JPS6273742A - Laying out method for integrated circuit - Google Patents

Laying out method for integrated circuit

Info

Publication number
JPS6273742A
JPS6273742A JP21531285A JP21531285A JPS6273742A JP S6273742 A JPS6273742 A JP S6273742A JP 21531285 A JP21531285 A JP 21531285A JP 21531285 A JP21531285 A JP 21531285A JP S6273742 A JPS6273742 A JP S6273742A
Authority
JP
Japan
Prior art keywords
layer
wiring
transistors
integrated circuit
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21531285A
Other languages
Japanese (ja)
Inventor
Koichiro Okumura
奥村 孝一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21531285A priority Critical patent/JPS6273742A/en
Publication of JPS6273742A publication Critical patent/JPS6273742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enhance the integration of an integrated circuit by alternately disposing wiring layers of multilayer low resistance metal in a direction perpendicular to a channel direction and a direction parallel thereto. CONSTITUTION:The channel directions of P-channel MOS transistors 17, 18 and N-channel MOS transistors 19, 20 are X-direction, and aluminum wirings 4-9, 10-14, F of the first layer are disposed in Y-direction. Aluminum wirings A, B, C, D, E, G H, VCC and VSS of the second layers are disposed in X- direction, the electrodes of the transistors 17-30 and polycrystalline silicon layers 21-25 are connected through a contacting region 16 with aluminum wirings of the first layer, which is connected via a through hole 15 with the aluminum wirings of the second layer. When thus layed out, the transistors 17-20 can be formed under the aluminum wirings, and the channel lengths and widths of the transistors 17-20 are not limited in size, thereby setting them in the optimum size.

Description

【発明の詳細な説明】 [、産業上の利用分野1 本発明は集積回路のトイアウト法に121し、持に低抵
抗金属の配線層を用いた集1?【回路のし・イアウド法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is directed to a toy-out method for integrated circuits, particularly in which a low-resistance metal wiring layer is used. [Regarding the circuit design and Iaud method.

〔従来の技術〕[Conventional technology]

従来の集積回路のレイアラ1〜法には、一層の低抵抗金
属の配線R(大多数はAe配線)を用いたものとしては
配線層の下にM OS l=ランジスタを配置し、ゲー
ト電極としても用いられる多結晶シリコン層及びトラン
ジスタのソース ドレインとしても使用される拡散層を
配線層と併用してトランジスタ相互間の配線を行なう方
法、多結晶シリコン層と拡散層とで71〜リツタス状の
仮想格子を形成してその交点にMOS)ランジスタを形
成し、M OS 1〜ランジスタ間の相互接続を配線層
3用いて行うゲートマトリックス法などがある。
In the conventional integrated circuit layerer 1 method, which uses a single layer of low-resistance metal wiring R (mostly Ae wiring), a MOS transistor is placed under the wiring layer and used as a gate electrode. A method of wiring between transistors using a polycrystalline silicon layer and a diffusion layer, which is also used as the source and drain of a transistor, in combination with a wiring layer. There is a gate matrix method in which a lattice is formed, MOS transistors are formed at the intersections thereof, and interconnections between the MOS 1 and the transistors are made using a wiring layer 3.

二層の配線層を用いたレイアラ1−法として、ゲートア
レイおよびビルディングプロ・ツタレイアウト法などが
ある。
Layer 1 methods using two wiring layers include gate array and building pro ivy layout methods.

(発明が解決しようとする問題点] 上述した従来の集積回路のレイアラ)−法は、集積化さ
れるゲート回路数の増加に伴い、配線頭載がチー1−回
路数の1.5倍へ一2東の割合で増太し、配線状況は飛
躍的に複雑となり、−・層の配線層C1:よるレイアウ
ト法では、拡散層あるいは多結晶シリコン層を配線とし
て多用するか、あるいは占有面積の増大を犠牲にして配
線を行なうしかないが、前者の場合には、配線抵抗の増
大および寄生容量の増大をまねき、集積回路の性能を悪
化させるし、後者の場合には、チップ面積の増大は1枚
のシリ丁1ンウエーハから得られる集積回路チップの個
数を少なくし、チップを高価にするという欠点がある。
(Problems to be Solved by the Invention) In the conventional integrated circuit layerer method described above, as the number of integrated gate circuits increases, the wiring overhead increases to 1.5 times the number of circuits. The wiring situation becomes dramatically more complicated, and the layout method based on the - layer wiring layer C1: requires extensive use of diffusion layers or polycrystalline silicon layers as wiring, or There is no choice but to perform wiring at the expense of increased wiring, but in the former case, this leads to increased wiring resistance and increased parasitic capacitance, deteriorating the performance of the integrated circuit, and in the latter case, the increase in chip area is This has the disadvantage that the number of integrated circuit chips that can be obtained from one single wafer is reduced, making the chips more expensive.

また、レイアラ)へに要する期間もその配線状況の複雑
さの故に非常に長期間を要するという欠点がある。
Furthermore, there is a drawback that it takes a very long time to install the wiring due to the complexity of the wiring situation.

一方、ゲートマ1〜リックス法によるレイアウトでは、
配線状況かは純なことが特長であるのでし、イアウド期
間は短いが、多結晶シリコン層を配線として一定ピッチ
で平行に配置するため、集積度か低いこと及び多結晶シ
リコン層に長い配線を用いるので、その寄生抵抗により
性能が悪化するという欠点がある。
On the other hand, in the layout using the gate matrix method,
The wiring condition is simple, and the wiring period is short, but since the polycrystalline silicon layer is used as wiring and is arranged in parallel at a constant pitch, the degree of integration is low, and the long wiring in the polycrystalline silicon layer is easy to use. However, the parasitic resistance deteriorates the performance.

また、二層の低抵抗金属層を配線層に用いたゲーI・ア
レ・イ及びビルディングブロック方式のレイアウト法に
おいては、いずれも、NA、ND、N。
In addition, in the layout method of the G/Array/I and building block method using two low-resistance metal layers as wiring layers, NA, ND, and N are used.

Rなどの比較的)移線な論理ゲーI−回路を含むセルの
配置領域とセル間の相互配線の領域とを別に設けてレイ
アラI・を行なうため、チップ面積が大きくなり、か−
)、セルはファンアウI−数に余裕を見込んで作成され
るため、セルを構成するMo3t−ランジスタの大きさ
が最適ではなく、集積回路チップとしての性能が低下す
るという欠点がある。
Because the layout area for cells containing circuits and the interconnection area between cells are separately provided to perform layerer I, the chip area becomes large and
), the cell is created with a margin in the fan-out I-number, so the size of the Mo3t-transistor constituting the cell is not optimal, and there is a drawback that the performance as an integrated circuit chip is degraded.

本発明の[1的は、集積度が高く高性能な集積回路を実
現でき、かつレイアウトにおける複雑さが改善されレイ
アラ1へ期間が短縮できる集積回路のレイアラ1〜法を
提供することにある。
An object of the present invention is to provide an integrated circuit layerer 1 method that can realize a high-integration, high-performance integrated circuit, improve layout complexity, and shorten the layerer 1 period.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の集積回路のレイアラ1〜法は、少なくとも2入
力以」二の論理ゲート回路を構成するMOSトランジス
タのチャネル方向を同一 とし、前記チャネル方向と直
行する方向に低抵抗金属の第J−の層の配線層を配し1
、該第1の層の配線層の上部に前記チャネル方向と平行
な方向に低抵抗金属の第2の層の配′a層を配し、前記
第1の層の配線層と前記第2の層の配線層とを交互に配
置するように構成される。
In the integrated circuit layerer method 1 of the present invention, the channel directions of the MOS transistors constituting at least two or more logic gate circuits are the same, and the J-th layer of low resistance metal is arranged in the direction perpendicular to the channel direction. Layer wiring layer 1
, a second layer of low-resistance metal is disposed on top of the first wiring layer in a direction parallel to the channel direction, and the first wiring layer and the second layer are connected to each other. The wiring layers are arranged alternately.

1、実施例〕 次に、本発明の実施例について図面を参照して説明する
1. Examples] Next, examples of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を用いてレイアラ1〜した集
積回路の平面図である。
FIG. 1 is a plan view of an integrated circuit constructed as a layerer 1 using an embodiment of the present invention.

第11図において、Pチャネル型のMOSトランジスタ
17.18及びNチャネル型のMOS)ランジスタ19
.20のチャネル方向はX方向であり、第一層目のAg
配線4〜9,10〜14及びFはこれと直行する方向す
なわちY方向に配置される。また、第二層目のAe配線
A、B、C,D。
In FIG. 11, P-channel type MOS transistors 17 and 18 and N-channel type MOS transistors 19
.. The channel direction of No. 20 is the X direction, and the Ag of the first layer
Wirings 4 to 9, 10 to 14, and F are arranged in a direction perpendicular to this, that is, in the Y direction. Also, the second layer Ae wiring A, B, C, D.

E、G、H,Vcc及びV55はチャネル方向と同一の
X方向に配置され、M OS 1〜ランジスタ17〜2
0の各電極及び多結晶シリコン層21〜25はコンタク
ト領域16を通じて第一層目のAC配線と接続され、第
一層目のAe配線はスルーホール15を通じて第二4層
目のAe配線と接続されている。
E, G, H, Vcc and V55 are arranged in the same X direction as the channel direction, and MOS 1 to transistors 17 to 2
0 and polycrystalline silicon layers 21 to 25 are connected to the first layer AC wiring through the contact region 16, and the first layer Ae wiring is connected to the second and fourth layer Ae wiring through the through hole 15. has been done.

このようにレイアウトすることにより、Ae配線の下に
MO8+〜ランジスタ17〜20を形成することが可能
になると共に、M OS トランジスタ1−7〜20の
チャ木ル長及びチャイ・ル幅に寸法上の制限がなくなる
ので、最適寸法に設定できる。
This layout makes it possible to form MO8+ to transistors 17 to 20 under the Ae wiring, and also makes it possible to form the transistors 17 to 20 under the Ae wiring, and also to reduce the size of the transistor length and width of the MOS transistors 1 to 20. Since there are no restrictions, the dimensions can be set to the optimum size.

さらに、MOS)ランジスタ17,1.8への電源供給
はAe配線VCCを経由してA g配線4〜6で行われ
、MOS)−ランジスタ19,20の接地端子への接続
はAee線7〜9を経由してA e配線V55を通じて
行われる。また、Mo5t−ランジスタ17及び19間
の接続は第1層目のAee線11.12と、第2層目の
Ae配配線上で行われ、MOSトランジスタ18及び2
0間の接続は第1層目のAee線13.14と、第2層
目のAe配配線上で行われるので、寄生直流抵抗が小さ
く、MOSトランジスタの能力がそのまま集積回路チッ
プの性能につながるため高性能のjA積回路を実現でき
る。
Furthermore, power is supplied to the MOS) transistors 17 and 1.8 via the Ae wiring VCC through the Ag wiring 4 to 6, and the connection to the ground terminal of the MOS) transistors 19 and 20 is via the Aee wiring 7 to 9 and the Ae wiring V55. Further, the connection between the Mo5t transistors 17 and 19 is made on the first layer Aee wire 11.12 and the second layer Ae wiring, and the MOS transistors 18 and 2
Since the connection between 0 and 0 is made on the Aee wires 13 and 14 on the first layer and the Ae wiring on the second layer, the parasitic DC resistance is small, and the ability of the MOS transistor directly affects the performance of the integrated circuit chip. Therefore, a high performance jA product circuit can be realized.

配線層は第1層目がX方向、第2層目がY方向に配置さ
れるので、配線状況を捕えやすく、レイアウトが簡明に
なる9 次に、第2図は第1図に示す集積回路の等価回路図であ
る。
Since the first wiring layer is arranged in the X direction and the second layer in the Y direction, it is easy to understand the wiring situation and the layout is simple.9 Next, Figure 2 shows the integrated circuit shown in Figure 1. FIG.

第2図において、2は3入力NAND回路、3は2入力
NOR回路で、参照記号A、B、C,D。
In FIG. 2, 2 is a 3-input NAND circuit, 3 is a 2-input NOR circuit, and their reference symbols are A, B, C, and D.

E、F、Gで示す接続線は、それぞれ第1図に示す同記
号のAe配線に対応する。
The connection lines labeled E, F, and G correspond to the Ae wiring with the same symbol shown in FIG. 1, respectively.

以上述べたとおり、本実施例では二層の配線層の場合を
示したが、三層の配線層を用いてレイアウトする場合に
は、三層目の配線は一層目と同方向とし、ブロック内を
通過する配線として用い、更に四層の配線層を用いてレ
イアウトする場合には、三層目を一層目と同方向として
ブロック内を通過する配線として用い、四層目を二層目
と同方向としてブロック内を通過する配線として用いる
ことにより、本発明の利点を損うことなく、更に高密度
に集積化した集積回路チップのレイアウトを実現できる
As mentioned above, this example shows the case of two wiring layers, but when laying out using three wiring layers, the wiring of the third layer should be in the same direction as the first layer, and within the block. When laying out four wiring layers, use the third layer as the wiring that passes through the block in the same direction as the first layer, and set the fourth layer in the same direction as the second layer. By using it as a wiring that passes through the block in the direction, it is possible to realize a layout of an integrated circuit chip that is integrated at a higher density without sacrificing the advantages of the present invention.

し発明の効果〕 以」二説明したように、本発明の集積回路のレイアラ1
−法は、多層の低抵抗金属の配線層を交互にチャネル方
向と直行する方向及び平行する方向に配置することによ
り、集積度が高くかつ高性能の集積回路を実現でき、し
かもレイアラ1〜・における複雑さが改善されI/イア
ウド期間が短縮できるという効果がある。
[Effects of the Invention] As explained below, the layerer 1 of the integrated circuit of the present invention
- method can realize a highly integrated and high-performance integrated circuit by arranging multilayer low-resistance metal wiring layers alternately in directions perpendicular and parallel to the channel direction. This has the effect that the complexity in is improved and the I/I period can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を用いてレイアラI・した集
積回路の平面図、第2図は第1図に示す集積回路の等価
回路図である。 2・・・3入力NAND回路、3・・・2入力NOR回
路、4〜9.11〜14・・・Ag配線、15・・・ス
ルーホール、16・・・コンタクト領域、17〜20・
・・MOSトランジスタ、A、B、C,D、E、F。 G、H・Ag配線、V cc、 V ss−A e配線
FIG. 1 is a plan view of an integrated circuit implemented as a layered circuit using an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the integrated circuit shown in FIG. 2... 3-input NAND circuit, 3... 2-input NOR circuit, 4-9. 11-14... Ag wiring, 15... Through hole, 16... Contact area, 17-20.
...MOS transistors, A, B, C, D, E, F. G, H/Ag wiring, V cc, V ss-A e wiring.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2入力以上の論理ゲート回路を構成するMO
Sトランジスタのチャネル方向を同一とし、前記チャネ
ル方向と直行する方向に低抵抗金属の第1の層の配線層
を配し、該第1の層の配線層の上部に前記チャネル方向
と平行な方向に低抵抗金属の第2の層の配線層を配し、
前記第1の層の配線層と前記第2の層の配線層とを交互
に配置することを特徴とする集積回路のレイアウト法。
MO constituting a logic gate circuit with at least two inputs
The channel directions of the S transistors are the same, a first layer wiring layer of a low resistance metal is arranged in a direction perpendicular to the channel direction, and a first layer wiring layer of a low resistance metal is arranged above the first layer wiring layer in a direction parallel to the channel direction. A second wiring layer of low-resistance metal is placed on the
A layout method for an integrated circuit, characterized in that the first wiring layer and the second wiring layer are arranged alternately.
JP21531285A 1985-09-27 1985-09-27 Laying out method for integrated circuit Pending JPS6273742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21531285A JPS6273742A (en) 1985-09-27 1985-09-27 Laying out method for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21531285A JPS6273742A (en) 1985-09-27 1985-09-27 Laying out method for integrated circuit

Publications (1)

Publication Number Publication Date
JPS6273742A true JPS6273742A (en) 1987-04-04

Family

ID=16670231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21531285A Pending JPS6273742A (en) 1985-09-27 1985-09-27 Laying out method for integrated circuit

Country Status (1)

Country Link
JP (1) JPS6273742A (en)

Similar Documents

Publication Publication Date Title
US4989062A (en) Semiconductor integrated circuit device having multilayer power supply lines
JPH07249630A (en) Semiconductor integrated circuit
JPH058585B2 (en)
EP0125504A1 (en) Bipolar transistor MOS transistor hybrid semiconductor integrated circuit device
KR950002046A (en) Semiconductor integrated circuit device
JPH0434309B2 (en)
US4951111A (en) Integrated circuit device
JPH0556864B2 (en)
JP3644138B2 (en) Semiconductor integrated circuit and placement and routing method thereof
JP3085472B2 (en) Semiconductor integrated circuit device and method of forming the same
JPS6273742A (en) Laying out method for integrated circuit
JP2000223575A (en) Design of semiconductor device, semiconductor device and its manufacture
JPS6074647A (en) Semiconductor ic device
JPH0562469B2 (en)
JPH0122733B2 (en)
JPH0563944B2 (en)
JPH11135647A (en) Semiconductor device
JPS62183140A (en) Semiconductor integrated circuit device
JPS644667B2 (en)
JPS6135535A (en) Master slice ic device
JPH0534832B2 (en)
JPH07153926A (en) Semiconductor integrated circuit device
JPS6350851Y2 (en)
JP2750352B2 (en) Standard cell pattern structure
JPS59150446A (en) Semiconductor integrated circuit device