JPH0476512B2 - - Google Patents
Info
- Publication number
- JPH0476512B2 JPH0476512B2 JP60215913A JP21591385A JPH0476512B2 JP H0476512 B2 JPH0476512 B2 JP H0476512B2 JP 60215913 A JP60215913 A JP 60215913A JP 21591385 A JP21591385 A JP 21591385A JP H0476512 B2 JPH0476512 B2 JP H0476512B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- photoelectric conversion
- conversion film
- cds
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 3
- 229910004613 CdTe Inorganic materials 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は、光を電気信号に変換する光電変換素
子に用いて好適な光電変換膜の作製方法に係り、
特にフアクシミリ、スキヤナー等の読取り部に用
いて好適な光電変換膜の作製方法に関するもので
ある。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a photoelectric conversion film suitable for use in a photoelectric conversion element that converts light into an electrical signal.
In particular, the present invention relates to a method for producing a photoelectric conversion film suitable for use in reading sections of facsimile machines, scanners, and the like.
<従来の技術>
従来、例えばフアクシミリ等の読み取り部には
CCDMOS型センサ等IC技術を用いて作製した光
センサが用いられている。<Conventional technology> Conventionally, for example, in the reading section of a facsimile machine,
Optical sensors manufactured using IC technology, such as CCDMOS type sensors, are used.
しかし、このようなセンサはIC技術を用いて
作成する為、数10mmの長さのものしか作成でき
ず、実際に使用するには原稿を縮小結像する必要
がある。縮小結像を行なう場合、レンズ光路長が
必要となり、一般的には20cmから30cmの距離が不
可欠である。このような光路長は読み取り部の小
型化軽量化に対して大きな問題となる。 However, since such sensors are created using IC technology, they can only be created with a length of several tens of millimeters, and in order to actually use them, it is necessary to reduce the size of the original and form an image. When performing reduced imaging, a lens optical path length is required, and generally a distance of 20 cm to 30 cm is essential. Such an optical path length poses a major problem in reducing the size and weight of the reading unit.
近年上記のような縮小型のセンサに対し、原稿
と同じ幅のセンサを作製しフアイバーオブテツク
レンズアレイを用いセンサ上に原稿を等倍結像さ
せる密着型イメージセンサが提案されている。 In recent years, in contrast to the above-mentioned reduction type sensor, a contact type image sensor has been proposed in which a sensor having the same width as the original is fabricated and a fiber optic lens array is used to image the original at the same size on the sensor.
このイメージセンサの光電変換素子として
CdS、CdSxS1-x蒸着膜、a−Si膜等を用いたもの
が提案されているが、いづれも真空プロセスを用
いる為、生産性歩留りの点で問題がありコスト高
となる。 As a photoelectric conversion element of this image sensor
Films using CdS, CdS x S 1-x vapor-deposited films, a-Si films, etc. have been proposed, but all of them use a vacuum process, resulting in problems in terms of productivity and high cost.
また注入型の素子として用いる場合、キヤリア
移動度、寿命等に光応答速度が左右され5msec
程度が限界となる。 In addition, when used as an injection type element, the optical response speed depends on carrier mobility, lifetime, etc.
The extent is the limit.
一方、光電変換膜を比較的安価に作製する方法
として、硫化カドミウム、セレン化カドミウムま
たは硫・セレン化カドミウムの粉末と、少量の活
性化不純物と融剤と有機結合剤とを混合して泥状
物質として基板上に塗布し、この塗布された基板
を窒素ガスあるいは微量(0.8%)の酸素ガスを
含む窒素ガス雰囲気中で焼成することによつて作
製する方法が知られている(例えば特公昭52−
25305号公報)。 On the other hand, as a method for producing a photoelectric conversion film at a relatively low cost, a powder of cadmium sulfide, cadmium selenide, or cadmium sulfur/selenide is mixed with a small amount of activated impurities, a flux, and an organic binder to form a slurry. A method is known in which the material is coated onto a substrate and the coated substrate is fired in a nitrogen gas atmosphere or a nitrogen gas atmosphere containing a trace amount (0.8%) of oxygen gas (for example, 52−
Publication No. 25305).
<発明が解決しようとする問題点>
しかし、上記のような厚膜形成方法によれば、
光電変換膜が比較的安価に、また再現性良く作製
されるものの、実時間型画像読み出し方式の採用
を可能とした画像信号出力特性及び光応答特性の
優れた光電変換膜を作製することが出来ず、フア
クシミリ等の高密度高画素数の読み取り部への適
用は困難であつた。<Problems to be solved by the invention> However, according to the above thick film forming method,
Although photoelectric conversion films can be produced relatively inexpensively and with good reproducibility, it is not possible to produce photoelectric conversion films with excellent image signal output characteristics and photoresponse characteristics that enable the adoption of real-time image readout methods. First, it was difficult to apply it to a high-density, high-pixel reading unit such as a facsimile machine.
本発明は上記の問題点に鑑みて創案されたもの
で、実時間型画像読み出し方式の採用を可能にし
た高感度低価格な光電変換膜の作製方法を提供す
ることを目的としたものである。 The present invention was devised in view of the above-mentioned problems, and aims to provide a highly sensitive, low-cost method for producing a photoelectric conversion film that makes it possible to employ a real-time image readout method. .
<問題点を解決するための手段>
上記の目的を達成するため、本発明は少なくと
もCdS、CdSe、CdTe、CdSxSe1-x、CdSxTe1-x、
CdSexTe1-xの光導電体材料の1種類以上を主成
分とし、この光導電体材料に低融点ガラス及び塩
化物を添加熱処理するようにした光電変換膜の作
製方法において、この熱処理を少なくとも2種類
以上の熱処理条件で連続して焼成するように構成
している。<Means for Solving the Problems> In order to achieve the above object, the present invention provides at least CdS, CdSe, CdTe, CdS x Se 1-x , CdS x Te 1-x ,
In a method for producing a photoelectric conversion film that includes one or more types of photoconductor materials of CdSe x Te 1-x as a main component and heat-treats the photoconductor material by adding low-melting point glass and chloride, this heat treatment is performed. The structure is such that firing is performed continuously under at least two or more types of heat treatment conditions.
<作用>
一般に、光導電体材料(例えばCdSe)粉体を
熱処理して活性化する為には、粉体粒を成長させ
粒間の結着を促出させる必要がある。<Function> Generally, in order to heat-treat and activate photoconductor material (for example, CdSe) powder, it is necessary to grow the powder grains and promote binding between the grains.
しかし、粉体は表面を占める割合が非常に大き
く、表面の組成ずれ結晶格子の乱れ等の影響を受
けやすい。したがつて粒成長と共に結晶表面及び
粒界面にこのような表面格子の乱れ等を含むこと
になる。 However, powder occupies a very large proportion of the surface and is easily affected by compositional shifts and disordered crystal lattices on the surface. Therefore, along with grain growth, such surface lattice disturbances are included on the crystal surface and grain interface.
このような組成ずれ等の表面状態は、半導体の
禁制帯中にトラツプレベルを作り、応答速度、経
時変化等に悪影響を及ぼすことになるが、本発明
においては、粒成長をさせながら、しかも表面状
態を改善させる為に熱処理工程を2つに分け、第
1の工程として例えば比較的低温で粒子間を結着
させる。次に第2の工程として、やや温度を上げ
粒成長を抑制しながら表面の格子の乱れを緩和さ
せ、また余剰な光導電体材料(Cd或いはSe等)
を蒸発させる。 Such surface conditions such as compositional deviation create a trap level in the forbidden band of the semiconductor, which has a negative effect on response speed, changes over time, etc. However, in the present invention, while allowing grain growth, the surface condition In order to improve this, the heat treatment step is divided into two steps, and the first step is, for example, to bind particles together at a relatively low temperature. Next, as a second step, the temperature is slightly raised to suppress grain growth and to alleviate surface lattice disorder, and to remove excess photoconductor material (Cd, Se, etc.).
evaporate.
以上の2つの熱処理工程により良好な特性の光
導電膜が作製される。 A photoconductive film with good characteristics is produced by the above two heat treatment steps.
<実施例>
次に、本発明の一実施例としてCdSeを用いた
2段階焼成について実際の作製方法を例にとり、
説明する。<Example> Next, as an example of the present invention, an actual manufacturing method for two-step firing using CdSe will be taken as an example.
explain.
第1図a乃至dはそれぞれ本発明により作製さ
れた光電変換膜を備えた素子の作製方法の一実施
例の作製工程を示す工程図である。 FIGS. 1a to 1d are process diagrams showing the manufacturing steps of an embodiment of the method for manufacturing an element including a photoelectric conversion film manufactured according to the present invention.
まず、第1図aに示すようにセラミツク、ガラ
ス等の絶縁性基板1上にCdSe粉末、ガラスフリ
ツト、ハロゲン化物を添加し、さらに有機溶剤を
加えた光導電ペースト2を所定の幅で塗布する。
具体的には、CdSeは化学析出法を用いて作成し、
予め活性化した微粉体を用い、このCdSe微結晶
粉末に低融点ガラス及び3mol%のCdCl2を添加
し、更に有機溶剤によりペースト状にした光導電
ペースト2を所定の幅に基板1上に塗布する。本
実施例ではスクリーン印刷を用いて膜厚10μ〜
20μに塗布した。 First, as shown in FIG. 1A, a photoconductive paste 2 to which CdSe powder, glass frit, and halides are added, as well as an organic solvent, is applied to a predetermined width onto an insulating substrate 1 made of ceramic, glass, or the like.
Specifically, CdSe was created using a chemical precipitation method,
Using pre-activated fine powder, low-melting glass and 3 mol% CdCl 2 are added to this CdSe microcrystalline powder, and photoconductive paste 2 made into a paste with an organic solvent is applied to a predetermined width on substrate 1. do. In this example, screen printing was used to create a film with a thickness of 10 μm or more.
It was applied to 20μ.
次に第1図aに示す工程で塗布した膜2を第2
図bの工程において第1の活性化熱処理を行な
う。 Next, the film 2 coated in the step shown in FIG.
In the step shown in FIG. b, a first activation heat treatment is performed.
第1の熱処理は主に粒の成長を促進させるもの
で酸素を混入させる本実施例では酸素と窒素の混
合気体中で行なつた。混合比はO2:N2=1:20
〜1:4の範囲として混合気体を毎分1〜10流
した。また熱処理の温度は、430℃〜500℃とし
た。 The first heat treatment mainly promotes the growth of grains, and in this example, in which oxygen is mixed, it was carried out in a mixed gas of oxygen and nitrogen. The mixing ratio is O 2 :N 2 = 1:20
The gas mixture was flowed from 1 to 10 times per minute in the range of ~1:4. Moreover, the temperature of the heat treatment was 430°C to 500°C.
この第1の熱処理工程において、酸素分圧を低
くすると粒子の成長が抑制されて光電流が低下す
る。また酸素分圧を高くすると粒成長は進むが表
面粗度が悪くなり、電極形成等において歩留りが
低下する。 In this first heat treatment step, when the oxygen partial pressure is lowered, particle growth is suppressed and the photocurrent is reduced. Furthermore, when the oxygen partial pressure is increased, grain growth progresses, but the surface roughness deteriorates, and the yield in electrode formation etc. decreases.
第2図は第1の熱処理工程における活性化処理
による粒成長と表面粗度の焼成雰囲気依存性を示
したものである。この第2図より明らかなよう
に、酸素分圧を高くすると粒成長が顕著になり、
5μm程度まで成長するが、一方表面粗度が悪く
なり、上部電極部形成時の欠陥等の原因となる。
また酸素分圧を低くすると粒子の成長が抑制され
て第3図に示すように必要最小出力(1.0μA)が
得られなくなる。従つて本実施例では酸素分圧
1/20〜1/4として素子作製を行なつた。 FIG. 2 shows the dependence of grain growth and surface roughness on the firing atmosphere due to the activation treatment in the first heat treatment step. As is clear from Figure 2, grain growth becomes more pronounced when the oxygen partial pressure is increased.
Although it grows to about 5 μm, the surface roughness deteriorates and causes defects when forming the upper electrode portion.
Furthermore, if the oxygen partial pressure is lowered, the growth of particles is suppressed, making it impossible to obtain the required minimum output (1.0 μA) as shown in FIG. Therefore, in this example, the device was manufactured at an oxygen partial pressure of 1/20 to 1/4.
次に、第1図bに示す第1の熱処理工程に続い
て第1図cに示す第2の熱処理を行なう。 Next, following the first heat treatment step shown in FIG. 1b, a second heat treatment shown in FIG. 1c is performed.
第2の熱処理は、不活性気体中で行ない、本実
施例では窒素中で480℃〜550℃の間で行なつた。 The second heat treatment was carried out in an inert gas, and in this example was carried out in nitrogen between 480°C and 550°C.
以上の工程で作製した光導電膜2上に第1図d
に示すようにリフトオフプロセスを用い電極3を
形成した。第4図は第1図の各工程における粒成
長の変化を、また各工程での光電流と共に示した
ものであり、また第5図は各工程での応答速度を
示したものであり、第1図bに示す第1の熱処理
工程において、酸素分圧1/10の混合気体を毎分
1流すと共に470℃で1時間熱処理し、第1図
cに示す第2の熱処理工程において、窒素中で
500℃で1時間熱処理した場合の例を示している。 1d on the photoconductive film 2 produced through the above steps.
Electrode 3 was formed using a lift-off process as shown in FIG. Figure 4 shows the changes in grain growth in each process in Figure 1, along with the photocurrent in each process, and Figure 5 shows the response speed in each process. In the first heat treatment step shown in Fig. 1b, a mixed gas with an oxygen partial pressure of 1/10 was flowed once per minute and heat treated at 470°C for 1 hour, and in the second heat treatment step shown in Fig. 1c, in
An example of heat treatment at 500°C for 1 hour is shown.
上記第4図より明らかなように第1図aの工程
で数1000Åの粒径が第1図bに示す第1の熱処理
工程により数μmまで成長する。更に第1図cの
第2の熱処理工程ではほとんど成長しない。また
出力も粒成長と同様に変化する。一方、応答速度
は第5図に示すように第1の熱処理工程bでは10
msecであるが、第2の熱処理工程ではさらに改
善され数msecになる。 As is clear from FIG. 4 above, the grain size of several thousand angstroms in the process shown in FIG. 1a grows to several μm in the first heat treatment step shown in FIG. 1b. Further, in the second heat treatment step shown in FIG. 1c, almost no growth occurs. The output also changes in the same way as the grain growth. On the other hand, the response speed was 10 in the first heat treatment step b, as shown in Figure 5.
msec, but it is further improved to several msec in the second heat treatment step.
第6図は、経時変化を示す図であり、同図にお
いて、○イは第1、第2の熱処理程を経たサンプル
の経時変化を示すグラフであり、○ロは第1の熱処
理工程を経たサンプルの経時変化を示すグラフで
ある。 Figure 6 is a graph showing changes over time. In the same figure, ○A is a graph showing changes over time for samples that have undergone the first and second heat treatment steps, and ○B is a graph for samples that have undergone the first heat treatment step. It is a graph showing a change in a sample over time.
この第6図からも明らかなように、第1の熱処
理だけ行なつたサンプル○ロは、経時変化が大きい
が、第1及び第2の2つの熱処理工程を経たサン
プルは、1000H経過後も10%以内の変化に抑えら
れている。 As is clear from Fig. 6, sample ○○ which was subjected to only the first heat treatment shows a large change over time, but the sample which underwent two heat treatment steps, the first and second, shows a change of 10% even after 1000 hours. Changes are suppressed to within %.
<発明の効果>
以上のように本発明は熱処理条件を多段階に
し、粒成長と結晶性の向上とも別々の条件で行な
うようになしているため、粉体を用いて作製され
た光電変換膜の特性を著しく向上させることがで
き、さらに安定化を実現することができる。<Effects of the Invention> As described above, the present invention uses multi-step heat treatment conditions, and grain growth and crystallinity improvement are performed under separate conditions. It is possible to significantly improve the characteristics of , and to achieve further stabilization.
さらに塗布により作製される膜を用いるように
なせば、安価でかつ高性能な素子を実現すること
が可能となる。 Furthermore, by using a film produced by coating, it becomes possible to realize an inexpensive and high-performance element.
第1図a乃至dは、それぞれ本発明により作製
される光電変換膜を備えた素子の作製工程の一例
を示す工程図、第2図は熱処理時の酸素、窒素分
圧に対する粒径及び表面粗度を示す図、第3図は
酸素、窒素分圧に対する出力を示す図、第4図は
素子の作製工程と粒径、光電流との関係を示す
図、第5図は同様に応答速度との関係を示す図、
第6図は素子の光出力の経時変化を示す図であ
る。
1……絶縁性基板、2……光導電膜、3……電
極。
Figures 1a to d are process diagrams showing an example of the manufacturing process of an element equipped with a photoelectric conversion film manufactured according to the present invention, respectively, and Figure 2 is a diagram showing particle size and surface roughness with respect to oxygen and nitrogen partial pressure during heat treatment. Figure 3 is a diagram showing the output with respect to oxygen and nitrogen partial pressures, Figure 4 is a diagram showing the relationship between the device fabrication process, particle size, and photocurrent, and Figure 5 is a diagram showing the relationship between the response speed and photocurrent. A diagram showing the relationship between
FIG. 6 is a diagram showing changes over time in the optical output of the device. 1... Insulating substrate, 2... Photoconductive film, 3... Electrode.
Claims (1)
CdSxTe1-x、CdSexTe1-xの光導電体材料の1種
類以上を主成分とし、該光導電体材料に低融点ガ
ラス及び塩化物を添加熱処理してなる光電変換膜
の作製方法において、 上記熱処理を、少なくとも2種類以上の熱処理
条件で連続して焼成することを特徴とする光電変
換膜の作製方法。 2 前記熱処理工程は少なくとも光導電膜を少な
くとも酸素を含む雰囲気中で熱処理する工程と不
活性気体中で熱処理する工程の2段階の工程を含
んでなることを特徴とする特許請求の範囲第1項
記載の光電変換膜の作製方法。 3 前記光導電膜の熱処理工程は、少なくとも2
種類以上の温度で連続して焼成してなることを特
徴とする特許請求の範囲第1項または第2項記載
の光電変換膜の作製方法。[Claims] 1. At least CdS, CdSe, CdTe, CdS x Se 1-x ,
Preparation of a photoelectric conversion film whose main component is one or more of the photoconductor materials CdS x Te 1-x and CdSe x Te 1-x , and which is heat-treated by adding low melting point glass and chloride to the photoconductor material. A method for producing a photoelectric conversion film, wherein the heat treatment is performed continuously under at least two types of heat treatment conditions. 2. The heat treatment step comprises two steps: heat treatment of at least the photoconductive film in an atmosphere containing at least oxygen and heat treatment in an inert gas. The method for producing the photoelectric conversion film described above. 3 The heat treatment step for the photoconductive film includes at least 2
The method for producing a photoelectric conversion film according to claim 1 or 2, characterized in that the photoelectric conversion film is continuously fired at different temperatures or more.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60215913A JPS6273679A (en) | 1985-09-26 | 1985-09-26 | Manufacture of photoelectric exchange film |
DE19863632210 DE3632210A1 (en) | 1985-09-25 | 1986-09-23 | METHOD FOR PRODUCING A PHOTOELECTRIC CONVERSION FILM |
US06/910,875 US4759951A (en) | 1985-09-25 | 1986-09-23 | Heat-treating Cd-containing photoelectric conversion film in the presence of a cadmium halide |
GB8622999A GB2183089B (en) | 1985-09-25 | 1986-09-24 | Process for producing photoelectric conversion film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60215913A JPS6273679A (en) | 1985-09-26 | 1985-09-26 | Manufacture of photoelectric exchange film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6273679A JPS6273679A (en) | 1987-04-04 |
JPH0476512B2 true JPH0476512B2 (en) | 1992-12-03 |
Family
ID=16680323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60215913A Granted JPS6273679A (en) | 1985-09-25 | 1985-09-26 | Manufacture of photoelectric exchange film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6273679A (en) |
-
1985
- 1985-09-26 JP JP60215913A patent/JPS6273679A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6273679A (en) | 1987-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4759951A (en) | Heat-treating Cd-containing photoelectric conversion film in the presence of a cadmium halide | |
US3870558A (en) | Process for preparing a layer of compounds of groups II and VI | |
EP0047651B1 (en) | Method of producing image sensor | |
JPH0476512B2 (en) | ||
US4614891A (en) | Photoconductive target of image pickup tube | |
US4375644A (en) | Photoelectric element, picture-reading device including the same, and process for production thereof | |
US4406050A (en) | Method for fabricating lead halide sensitized infrared photodiodes | |
JPH0482066B2 (en) | ||
JPS6047752B2 (en) | friction tube target | |
KR900000534B1 (en) | Manufacturing method of cd1-xznxs films | |
US4605600A (en) | Transparent GaAs photoelectric layer | |
Pandey | A new method for the growth of Pb1− xSnxTe single crystals | |
US4608514A (en) | Photoconductive target of the image pickup tube | |
JPS6235564A (en) | Manufacture of photoelectric converter | |
JPH09232603A (en) | Manufacture of infrared detector | |
JPH058593B2 (en) | ||
JP2689946B2 (en) | Manufacturing method of infrared detector | |
JPS5816288B2 (en) | Kodo Denta Getsutono Seizouhouhou | |
JPH0510833B2 (en) | ||
JPS62186573A (en) | Manufacture of light receiving element | |
JPS63137474A (en) | Manufacture of photoelectric conversion element | |
JPS62119968A (en) | Manufacture of optoelectric transducer | |
JPS6335059B2 (en) | ||
JPS61190989A (en) | Manufacture of photoelectric conversion film | |
JPS5829492B2 (en) | Manufacturing method of optical image conversion element |