JPS627685B2 - - Google Patents

Info

Publication number
JPS627685B2
JPS627685B2 JP55126696A JP12669680A JPS627685B2 JP S627685 B2 JPS627685 B2 JP S627685B2 JP 55126696 A JP55126696 A JP 55126696A JP 12669680 A JP12669680 A JP 12669680A JP S627685 B2 JPS627685 B2 JP S627685B2
Authority
JP
Japan
Prior art keywords
bell gear
gear
bell
heating
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55126696A
Other languages
Japanese (ja)
Other versions
JPS5750423A (en
Inventor
Teruo Kozai
Shigeki Hayase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12669680A priority Critical patent/JPS5750423A/en
Publication of JPS5750423A publication Critical patent/JPS5750423A/en
Publication of JPS627685B2 publication Critical patent/JPS627685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Description

【発明の詳細な説明】 本発明は、三重の石英ベルジヤーを有し、外側
の石英ベルジヤーの内面に一様に反射効率の高い
金属膜を被着し、その内側に取り付けられた加熱
ヒータにより内側のベルジヤー内の加熱板に載置
された半導体ウエーハを直接的に、また、金属膜
により反射された、熱線により間接的に加熱する
機構を取り入れた縦型の気相成長装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a triple quartz bell gear, the inner surface of the outer quartz bell gear is uniformly coated with a metal film with high reflection efficiency, and the inner surface is heated by a heater attached to the inner side of the outer quartz bell gear. This invention relates to a vertical vapor phase growth apparatus that incorporates a mechanism for directly heating a semiconductor wafer placed on a heating plate in a bell gear, and indirectly by heating rays reflected by a metal film.

第1図a,bは加熱ヒータを備えた従来の横型
気相成長装置の一例の斜射図とそのA−A断面図
である。
FIGS. 1a and 1b are a perspective view and an AA sectional view of an example of a conventional horizontal vapor phase growth apparatus equipped with a heater.

第1図a,bにおいて、横位置に置かれた石英
製の反応管31の外側の上下に複数個の石英ヒー
タ32が横に並べられて配置され、反応管31の
内部に斜めに置かれた加熱板33の上に載置され
た複数個の半導体ウエーハ30は、加熱ヒータ3
2の通電により高温に加熱されると共に、反応管
31の広い開口の方から流入される高温の反応ガ
ス18に接触し、反応ガスそれ自身または反応ガ
スとウエーハとの間の化学反応による所望物質を
ウエーハ30の上に気相成長させる。
In FIGS. 1a and 1b, a plurality of quartz heaters 32 are arranged horizontally above and below the outside of a quartz reaction tube 31 placed in a horizontal position, and are placed diagonally inside the reaction tube 31. The plurality of semiconductor wafers 30 placed on the heating plate 33 are heated by the heater 3.
2 is heated to a high temperature by the energization, and contacts the high temperature reaction gas 18 flowing in from the wide opening of the reaction tube 31, and the reaction gas itself or a desired substance is produced by a chemical reaction between the reaction gas and the wafer. is grown on the wafer 30 in a vapor phase.

第2図は従来の縦型気相成長装置の一例の断面
図であり、石英製のベルジヤー34が載置された
ベースプレート35の中央を貫通して反応ガス導
入管36および導入管36の外側を囲む加熱板回
転軸37が設けられ、加熱板回転軸37に支持さ
れた加熱板38の上に半導体ウエーハ30が載置
され、加熱板38の回転と共にウエーハ30は回
転し、加熱板38の下に設けられたうず巻き形の
高周波コイル39の通電によりカーボン製の加熱
板は加熱され、高温の加熱板38により加熱され
たウエーハ30に、反応ガス導入管36を通して
導入され排気管40を通して排気される反応ガス
18が接触し、反応ガス18に即応した所望物質
がウエーハ30の上に気相成長される。
FIG. 2 is a cross-sectional view of an example of a conventional vertical vapor phase growth apparatus, in which a quartz bell gear 34 is placed through the center of a base plate 35, and a reaction gas introduction pipe 36 and the outside of the introduction pipe 36 are exposed. A surrounding heating plate rotating shaft 37 is provided, and a semiconductor wafer 30 is placed on a heating plate 38 supported by the heating plate rotating shaft 37. The wafer 30 rotates as the heating plate 38 rotates, and the wafer 30 rotates under the heating plate 38. The carbon heating plate is heated by energization of a spiral-shaped high-frequency coil 39 provided in the wafer 39 , which is introduced into the wafer 30 heated by the high-temperature heating plate 38 through the reaction gas introduction pipe 36 and exhausted through the exhaust pipe 40 . The reaction gas 18 comes into contact with the wafer 30, and a desired substance corresponding to the reaction gas 18 is vapor-phase grown on the wafer 30.

以上説明した従来の横形および縦形の気相成長
装置のうち、第1図の抵抗ヒータ加熱では、各加
熱ヒータの抵抗のばらつき、個々の加熱ヒータの
発熱不良により、また、第2図に示した高周波加
熱では、高周波コイルの巻き内径、巻き間隔およ
び加熱板に対する相互位置関係などにより、加熱
板上の温度分布を均一にすることが難しく、した
がつて、半導体ウエーハの温度分布も不均一にな
り、半導体ウエーハ内、半導体ウエーハ間および
気相成長工程間において、成長膜厚および抵抗率
を均一にすることが困難であつた。
Among the conventional horizontal and vertical vapor phase growth apparatuses explained above, the resistance heater heating shown in Fig. 1 is due to variations in the resistance of each heater, heat generation failure of individual heating heaters, and the heating shown in Fig. 2. In high-frequency heating, it is difficult to make the temperature distribution on the heating plate uniform due to the internal diameter of the windings of the high-frequency coil, the winding spacing, and the mutual positional relationship with respect to the heating plate. Therefore, the temperature distribution of the semiconductor wafer also becomes uneven. However, it has been difficult to make the grown film thickness and resistivity uniform within a semiconductor wafer, between semiconductor wafers, and between vapor phase growth processes.

また、高周波加熱では約百キロワツトの加熱電
力を必要とするのに比べ加熱ヒータによる加熱で
は数十キロワツトと少いが、その代わり加熱ヒー
タは温度容量が大きいため、急速加熱、急冷の面
において非能率的であつた。
In addition, high-frequency heating requires a heating power of about 100 kilowatts, while heating with a heater requires only a few tens of kilowatts, but on the other hand, the heater has a large temperature capacity, so it is difficult to perform rapid heating and cooling. He was efficient.

本発明の目的は、比較的消費電力が少くて済
み、しかも急速加熱、急冷が可能で、かつ、膜厚
および抵抗率のばらつきの少い気相成長が行なわ
れる気相成長装置を提供するにある。
An object of the present invention is to provide a vapor phase growth apparatus that consumes relatively little power, is capable of rapid heating and cooling, and performs vapor phase growth with less variation in film thickness and resistivity. be.

本発明の気相成長装置は、内側のベルジヤー
と、この内側のベルジヤーの外側に配置された中
央のベルジヤーと、この中央のベルジヤーの外側
に配置され且つ内面に反射効率の高い金属膜が被
着された外側のベルジヤーと、前記内側のベルジ
ヤー内に設けられた加熱板機能を有する成長基板
載置台(以下、ウエーハ加熱板と称す)と、前記
内側のベルジヤーと前記中央のベルジヤーとの間
に冷却用気体を流す冷却手段と、前記中央のベル
ジヤーと前記外側のベルジヤーとの間に設けられ
た加熱ヒータと、前記内側のベルジヤー内に反応
ガスを導入するための反応ガス導入管と、前記内
側のベルジヤー内からガスを排出するための排出
管とを含む構成を有する。
The vapor phase growth apparatus of the present invention comprises an inner bell gear, a central bell gear placed outside the inner bell gear, and a metal film placed outside the central bell gear and coated with a metal film with high reflection efficiency on the inner surface. A cooling plate is provided between an outer bell jar, a growth substrate mounting table having a heating plate function (hereinafter referred to as a wafer heating plate) provided in the inner bell gear, and the inner bell gear and the center bell gear. a heater provided between the central bell gear and the outer bell gear; a reaction gas introduction pipe for introducing a reaction gas into the inner bell gear; It has a configuration including an exhaust pipe for exhausting gas from inside the bell jar.

本発明によれば、内側のベルジヤー内にある回
転する加熱板に載置された半導体ウエーハは、中
央のベルジヤーと外側のベルジヤーとの間に設け
られた加熱ヒータにより直接および外側のベルジ
ヤーの内面に被着された金属膜により反射された
熱線により開接的に加熱されるので、その温度上
昇は急速でかつ均一な温度分布を有し、少ない消
費電力で効率的な加熱が行われる気相成長装置が
得られる。
According to the present invention, the semiconductor wafer placed on the rotating heating plate in the inner bell gear is heated directly and heated to the inner surface of the outer bell gear by the heater provided between the central bell gear and the outer bell gear. Since the heat rays reflected by the deposited metal film are heated tangentially, the temperature rises quickly and has a uniform temperature distribution, making it possible to achieve efficient heating with low power consumption. A device is obtained.

つぎに、本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第3図は本発明の一実施例の断面図である。第
3図において、ベースプレート6の上にシール用
のゴムリング8を介して内側のベルジヤー1が載
置され、内側のベルジヤー1の下部フランジは、
固定爪7に係止されてベースプレート6に完全気
密に固定されている。内側のベルジヤー1の根元
の外側の支持筒体9の上辺には、平板リング10
を介して中央のベルジヤー2とその外側に、外側
のベルジヤー3が取付けられ、さらに、中央のベ
ルジヤー2と外側のベルジヤー3との間には加熱
ヒータ4が、また、外側のベルジヤー3の内面に
は反射効率の高い金属膜、例えば金の被膜5が設
けられている。支持筒体9の外周の一箇所に冷却
気体導入口11が設けられ、これの排出筒12は
中央のベルジヤー2の頂部に設けられ、かつ、排
出筒の外周の一部を水冷装置13により囲まれて
いる。
FIG. 3 is a sectional view of one embodiment of the present invention. In FIG. 3, the inner bell gear 1 is placed on the base plate 6 via the rubber ring 8 for sealing, and the lower flange of the inner bell gear 1 is
It is locked by a fixing claw 7 and is completely airtightly fixed to the base plate 6. A flat ring 10 is attached to the upper side of the outer support cylinder 9 at the base of the inner bell gear 1.
An outer bell gear 3 is attached to the center bell gear 2 and the outside thereof via a heater 4, and a heater 4 is installed between the center bell gear 2 and the outer bell gear 3. is provided with a metal film with high reflection efficiency, for example, a gold coating 5. A cooling gas inlet 11 is provided at one location on the outer periphery of the support cylinder 9, and a discharge pipe 12 thereof is provided at the top of the central bell gear 2, and a part of the outer periphery of the discharge pipe is surrounded by a water cooling device 13. It is.

上記のベースプレート6、内側のベルジヤー
1、中央のベルジヤー2、外側のベルジヤー3、
支持筒体9などを構成要素として一体的なベルジ
ヤー組立14は、本体ベースプレート20の上に
シール用ゴムリング19を介して気密に載置さ
れ、かつ、駆動装置15により本体ベースプレー
ト20から離されて上昇可能とされている。本体
ベースプレート20のほぼ中央位置には、ウエー
ハ加熱板21に直結された回転軸22が貫通さ
れ、回転軸はモータ23により回転駆動される。
The above base plate 6, inner bell gear 1, center bell gear 2, outer bell gear 3,
The bell gear assembly 14, which is integral with the supporting cylinder 9 and the like, is airtightly placed on the main body base plate 20 via a sealing rubber ring 19, and is separated from the main body base plate 20 by a drive device 15. It is said that it is possible to ascend. A rotating shaft 22 directly connected to the wafer heating plate 21 passes through a substantially central position of the main body base plate 20 , and the rotating shaft is rotationally driven by a motor 23 .

次に半導体ウエーハ30を取りつける手順を記
載する。上記に述べた、ベルジヤー組立14を、
本体ベースプレート20に取付けられた石英反応
管用ベースプレート上下駆動装置15により上昇
させ、内側のベルジヤー1内の反応室を大気開放
して、加熱板回転軸22に直結された加熱板21
上に半導体ウエーハ30を載せる。続いて、ベル
ジヤー組立14と本体ベースプレートとのシール
用ゴムリング19を本体ベースプレート20に刻
ざまれたゴムリング溝に取り付け、ベルジヤー組
立14を下降させて本体ベースプレート20と完
全に密着シールする。
Next, a procedure for attaching the semiconductor wafer 30 will be described. The bell gear assembly 14 described above,
The heating plate 21 is raised by the quartz reaction tube base plate vertical drive device 15 attached to the main body base plate 20, and the reaction chamber in the inner bell jar 1 is opened to the atmosphere, and the heating plate 21 is directly connected to the heating plate rotation shaft 22.
A semiconductor wafer 30 is placed on top. Subsequently, a rubber ring 19 for sealing between the bell gear assembly 14 and the main body base plate is attached to a rubber ring groove cut in the main body base plate 20, and the bell gear assembly 14 is lowered to completely seal tightly with the main body base plate 20.

次に半導体ウエーハ30を気相成長させるに
は、加熱板回転軸22をモータ23により連続回
転させつつ反応ガス導入口16から反応ガス18
を流し、反応ガス排出口17から回収する。それ
と同時に、冷却気体導入口11から空気又は窒素
等の気体を圧入し、水冷装置13で冷却されてい
る冷却気体排出口12から外部へ排出させつつ、
別に設置されているヒータ加熱電源に接続された
加熱ヒータ4を発熱加熱し、半導体ウエーハ30
上に反応ガスに即応した物質を気相成長させる。
Next, in order to perform vapor phase growth on the semiconductor wafer 30, the heating plate rotation shaft 22 is continuously rotated by the motor 23, and the reaction gas 18 is passed through the reaction gas inlet 16.
is collected from the reaction gas outlet 17. At the same time, a gas such as air or nitrogen is pressurized through the cooling gas inlet 11 and discharged to the outside through the cooling gas outlet 12 which is cooled by the water cooling device 13.
A heating heater 4 connected to a separately installed heater heating power source generates heat and heats the semiconductor wafer 30.
A substance that responds quickly to the reaction gas is grown in a vapor phase on top.

ヒータ加熱電源には、自動温度調節器が取り付
けられており、内側のベルジヤー1内に突出され
ている温度測定端子24にて測定された温度情報
がフイードバツクされ、あらかじめ設定された温
度に自動制御される構造となつている。なお、冷
却気体として空気又は窒素を使用する際、あらか
じめ、冷凍機又は熱交換器を通すことにより室温
より低い温度に冷却させた気体を使用すれば、加
熱ヒータ及び内側、中央、外側の石英ベルジヤー
をより効果的に冷却することが出来、その上内側
ベルジヤー1の内面に析出する気相成長膜を極力
少なくすることが可能である。
An automatic temperature controller is attached to the heater heating power source, and the temperature information measured at the temperature measurement terminal 24 protruding inside the inner bell jar 1 is fed back, and the temperature is automatically controlled to a preset temperature. It has a structure that allows for When using air or nitrogen as the cooling gas, if you use the gas that has been cooled to a temperature lower than room temperature by passing it through a refrigerator or heat exchanger in advance, it is possible to cool the heater and the inner, central, and outer quartz bell jars. can be cooled more effectively, and the amount of vapor-grown film deposited on the inner surface of the upper inner bell gear 1 can be reduced as much as possible.

以上説明したように、本発明によれば、半導体
ウエーハを少ない電力で効率よくしかも短時間で
均一に所定の気相成長温度に上昇させ、連続して
自動温度制御をすることが出来る為、半導体ウエ
ーハ内の膜厚及び比抵抗等の諸特性の分布が均一
化され、しかも再現性のよい気相成長膜を有する
半導体ウエーハを連続して入手することが出来、
大幅な能率向上が達せられる。
As explained above, according to the present invention, semiconductor wafers can be raised to a predetermined vapor phase growth temperature efficiently and uniformly in a short time with less power, and continuous automatic temperature control can be performed. It is possible to continuously obtain semiconductor wafers having vapor-phase grown films with uniform distribution of various properties such as film thickness and resistivity within the wafer and with good reproducibility.
Significant efficiency gains can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の横形気相成長装置の一例
の斜視図およびそのA−A断面図、第2図は従来
の縦形気相成長装置の一例の断面図、第3図は本
発明の一実施例の断面図である。 1……内側ベルジヤー、2……中央ベルジヤ
ー、3……外側ベルジヤー、4……加熱ヒータ、
5……金属反射膜、6……ベースプレート、7…
…係止爪、8,19……シール用ゴムリング、9
……支持筒体、10……平板リング、11……冷
却気体導入口、12……冷却気体排出筒、13…
…水冷装置、14……ベルジヤー組立、15……
駆動装置、16……反応ガス導入管、17……ガ
ス排出管、18……反応ガス、20……本体ベー
スプレート、21……ウエーハ加熱板、22……
回転軸、23……モータ、24……温度測定端
子、30……半導体ウエーハ。
Figures 1a and b are a perspective view and a sectional view taken along the line A-A of a conventional horizontal vapor growth apparatus, Figure 2 is a sectional view of an example of a conventional vertical vapor growth apparatus, and Figure 3 is the invention of the present invention. FIG. 2 is a cross-sectional view of one embodiment of the invention. 1...Inner bell gear, 2...Center bell gear, 3...Outer bell gear, 4...Heating heater,
5...Metal reflective film, 6...Base plate, 7...
... Locking claw, 8, 19 ... Rubber ring for sealing, 9
...Support cylinder, 10...Flat plate ring, 11...Cooling gas inlet, 12...Cooling gas discharge pipe, 13...
...Water cooling device, 14...Belgear assembly, 15...
Drive device, 16...Reaction gas introduction pipe, 17...Gas discharge pipe, 18...Reaction gas, 20...Main body base plate, 21...Wafer heating plate, 22...
Rotating shaft, 23...Motor, 24...Temperature measurement terminal, 30...Semiconductor wafer.

Claims (1)

【特許請求の範囲】[Claims] 1 内側のベルジヤーと、この内側のベルジヤー
の外側に配置された中央のベルジヤーと、この中
央のベルジヤーの外側に配置され且つ内面に反射
効率の高い金属膜が被着された外側のベルジヤー
と、前記内側のベルジヤー内に設けられた成長基
板載置台と、前記内側のベルジヤーと前記中央の
ベルジヤーとの間に冷却用気体を流す冷却手段
と、前記中央のベルジヤーと前記外側のベルジヤ
ーとの間に設けられた加熱ヒーターと、前記内側
のベルジヤー内に反応ガスを導入するための反応
ガス導入管と、前記内側のベルジヤー内からガス
を排出するための排出管とを含むことを特徴とす
る気相成長装置。
1. an inner bell gear, a central bell gear located outside the inner bell gear, an outer bell gear located outside the central bell gear and having a metal film with high reflection efficiency coated on the inner surface; A growth substrate mounting table provided in the inner bell gear, a cooling means for flowing cooling gas between the inner bell gear and the center bell gear, and a cooling means provided between the center bell gear and the outer bell gear. A vapor phase growth method characterized in that the vapor phase growth method includes a heating heater, a reaction gas introduction pipe for introducing a reaction gas into the inner bell gear, and an exhaust pipe for discharging the gas from the inner bell gear. Device.
JP12669680A 1980-09-12 1980-09-12 Vapor phase growth device Granted JPS5750423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12669680A JPS5750423A (en) 1980-09-12 1980-09-12 Vapor phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12669680A JPS5750423A (en) 1980-09-12 1980-09-12 Vapor phase growth device

Publications (2)

Publication Number Publication Date
JPS5750423A JPS5750423A (en) 1982-03-24
JPS627685B2 true JPS627685B2 (en) 1987-02-18

Family

ID=14941577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12669680A Granted JPS5750423A (en) 1980-09-12 1980-09-12 Vapor phase growth device

Country Status (1)

Country Link
JP (1) JPS5750423A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200424A (en) * 1983-04-28 1984-11-13 Hitachi Electronics Eng Co Ltd Chemical vapor deposition device
JPH0674504B2 (en) * 1983-07-21 1994-09-21 キヤノン株式会社 Method of manufacturing deposited film
JPS61246370A (en) * 1985-04-23 1986-11-01 Sakaguchi Dennetsu Kk Gaseous phase chemical reaction furnace
JPS61250170A (en) * 1985-04-30 1986-11-07 Sakaguchi Dennetsu Kk Vapor phase chemical reaction furnace
JPS62296413A (en) * 1986-06-16 1987-12-23 Toshiba Ceramics Co Ltd Protective bell jar for epitaxial device
JPH0772351B2 (en) * 1986-12-01 1995-08-02 株式会社日立製作所 Metal thin film selective growth method
EP2558411A1 (en) * 2010-04-12 2013-02-20 Memc Electronic Materials, S.p.A. Bell jar for siemens reactor including thermal radiation shield

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275176A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Method for vapor phase epitaxial growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275176A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Method for vapor phase epitaxial growth

Also Published As

Publication number Publication date
JPS5750423A (en) 1982-03-24

Similar Documents

Publication Publication Date Title
US5505779A (en) Integrated module multi-chamber CVD processing system and its method for processing substrates
JP3178824B2 (en) High productivity multi-station type processing equipment for compound single wafer.
JP3252960B2 (en) Semiconductor thin film deposition equipment for atomic layer epitaxy process
US3796182A (en) Susceptor structure for chemical vapor deposition reactor
US5059770A (en) Multi-zone planar heater assembly and method of operation
JPH08250441A (en) Low-pressure chemical vapor deposition device
US5239614A (en) Substrate heating method utilizing heating element control to achieve horizontal temperature gradient
US6345150B1 (en) Single wafer annealing oven
JP3167964B2 (en) Gas injection system and gas injection method for CVD reactor
KR20050031058A (en) Thermal treating apparatus
JPS627685B2 (en)
JP3210051B2 (en) Vapor phase growth equipment
JP2003100643A (en) High temperature cvd system
KR100375396B1 (en) Reaction chamber with semi-high temperature wall
JP3383784B2 (en) Heat treatment equipment for semiconductor wafers
JPH10144619A (en) Lamp heater heat-treatment device
JPH0338029A (en) Vapor growth equipment
JPH07273101A (en) Single sheet heat treatment system
JPH0997765A (en) Substrate processing device
JPH0930893A (en) Vapor growth device
JPH0736386B2 (en) Vapor phase growth equipment
EP0330708B1 (en) Apparatus for forming thin films
CN115198354A (en) Preparation method of ultrathin substrate
JP2621197B2 (en) Barrel type vapor phase growth equipment
CN116024654A (en) Wafer heating thermal field of film forming device