JPS6273679A - Manufacture of photoelectric exchange film - Google Patents

Manufacture of photoelectric exchange film

Info

Publication number
JPS6273679A
JPS6273679A JP60215913A JP21591385A JPS6273679A JP S6273679 A JPS6273679 A JP S6273679A JP 60215913 A JP60215913 A JP 60215913A JP 21591385 A JP21591385 A JP 21591385A JP S6273679 A JPS6273679 A JP S6273679A
Authority
JP
Japan
Prior art keywords
heat treatment
photoelectric conversion
film
oxygen
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60215913A
Other languages
Japanese (ja)
Other versions
JPH0476512B2 (en
Inventor
Masataka Ito
政隆 伊藤
Masaya Osada
昌也 長田
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60215913A priority Critical patent/JPS6273679A/en
Priority to US06/910,875 priority patent/US4759951A/en
Priority to DE19863632210 priority patent/DE3632210A1/en
Priority to GB8622999A priority patent/GB2183089B/en
Publication of JPS6273679A publication Critical patent/JPS6273679A/en
Publication of JPH0476512B2 publication Critical patent/JPH0476512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To adopt a real time type picture reading system by continuously baking a photoconductor material, low melting-point glass and a chloride under the conditions of the heat treatment of two kinds or more when low melting- point glass and the chloride are added to the photoconductor material and thermally treated. CONSTITUTION:CdSe powder, glass frit and a halide are added onto an insulating substrate 1 consisting of ceramics, glass, etc., and photoconductive paste 2 to which an organic solvent is added is applied in predetermined width. First activation heat treatment is conducted to the applied film 2, and a mixed gas in which the mixing ratio of oxygen to nitrogen is kept within a range of O2:N2=1:20-1:4 is made to flow at the rate of 1-10l/min. In the first heat treatment process, the growth of particles is inhibited and photocurrents are lowered when the partial pressure of oxygen is dropped. Second heat treatment is performed in an inert gas, and an electrode 3 is formed onto the photoconductive film 2. Accordingly, particles are grown and crystallizability is improved under separate conditions, thus remarkably enhancing the characteristics of a photoelectric conversion film prepared by using powder, then promoting its stabilization.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光を電気信号に変換する光電変換素子に用い
て好適な光電変換膜の作製方法に係り、特にファクシミ
リ、スキャナー等の読取り部に用いて好適な光電変換膜
の作製方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a photoelectric conversion film suitable for use in a photoelectric conversion element that converts light into an electrical signal, and in particular to a method for producing a photoelectric conversion film suitable for use in a reading section of a facsimile, a scanner, etc. The present invention relates to a method for producing a photoelectric conversion film suitable for use in the present invention.

〈従来の技術〉 従来、例えばファクシミリ等の読み取り部にはCCDM
O5型センサ等IC技術を用いて作製した光センサが用
いられている。
<Conventional technology> Conventionally, for example, CCDM was used in the reading section of facsimile machines, etc.
Optical sensors manufactured using IC technology, such as O5 type sensors, are used.

しかし、このようなセンサはic技術を用いて作成する
為、数IQmmの長さのものしか作成できず、実際に使
用するrK、は原稿を縮少結像する必要がある。縮少結
像を行なう場合、レンズ光路長が必要となり、一般的に
は20crnから30錆の距離が不可欠である。このよ
うな光路長は読み取り部の小型化軽量化に対して大きな
問題となる。
However, since such a sensor is manufactured using IC technology, it can only be manufactured with a length of several IQ mm, and in actual use, it is necessary to reduce and image the document. When performing reduced imaging, a lens optical path length is required, and generally a distance of 20 crn to 30 crn is essential. Such an optical path length poses a major problem in reducing the size and weight of the reading section.

近年上記のような縮少型のセンサに対し、原稿と同じ幅
のセンサを作製しファイバーオプテックレンズアレイを
用いセンサ上に原稿を等倍結像させる密着型イメージセ
ンサが提案されている。
In recent years, in contrast to the above-mentioned reduced-size sensors, a close-contact image sensor has been proposed in which a sensor with the same width as the original is fabricated and a fiber optic lens array is used to image the original at the same size on the sensor.

このイメージセンサの光電変換素子としてCdS 。CdS is used as the photoelectric conversion element of this image sensor.

casxsr 、蒸着膜+aSl膜等を用いたものが提
案されているが、いづれも真空グロセス?用いる為、生
産性歩留りの点で問題がありコスト高となる。
casxsr, vapor deposited film + aSl film, etc. have been proposed, but are they all vacuum gross? Since it is used, there are problems in terms of productivity and yield, resulting in high costs.

また注入型の素子として用いる場合、キャリア移動度、
寿命等に光応答速度が左右され5m5ec程度が限界と
なる。
In addition, when used as an injection type device, carrier mobility,
The light response speed depends on the lifespan, etc., and the limit is about 5 m5 ec.

一方、光電変換膜を比較的安価に作製する方法として、
硫化カドミウム、セレン化カドミウムまたは硫・セレン
化カドミウムの粉末と、少量の活性化不純物と融剤と有
機結合剤とを混合して泥状物質として基板上に塗布し、
この塗布された基板を窒素ガスあるいは微1t(0,8
%)の酸素ガスを含む窒素ガス雰囲気中で焼成すること
によって作製する方法が知られている(例えば特公昭5
2−25305号公報)。
On the other hand, as a method for producing a photoelectric conversion film at a relatively low cost,
Cadmium sulfide, cadmium selenide, or sulfur/cadmium selenide powder is mixed with a small amount of activated impurities, a flux, and an organic binder and applied as a slurry onto a substrate.
This coated substrate is then heated using nitrogen gas or a fine 1t (0,8
%) of oxygen gas is known.
2-25305).

〈発明が解決しようとする問題点ン しかし、上記のような厚膜形成方法によれば、光電変換
膜が比較的安価に、また再現性良く作製されるイ)のの
、実時間型画像読み出し方式の採用を可能とした画像信
号出方特性及び光応答特性の優れた充電変換膜を作製す
ることが出来ず、ファクシミリ等の高密度高画素数の読
み取り部への適用は困難であった。
(Problems to be solved by the invention) However, according to the thick film forming method as described above, a photoelectric conversion film can be produced relatively inexpensively and with good reproducibility. It was not possible to produce a charge conversion film with excellent image signal output characteristics and photoresponse characteristics that made it possible to adopt this method, and it was difficult to apply this method to high-density, high-pixel reading units such as facsimiles.

本発明は上記の問題点に鑑みて創案されたもので、実時
間型画像読み出し方式の採用を可能にした高感度低価格
な光電変換膜の作製方法を提供することを目的としたも
のである。
The present invention was devised in view of the above-mentioned problems, and aims to provide a highly sensitive, low-cost method for producing a photoelectric conversion film that makes it possible to employ a real-time image readout method. .

く問題点を解決するための手段〉 上記の目的を達成するため、本発明は少なくともCdS
、CdSe、CdTe、Cd5)(むトx 、 Cd 
5XTe+−xICd S exTe I−Xの光導電
体材料の1種類以上を主成分とし、この光導電体材料に
低融点ガラス及び塩化物を添加熱処理するようにしだ光
電変換膜の作製方法において、この熱処理を少なくとも
2種類以上の熱処理条件で連続して焼成するよう(【構
成している。
Means for Solving the Problems> In order to achieve the above object, the present invention provides at least CdS
, CdSe, CdTe, Cd5) (mutx, Cd
5XTe+-xICd S exTe I-X In the method for producing a photoelectric conversion film, the photoconductor material is heat-treated by adding low melting point glass and chloride to the photoconductor material. The heat treatment is configured so that the firing is performed continuously under at least two types of heat treatment conditions.

〈作 用〉 一般に、光導電体材料(例えばCd5e)粉体を熱処理
して活性化する為には、粉体粒を成長させ粒間の結着全
促出させる必要がある。
<Function> Generally, in order to activate photoconductor material (for example, Cd5e) powder by heat treatment, it is necessary to grow the powder grains and fully promote binding between the grains.

しかし、粉体は表面を占める割合が非常に大きく、表面
の組成ずれ結晶格子の乱れ等の影響を受けやすい。した
がって粒成長と共に結晶表面及び粒界面にこのような表
面格子の乱れ等を含むことになる。
However, powder occupies a very large proportion of the surface and is easily affected by compositional shifts and disordered crystal lattices on the surface. Therefore, along with grain growth, such surface lattice disturbances are included on the crystal surfaces and grain interfaces.

このような組成ずれ等の表面状態は、半導体の禁制帯中
にトラップレベルを作り、応答速度、経時変化等に悪影
響を及ぼすことになるが、本発明においては、粒成長を
させながら、しかも表面状態を改善させる為に熱処理工
程を2つに分け、第1の工程として例えば比較的低温で
粒子間を結着させる。次に第2の工程として、やや温度
を上げ粒成長を抑制しながら表面の格子の乱れを緩和さ
せ、また余剰な光導電体材料(Cd或いはSe等)を蒸
発させる。
Such surface conditions such as compositional deviation create a trap level in the forbidden band of the semiconductor and have a negative effect on response speed, change over time, etc. However, in the present invention, while allowing grain growth, the surface condition In order to improve the condition, the heat treatment process is divided into two steps, and the first step is to bond the particles at a relatively low temperature, for example. Next, as a second step, the temperature is slightly raised to suppress grain growth while relaxing the lattice disorder on the surface, and to evaporate excess photoconductor material (Cd, Se, etc.).

以上の2つの熱処理工程により良好な特性の光導電膜が
作製される。
A photoconductive film with good characteristics is produced by the above two heat treatment steps.

〈実施例〉 次に、本発明の一実施例としてCdSeを用いた2段階
焼成について実際の作製方法を例にとり、説明する。
<Example> Next, as an example of the present invention, a two-step firing process using CdSe will be described using an actual manufacturing method as an example.

第1図(a)乃至(d)はそれぞれ本発明により作表さ
れた光電変換素子備えた素子の作製方法の一実施例の作
製工程を示す工程図である。
FIGS. 1(a) to 1(d) are process diagrams showing the manufacturing steps of an embodiment of the method for manufacturing an element including a photoelectric conversion element tabulated according to the present invention.

まず、第1図(a)に示すようにセラミック、ガラス等
の絶縁性基板1上K Cd S e粉末、ガラス7リツ
ト、ハロゲン化物を添加し、さらに有機溶剤全顎えた光
導電ペースト2を所定の幅で塗布する。
First, as shown in FIG. 1(a), a photoconductive paste 2 containing K Cd Se powder, 7 liters of glass, and a halide is added to an insulating substrate 1 made of ceramic, glass, etc., and is further coated with an organic solvent. Apply with a width of .

具体的には、CdSeは化学析出法を用いて作成し、予
め活性化した微粉棒金用い、このCdSe微結晶粉末に
低融点ガラス及び3mo1%のCdCl2 k添加し、
更に有機溶剤によりペースト状にした光導電ペースト2
を所定の幅に基板l上に塗布する。
Specifically, CdSe was created using a chemical precipitation method, using a previously activated fine powder rod, and adding low melting point glass and 3 mo1% CdCl2k to this CdSe microcrystalline powder.
Photoconductive paste 2 further made into a paste with an organic solvent
is applied onto the substrate l to a predetermined width.

本実施例ではスクリーン印刷を用いて膜厚IOμ〜20
μに塗布した。
In this example, screen printing was used to obtain a film with a film thickness of IOμ~20μ.
It was applied to μ.

次に第1図(a)に示す工程で塗布した膜2を第2図(
b)の工程において第1の活性化熱処理を行なう。
Next, the film 2 coated in the step shown in FIG. 1(a) is shown in FIG.
In step b), a first activation heat treatment is performed.

第1の熱処理は主に粒の成長を促進させるもので酸素全
混入させる本実施例では酸素と窒素の混合気体中で行な
った。混合比は02 +N2=l :20〜1:4の範
囲として混合気体を毎分1〜10を流した。また熱処理
の温度は、430°C〜500℃とした。
The first heat treatment mainly promotes the growth of grains, and in this example, in which all oxygen is mixed, it was carried out in a mixed gas of oxygen and nitrogen. The mixing ratio was set in the range of 02+N2=l:20 to 1:4, and the mixed gas was flowed at a rate of 1 to 10 per minute. Moreover, the temperature of the heat treatment was 430°C to 500°C.

この第1の熱処理工程において、酸素分圧を低くすると
粒子の成長が抑制されて光電流が低下する。また酸素分
圧を高くすると粒成長は進むが表面粗度が悪くなり、電
極形成等において歩留りか低下する。
In this first heat treatment step, when the oxygen partial pressure is lowered, particle growth is suppressed and the photocurrent is reduced. Furthermore, when the oxygen partial pressure is increased, grain growth progresses, but the surface roughness deteriorates and the yield in electrode formation etc. decreases.

第2図は第1の熱処理工程における活性化処理による粒
成長と表面粗度の焼成雰囲気依存性を示したものである
。この第2図より明らかなように、酸素分圧を高くする
と粒成長が顕著になり、5μm程度まで成長するが、一
方表面粗度が悪くなり、上部電極部形成時の欠陥等の原
因となる。また酸素分圧を低くすると粒子の成長が抑制
されて第3図に示すように必要最小出力(1,0μA)
が得られなくなる。従って本実施例では酸素分圧172
0〜1/4 として素子作製を行なった。
FIG. 2 shows the dependence of grain growth and surface roughness on the firing atmosphere due to the activation treatment in the first heat treatment step. As is clear from Fig. 2, when the oxygen partial pressure is increased, the grain growth becomes remarkable and grows to about 5 μm, but on the other hand, the surface roughness deteriorates, causing defects etc. when forming the upper electrode part. . In addition, if the oxygen partial pressure is lowered, the growth of particles is suppressed, and as shown in Figure 3, the required minimum output (1.0 μA) is achieved.
will not be obtained. Therefore, in this example, the oxygen partial pressure is 172
Elements were fabricated with a ratio of 0 to 1/4.

次に、第1図(b) K示す第1の熱処理工程に続いて
第1図(c)に示す第2の熱処理全行なう。
Next, following the first heat treatment step shown in FIG. 1(b) K, a second heat treatment shown in FIG. 1(c) is performed.

第2の熱処理は、不活性気体中で行ない、本実施例では
窒素中で480℃〜550℃の間で行なフプロセスを用
い電極3を形成した。卿中骨−吟→→i−4第4図は第
1図の各工程における粒成長の変化を、また各工程での
光電流と共に示したものであり、また第5図は各工程で
の応答速度を示したものであり、第1図(b)に示す第
1の熱処理工程において、酸素分圧1/100混合気体
を毎分1を流すと共に470℃で1時間熱処理し、第1
図(C)に示す第2の熱処理工程において、窒素中で5
00°Cで1時間熱処理した場合の例を示している。
The second heat treatment was performed in an inert gas, and in this example, the electrode 3 was formed using a flow process in nitrogen at a temperature of 480°C to 550°C. Figure 4 shows the changes in grain growth in each process in Figure 1, together with the photocurrent in each process, and Figure 5 shows the changes in grain growth in each process in Figure 1. This shows the response speed. In the first heat treatment step shown in FIG.
In the second heat treatment step shown in Figure (C),
An example of heat treatment at 00°C for 1 hour is shown.

上記第4図より明らかなように第1図(a)の工程で数
+oooXの粒径が第1図(b)に示す第1の熱処理工
程により数μm″!で成長する。更に第1図(c)の第
2の熱処理工程ではほとんど成長しない。また出力も粒
成長と同様に変化する。一方、応答速度は第5図に示す
ように第1の熱処理工程(b)では10 m5ecであ
るが、第2の熱処理工程ではさらに改善され数m5ec
になる。
As is clear from FIG. 4 above, in the step of FIG. 1(a), the grain size of several +oooX grows to several μm''! in the first heat treatment step shown in FIG. 1(b).Furthermore, in the step of FIG. In the second heat treatment step (c), there is almost no growth.The output also changes in the same way as the grain growth.On the other hand, the response speed is 10 m5ec in the first heat treatment step (b), as shown in Figure 5. However, in the second heat treatment step, it was further improved to several m5ec.
become.

第6図は、経時変化を示す図であり、同図において、■
は第1.第2の熱処理程を経たサンプルの経時変化を示
すグラフであり、■は第1の熱処理工程を経たサンプル
の経時変化を示すグラフである。
FIG. 6 is a diagram showing changes over time, and in the same figure, ■
is the first. It is a graph showing the change over time of the sample that has gone through the second heat treatment process, and ■ is a graph showing the change over time of the sample that has gone through the first heat treatment process.

この第6図からも明らかなように、第1の熱処理だけ行
なったサンプル@は、経時変化が大きいが、第1及び第
2の2つの熱処理工程を経たサンプルは、100OH経
過後も10%以内の変化に抑えられている。
As is clear from Fig. 6, the sample @ subjected to only the first heat treatment has a large change over time, but the sample that has undergone two heat treatment steps, the first and second, has a change within 10% even after 100OH. is suppressed by changes in

〈発明の効果〉 以上のように本発明は熱処理条件を多段階にし、粒成長
と結晶性の向上とも別々の条件で行なうよってなしてい
るため、粉体を用いて作製された光電変換膜の特性を著
しく向上させることができ、つ高性能な素子を実現する
ことが可能となる。
<Effects of the Invention> As described above, the present invention uses multi-step heat treatment conditions and improves grain growth and crystallinity under separate conditions. The characteristics can be significantly improved, and a high-performance device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(由は、それぞれ本発明により作製さ
れる光電変換膜を備えた素子の作製工程の一例を示す工
程図、第2図は熱処理時の酸素、窒素分圧に対する粒径
及び表面粗度を示す図、第3図は酸素、窒素分圧に対す
る出力を示す図、第4図は素子の作製工程と粒径、光電
流との関係を示す図、第5図は同様に応答速度との関係
を示す図、第6図は素子の光出力の経時変化を示す図で
ある。 1・・・絶縁性基板、2・・・光導電膜、3・・・電極
。 代理人 弁理士 福 士 愛 彦(他2名)raノ を
弗仁稠;I」 lCノ匍(■W 第2 図 v1畷七圧Vsi−り 第3m 彎に 第412I
Figures 1 (a) to (respectively are process diagrams showing an example of the manufacturing process of an element equipped with a photoelectric conversion film manufactured according to the present invention, and Figure 2 is a diagram showing particle size with respect to partial pressure of oxygen and nitrogen during heat treatment. Figure 3 is a diagram showing the output with respect to oxygen and nitrogen partial pressures, Figure 4 is a diagram showing the relationship between the element fabrication process, particle size, and photocurrent, and Figure 5 is a diagram showing the relationship between the element manufacturing process, particle size, and photocurrent. FIG. 6 is a diagram showing the relationship with the response speed, and a diagram showing the change over time in the optical output of the element. 1... Insulating substrate, 2... Photoconductive film, 3... Electrode. Agent. Patent attorney Aihiko Fukushi (and 2 others) RANO wo 弗人稌;

Claims (1)

【特許請求の範囲】 1、少なくともCdS、CdSe、CdTe、CdS_
xSe_1_−_x、CdS_xTe_1_−_x、C
dSe_xTe_1_−_xの光導電体材料の1種類以
上を主成分とし、該光導電体材料に低融点ガラス及び塩
化物を添加熱処理してなる光電変換膜の作製方法におい
て、 上記熱処理を、少なくとも2種類以上の熱処理条件で連
続して焼成することを特徴とする光電変換膜の作製方法
。 2、前記熱処理工程は少なくとも光導電膜を少なくとも
酸素を含む雰囲気中で熱処理する工程と不活性気体中で
熱処理する工程の2段階の工程を含んでなることを特徴
とする特許請求の範囲第1項記載の光電変換膜の作製方
法。 3、前記光導電膜の熱処理工程は、少なくとも2種類以
上の温度で連続して焼成してなることを特徴とする特許
請求の範囲第1項または第2項記載の光電変換膜の作製
方法。
[Claims] 1. At least CdS, CdSe, CdTe, CdS_
xSe_1_-_x, CdS_xTe_1_-_x, C
dSe_xTe_1_-_x A method for producing a photoelectric conversion film comprising at least one type of photoconductor material as a main component and heat-treated by adding low melting point glass and chloride to the photoconductor material, wherein at least two types of the above-mentioned heat treatment are performed. A method for producing a photoelectric conversion film characterized by successive firing under the above heat treatment conditions. 2. The heat treatment step includes two steps: a step of heat-treating at least the photoconductive film in an atmosphere containing at least oxygen and a step of heat-treating it in an inert gas. A method for producing a photoelectric conversion film as described in Section 1. 3. The method for producing a photoelectric conversion film according to claim 1 or 2, wherein the heat treatment step of the photoconductive film is performed by successively firing the photoconductive film at at least two different temperatures.
JP60215913A 1985-09-25 1985-09-26 Manufacture of photoelectric exchange film Granted JPS6273679A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60215913A JPS6273679A (en) 1985-09-26 1985-09-26 Manufacture of photoelectric exchange film
US06/910,875 US4759951A (en) 1985-09-25 1986-09-23 Heat-treating Cd-containing photoelectric conversion film in the presence of a cadmium halide
DE19863632210 DE3632210A1 (en) 1985-09-25 1986-09-23 METHOD FOR PRODUCING A PHOTOELECTRIC CONVERSION FILM
GB8622999A GB2183089B (en) 1985-09-25 1986-09-24 Process for producing photoelectric conversion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215913A JPS6273679A (en) 1985-09-26 1985-09-26 Manufacture of photoelectric exchange film

Publications (2)

Publication Number Publication Date
JPS6273679A true JPS6273679A (en) 1987-04-04
JPH0476512B2 JPH0476512B2 (en) 1992-12-03

Family

ID=16680323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215913A Granted JPS6273679A (en) 1985-09-25 1985-09-26 Manufacture of photoelectric exchange film

Country Status (1)

Country Link
JP (1) JPS6273679A (en)

Also Published As

Publication number Publication date
JPH0476512B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US4759951A (en) Heat-treating Cd-containing photoelectric conversion film in the presence of a cadmium halide
JPS6273679A (en) Manufacture of photoelectric exchange film
EP0047651B1 (en) Method of producing image sensor
JPS6272183A (en) Manufacture of photoelectric conversion film
US4608514A (en) Photoconductive target of the image pickup tube
JPH01149488A (en) Photosensor and manufacture thereof
JPH09232603A (en) Manufacture of infrared detector
JPS61190989A (en) Manufacture of photoelectric conversion film
JPH02143568A (en) Manufacture of photosensor
JPS6235564A (en) Manufacture of photoelectric converter
JPS63137474A (en) Manufacture of photoelectric conversion element
JPH058593B2 (en)
JPH0510833B2 (en)
JPS6318340B2 (en)
JPH0426789B2 (en)
JPS59227173A (en) Photoelectric conversion element and manufacture thereof
JP2689946B2 (en) Manufacturing method of infrared detector
JP2601475B2 (en) Method for manufacturing photoelectric conversion device
JPS58172232A (en) Manufacture of photoconductive thin film
JPS62119968A (en) Manufacture of optoelectric transducer
JPS61267241A (en) Photo-conductive target of image pickup tube
JPS62186573A (en) Manufacture of light receiving element
JPS63137475A (en) Photoelectric conversion element
JPS59110177A (en) Photoelectric conversion element
JPH0510832B2 (en)