIS5号引張試験片を採取し、これを用いてJIS Z 2241の規定に準拠して実施し、降伏強度YS、引張強度TSを測定し、(降伏強度)/(引張強度)で定義される降伏比YRを算出した。 As a tensile test of the flat plate part, a JIS No. 5 tensile test piece was taken from the flat plate part of the square steel pipe so that the tensile direction was parallel to the pipe axis direction, and it was carried out in accordance with the regulations of JIS Z 2241. , Yield strength YS and tensile strength TS were measured, and the yield ratio YR defined by (yield strength) / (tensile strength) was calculated.

シャルピー衝撃試験として、角形鋼管の角部の管外面からt/4(t:肉厚)において試験片長手方向が管長手方向と平行となるように採取したVノッチ試験片を用いて、JIS Z 2242の規定に準拠して、試験温度:0℃で実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とし、それらの平均値を代表値とした。 As a Charpy impact test, JIS Z was used as a V-notch test piece collected from the outer surface of the corner of a square steel pipe so that the longitudinal direction of the test piece was parallel to the longitudinal direction of the pipe at t / 4 (t: wall thickness). In accordance with the provisions of 2242, the test was carried out at a test temperature of 0 ° C., and the absorbed energy (J) was determined. The number of test pieces was 3 each, and the average value thereof was used as a representative value.

残留応力測定として、鋼管を500mm長さに切断し、測定位置の表層から50μm深さまでの部材を電解エッチングにより除去してから、X線回折のcosα法により周方向の残留応力を測定した。測定位置は試験片鋼管の長手中央部であり、四隅の角部頂点の外表面および内表面の位置とした。
角部頂点は、鋼管No.1〜15、18については、鋼管の中心軸を起点として、平板部と45°をなす線と角部外側の交点とした。また、鋼管No.16、17については、角形鋼管中央部から長辺(H1)方向に1/2×(H1−H2)だけオフセットさせたオフセット点を起点として、上記直線に対し、オフセット点が位置する側と反対側に形成される平板部と45°をなす線と角部外側の交点とした。
As a residual stress measurement, a steel pipe was cut to a length of 500 mm, a member up to a depth of 50 μm from the surface layer at the measurement position was removed by electrolytic etching, and then the residual stress in the circumferential direction was measured by the cosα method of X-ray diffraction. The measurement position was the longitudinal center of the test piece steel pipe, and the positions of the outer and inner surfaces of the corner vertices at the four corners.
The apex of the corner is the steel pipe No. For 1 to 15 and 18, starting from the central axis of the steel pipe, the intersection of the line forming 45 ° with the flat plate portion and the outside of the corner portion was set. In addition, steel pipe No. For 16 and 17, the offset point offset by 1/2 × (H1-H2) in the long side (H1) direction from the center of the square steel pipe is the starting point, which is opposite to the side where the offset point is located with respect to the straight line. The intersection of the line forming 45 ° with the flat plate formed on the side and the outside of the corner was used.

鋼管表面の酸化スケールの厚みの測定は、走査型電子顕微鏡(SEM)を用いて角形鋼管の平板部の内外表面の位置において行った。
ここでは、鋼管母材とスケールの界面とスケール表面の間の距離について、8点の位置で測定し、それら8点の距離の合計値を8で割った値(平均値)を酸化スケールの厚み(μm)とした。なお、上記の8点は、角形鋼管の4辺の平板部の幅中央部であって、内表面4点および外表面4点の合計8点とした。
The thickness of the oxide scale on the surface of the steel pipe was measured using a scanning electron microscope (SEM) at the positions of the inner and outer surfaces of the flat plate portion of the square steel pipe.
Here, the distance between the interface between the steel pipe base material and the scale and the surface of the scale is measured at eight points, and the total value of the distances at these eight points divided by eight (average value) is the thickness of the oxide scale. It was set to (μm). The above eight points were the central portion of the width of the flat plate portion on the four sides of the square steel pipe, and were set to a total of eight points, that is, four points on the inner surface and four points on the outer surface.

角部の引張試験として、引張方向が管軸方向と平行になるように、角形鋼管の頂点の内外表面から6mm±1mmの肉厚方向の位置からJIS5号引張試験片を採取し、これを用いてJIS Z 2241の規定に準拠して実施し、均一伸び(%)を算出した。 As a tensile test of the corner, JIS No. 5 tensile test piece was taken from the position in the wall thickness direction of 6 mm ± 1 mm from the inner and outer surfaces of the apex of the square steel pipe so that the tensile direction was parallel to the pipe axis direction, and this was used. The uniform elongation (%) was calculated in accordance with the provisions of JIS Z 2241.

硬さ測定としては、マイクロビッカース硬さ試験(JIS Z2244:2009)の規定に準拠し、試験力を9.8Nとし、四隅の角部頂点の内外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、4辺の平板部の管周方向中央部の内外表面から1mm±0.1mmの肉厚方向の位置における平均ビッカース硬さ(HV)を測定した。そして、角部頂点のビッカース硬さと平板部のビッカース硬さの差として、角部頂点の平均ビッカース硬さと平板部の平均ビッカース硬さの差が最大となる前記角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、前記平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差((角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さ)−(平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さ))から硬さ差を算出した。 The hardness is measured in accordance with the regulations of the Micro Vickers hardness test (JIS Z2244: 2009), the test force is 9.8 N, and the position in the wall thickness direction is 1 mm ± 0.1 mm from the inner and outer surfaces of the corner apex. The average Vickers hardness in 1 mm and the average Vickers hardness (HV) at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner and outer surfaces of the central portion in the tube circumferential direction of the four flat plate portions were measured. Then, as the difference between the Vickers hardness of the corner apex and the Vickers hardness of the flat plate portion, 1 mm ± from the inner surface of the corner apex where the difference between the average Vickers hardness of the corner apex and the average Vickers hardness of the flat plate portion is maximum. The difference between the average Vickers hardness at the position in the wall thickness direction of 0.1 mm and the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the tube circumferential direction of the flat plate portion ((at the apex of the corner). Average Vickers hardness at 1 mm ± 0.1 mm wall thickness direction from the inner surface)-(Average Vickers hardness at 1 mm ± 0.1 mm wall thickness direction from the outer surface of the central portion of the flat plate in the tube circumference direction)) The hardness difference was calculated from.

辺長H(mm)(縦辺長H1(mm)、横辺長H2(mm))は、ノギスにより測定し、肉厚t(mm)はマイクロメータにより測定した。 The side length H (mm) (vertical side length H1 (mm), horizontal side length H2 (mm)) was measured with a caliper, and the wall thickness t (mm) was measured with a micrometer.

これらの結果を表3に示す。 These results are shown in Table 3.

Figure 0006984785
Figure 0006984785

Figure 0006984785
Figure 0006984785

Figure 0006984785
Figure 0006984785

以上から、変形能力が優れ、角部の過度な加工硬化を抑制した角形鋼管およびその製造方法並びに優れた耐震性能を有する建築構造物を提供することができる。 From the above, it is possible to provide a square steel pipe having excellent deformation ability and suppressing excessive work hardening of corners, a method for manufacturing the square steel pipe, and a building structure having excellent seismic performance.

1 角形鋼管(角形素管)
2 搬送テーブル
3 ワークコイル
4 鋼帯(鋼板)
5 レベラー
6 ケージロール群
7 フィンパスロール群
8 スクイズロール
9 溶接機
10 電縫鋼管
11 サイジングロール群
12 角成形ロール群
13 ダイアフラム
14 大梁
15 小梁
16 間柱
101 平板部
102 角部
103 溶接部(電縫溶接部)
1 Square steel pipe (square raw pipe)
2 Transport table 3 Work coil 4 Steel strip (steel plate)
5 Leveler 6 Cage roll group 7 Finpass roll group 8 Squeeze roll 9 Welder 10 Electric sewn steel pipe 11 Sizing roll group 12 Square forming roll group 13 Diaphragm 14 Large beam 15 Small beam 16 Stud 101 Flat plate 102 Square 103 Welded part (electric) Sewing weld)

Claims (8)

質量%で、C:0.07〜0.20%、Si:0.4%未満、Mn:0.3〜2.0%、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
管周方向に平板部と角部とが交互に夫々複数形成されており、
前記平板部の降伏強度YSが295MPa以上であり、
前記平板部の引張強度TSが400MPa以上であり、
前記平板部の降伏比YRが0.80以下であり、
前記角部の0℃におけるシャルピー吸収エネルギーが70J以上であり、
管の内外表面の酸化スケールの厚みが1μm以上20μm以下であり、
角部頂点の内表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さと、前記平板部の管周方向中央部の外表面から1mm±0.1mmの肉厚方向位置における平均ビッカース硬さとの差が、5HV以上60HV以下である角形鋼管。
By mass%, C: 0.07 to 0.20%, Si: less than 0.4%, Mn: 0.3 to 2.0%, P: 0.030% or less, S: 0.015% or less, It contains Al: 0.01 to 0.06%, N: 0.006% or less, and has a component composition consisting of the balance Fe and unavoidable impurities.
Multiple flat plates and corners are alternately formed in the circumferential direction of the pipe.
The yield strength YS of the flat plate portion is 295 MPa or more, and the yield strength is 295 MPa or more.
The tensile strength TS of the flat plate portion is 400 MPa or more, and the plate portion has a tensile strength TS of 400 MPa or more.
The yield ratio YR of the flat plate portion is 0.80 or less, and the flat plate portion has a yield ratio of 0.80 or less.
The Charpy absorption energy at 0 ° C. of the corner is 70 J or more, and the charpy absorption energy is 70 J or more.
The thickness of the oxidation scale on the inner and outer surfaces of the tube is 1 μm or more and 20 μm or less.
The average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the inner surface of the apex of the corner, and the average Vickers hardness at the position in the wall thickness direction of 1 mm ± 0.1 mm from the outer surface of the central portion in the circumferential direction of the flat plate portion. A square steel pipe whose difference from the above is 5 HV or more and 60 HV or less.
前記成分組成は、さらに、質量%で、Nb:0.005〜0.150%、Ti:0.005〜0.150%、V:0.005〜0.150%、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.0005〜0.010%、B:0.0003〜0.010%のうちから選ばれる1種または2種以上を含有する請求項1に記載の角形鋼管。Further, the component composition is, in terms of mass%, Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: 0.005 to 0.150%, Cr: 0.01 to 0.01. 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, Ca: 0.0005 to 0.010%, B : The square steel pipe according to claim 1, which contains one or more selected from 0.0003 to 0.010%. 前記角部頂点の内表面および外表面における管周方向の残留応力の絶対値が、10MPa以上200MPa以下である請求項1または2に記載の角形鋼管。 The square steel pipe according to claim 1 or 2 , wherein the absolute value of the residual stress in the circumferential direction of the inner surface and the outer surface of the corner apex is 10 MPa or more and 200 MPa or less. 前記角部頂点の内表面および外表面から6mm±1mmの肉厚方向位置における均一伸びが5%以上である請求項1〜3のいずれかに記載の角形鋼管。 The square steel pipe according to any one of claims 1 to 3, wherein the uniform elongation at the position in the wall thickness direction of 6 mm ± 1 mm from the inner surface and the outer surface of the corner apex is 5% or more. 請求項1〜のいずれかに記載の角形鋼管の製造方法であって、
冷間成形により鋼板から角形状へ仕上げた角形素管に対して、Ac変態点未満の温度で加熱し、管の肉厚方向の加熱温度偏差を50℃以下とし、かつ、500℃以上の加熱保持時間を100sec以上とする焼鈍熱処理を行う角形鋼管の製造方法。
The method for manufacturing a square steel pipe according to any one of claims 1 to 4.
A square raw pipe finished from a steel plate to a square shape by cold forming is heated at a temperature less than the Ac 1 transformation point, the heating temperature deviation in the thickness direction of the pipe is 50 ° C. or less, and 500 ° C. or more. A method for manufacturing a square steel pipe, which is subjected to an annealing heat treatment with a heating holding time of 100 sec or more.
前記焼鈍熱処理で、加熱温度が500℃以上700℃以下である請求項に記載の角形鋼管の製造方法。 The method for manufacturing a square steel pipe according to claim 5 , wherein the heating temperature is 500 ° C. or higher and 700 ° C. or lower in the annealing heat treatment. 前記焼鈍熱処理の加熱を誘導加熱とし、該誘導加熱における周波数を100Hz以上1000Hz以下にする請求項またはに記載の角形鋼管の製造方法。 The method for manufacturing a square steel pipe according to claim 5 or 6 , wherein the heating of the annealing heat treatment is induction heating, and the frequency in the induction heating is 100 Hz or more and 1000 Hz or less. 請求項1〜のいずれかに記載の角形鋼管が、柱材として用いられる建築構造物。 A building structure in which the square steel pipe according to any one of claims 1 to 4 is used as a pillar material.
JP2021510989A 2019-09-30 2020-09-16 Square steel pipe and its manufacturing method and building structure Active JP6984785B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019178723 2019-09-30
JP2019178723 2019-09-30
PCT/JP2020/034997 WO2021065493A1 (en) 2019-09-30 2020-09-16 Rectangular steel pipe and method for manufacturing same, and building structure

Publications (2)

Publication Number Publication Date
JPWO2021065493A1 JPWO2021065493A1 (en) 2021-04-08
JP6984785B2 true JP6984785B2 (en) 2021-12-22

Family

ID=75337989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510989A Active JP6984785B2 (en) 2019-09-30 2020-09-16 Square steel pipe and its manufacturing method and building structure

Country Status (5)

Country Link
JP (1) JP6984785B2 (en)
KR (1) KR20220053644A (en)
CN (1) CN114450456B (en)
TW (1) TWI752653B (en)
WO (1) WO2021065493A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2011094214A (en) * 2009-10-30 2011-05-12 Kobe Steel Ltd Cold-formed square steel tube having excellent earthquake resistance
JP2017078196A (en) * 2015-10-20 2017-04-27 Jfeスチール株式会社 Production method of thick hot rolled steel strip for steel tube and production method of square steel tube
JP2018053281A (en) * 2016-09-27 2018-04-05 新日鐵住金株式会社 Rectangular steel tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155447A (en) 1995-11-30 1997-06-17 Nittetsu Kokan Kk Manufacture of square steel tube of high strength
JP2852317B2 (en) 1997-05-21 1999-02-03 ナカジマ鋼管株式会社 Square steel pipe and method for manufacturing square steel pipe
JP4207760B2 (en) 2003-12-05 2009-01-14 住友金属工業株式会社 Steel plates used for the manufacture of steel pipes for low yield ratio columns for construction, and methods for their production
JP2009235516A (en) * 2008-03-27 2009-10-15 Kobe Steel Ltd 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
KR101954558B1 (en) * 2015-05-20 2019-03-05 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL SHEET FOR HIGH STRENGTH &lt; RTI ID = 0.0 &gt;

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2011094214A (en) * 2009-10-30 2011-05-12 Kobe Steel Ltd Cold-formed square steel tube having excellent earthquake resistance
JP2017078196A (en) * 2015-10-20 2017-04-27 Jfeスチール株式会社 Production method of thick hot rolled steel strip for steel tube and production method of square steel tube
JP2018053281A (en) * 2016-09-27 2018-04-05 新日鐵住金株式会社 Rectangular steel tube

Also Published As

Publication number Publication date
TWI752653B (en) 2022-01-11
KR20220053644A (en) 2022-04-29
CN114450456B (en) 2024-04-05
WO2021065493A1 (en) 2021-04-08
JPWO2021065493A1 (en) 2021-04-08
TW202118880A (en) 2021-05-16
CN114450456A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
JP5999284B1 (en) High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well and manufacturing method thereof, and high-strength thick-walled conductor casing for deep well
JP6015879B1 (en) High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well and manufacturing method thereof, and high-strength thick-walled conductor casing for deep well
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
KR20170128574A (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JPWO2015092916A1 (en) ERW welded steel pipe
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP7088417B2 (en) Electric pipe and its manufacturing method
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP6947333B2 (en) Electric resistance steel pipe and its manufacturing method, line pipe and building structure
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
WO2019151045A1 (en) Steel material for line pipes, production method for same, and production method for line pipe
TW202219292A (en) Electric resistance welded steel pipe and method for manufacturing same
JP5540646B2 (en) Low yield ratio high strength ERW steel pipe and method for producing the same
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure
JP6984785B2 (en) Square steel pipe and its manufacturing method and building structure
JP7211566B1 (en) High-strength hot-rolled steel sheet and manufacturing method thereof, and high-strength electric resistance welded steel pipe and manufacturing method thereof
JP7276641B1 (en) Electric resistance welded steel pipe and its manufacturing method
WO2019151046A1 (en) Steel material for line pipes, production method for same, and production method for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108