JPS62186573A - Manufacture of light receiving element - Google Patents

Manufacture of light receiving element

Info

Publication number
JPS62186573A
JPS62186573A JP61030338A JP3033886A JPS62186573A JP S62186573 A JPS62186573 A JP S62186573A JP 61030338 A JP61030338 A JP 61030338A JP 3033886 A JP3033886 A JP 3033886A JP S62186573 A JPS62186573 A JP S62186573A
Authority
JP
Japan
Prior art keywords
photoconductive film
film
heat treatment
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030338A
Other languages
Japanese (ja)
Inventor
Satoshi Nishigaki
敏 西垣
Shoji Ohara
大原 荘司
Shuhei Tsuchimoto
修平 土本
Masaya Hijikigawa
正也 枅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61030338A priority Critical patent/JPS62186573A/en
Publication of JPS62186573A publication Critical patent/JPS62186573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To stabilize characteristics, in a manufacturing method of light receiving elements including a process for forming a photoconductive film and a process for activating heat treatment of the film, by controlling each process so that the relationship between a photocurrent and response speed becomes a specified exponential relationship. CONSTITUTION:CdS powder and CdSe powder, which have undergone primary activating heat treatment, are mixed. A common fusing agent such as CdSl2, low melting-point glass frit and an organic oil component are added in the mixture. The mixture is crushed and kneaded for a specified time, and a printing paste for photoconductive film is prepared. The paste is printed on a substrate 1, which is then arranged so as to face a reaction controlling printed film 5. Thereafter, activating heat treatment is performed. Each of the above described processes is controlled so that the correlation between the signal current of a light receiving element and an optical response speed becomes a specified exponential relationship. The light receiving element obtained in this way is stable for a long period, the characteristics are not fluctuated and sufficiently high reliability is obtained.

Description

【発明の詳細な説明】 〈産業」二の利用分野〉 本発明は、Cdを含む■−VI族化合族化合物全導体分
としだ材料を光導電膜としだ長尺あるいは大面積化の可
能な受光素子の作製方法に関するものであり、特に高い
光感度を有すると共に、高速光応答性をも兼ね備えた実
時間型信号読み取り方式の採用が可能な密着型イメージ
センサ用受光素子として用いて好適な受光素子の作製方
法に関するものである。
[Detailed Description of the Invention] <Industry> 2 Field of Application The present invention is a photoconductive film made of Cd-containing -VI group compound as a total conductor material, which can be made into a long or large-area photoconductive film. This relates to a method for producing a light receiving element, which is particularly suitable for use as a light receiving element for a contact type image sensor, which has high photosensitivity, high-speed optical response, and is capable of adopting a real-time signal reading method. The present invention relates to a method for manufacturing an element.

く]従来の技術およびその問題点〉 従来より、長尺あるいid大而面積安水さ7″Lる光導
電膜の作製方法として、省種冗導電材料を用いた真空蒸
着法、スパッタ法あるいはグロー放電気相成技法等の薄
膜作製技術が用いられている。これらの薄膜作製技術に
おいては、膜の特性の良否は製造装置の製作技術に大き
く依台1〜、歩留り、信頼性の点で問題かある。たとえ
ば反bb性スパッタ法あるいはグロー放電気相成長法等
により非晶質水素化シリコン薄膜を作製する場合、グ1
−I−放電プラズマの制御に高度な技術を必要と12、
また光導電膜の抵抗変化を利用した光導電素子として用
いるには高精度なドーピング制御技術が必要となり、再
現性、膜特性の均一性が得難い。Δ:た本発明で用いる
Cdを含むII−VI族化合物半導体薄膜をスパッタ法
あるいはに空蒸着法等によ−・で作製する方法において
も、化学量論的組成1からのずれが作製条件によって微
妙に変化し、かつ、光導電性4=j与のためのCd、e
uあるいidAg等のハロゲン化物によるドーピングあ
るいに、活性化熱処理も作製条件により再現性が得難い
という欠点を有している 本発明は、量産性に適した簡便な方法で再現性。
[Prior art and its problems] Conventionally, as a method for producing a long photoconductive film or a photoconductive film with an ID large area of 7"L, vacuum evaporation method and sputtering method using a redundant electrically conductive material have been used. Alternatively, thin film fabrication techniques such as glow discharge electrophase formation techniques are used.In these thin film fabrication techniques, the quality of the film properties largely depends on the manufacturing technology of the manufacturing equipment, yield, and reliability. For example, when producing an amorphous hydrogenated silicon thin film by anti-BB sputtering method or glow discharge electric phase epitaxy method,
-I- Requires advanced technology to control discharge plasma12.
Furthermore, in order to use the photoconductive element as a photoconductive element that utilizes the resistance change of the photoconductive film, a highly accurate doping control technique is required, and it is difficult to obtain reproducibility and uniformity of film properties. Δ: Even in the method of manufacturing the II-VI group compound semiconductor thin film containing Cd used in the present invention by sputtering or dry vapor deposition, the deviation from the stoichiometric composition of 1 may occur depending on the manufacturing conditions. Cd, e to slightly change and give photoconductivity 4=j
Doping with halides such as u or idAg, as well as activation heat treatment, have the disadvantage that reproducibility is difficult to obtain depending on the manufacturing conditions.The present invention is a simple method suitable for mass production and is capable of achieving reproducibility.

制御性よく光導電特性の安定性、信頼性の高い光導電膜
を作製し、密着型イメージセンサ等、長尺の光導電膜を
必要とする受光素子アレイ等の受光素子の製造方法を提
供することを目的としたものである。
A photoconductive film with good controllability, stable photoconductive properties, and high reliability is produced, and a method for manufacturing photodetectors such as photodetector arrays that require a long photoconductive film, such as contact image sensors, is provided. It is intended for this purpose.

く問題を解決するだめの手段および作用〉上記の目的を
達成するため、本発明の受光素子の製造方法は、Cdを
含むn−■族化合物半導体あるいはこれら二種以上のH
−VI族化合物半導体を主成分とした半導体材料を含む
ペーストを印刷塗布して光導電膜を形成する工程さ、こ
の光導電膜を活性化熱処理する工程と、この活性化熱処
理された光導電膜に電極を設ける工程とを含み、」1記
の活性化された光導電膜か、光電流(iph)(x:立
ち上がり応答速度(τr)  (n=2.5〜4.0 
)及び光電流(i、h:+t−x:立ち下がり応答速度
(τd)11・(m、−にしたものであり、このような
構成により、長寿命の特性安定性が得られ、かつ優れた
光導電特性を具備した受光素子を高い信頼性のもとに実
現できるものである。
Means and operation for solving the above problems> In order to achieve the above object, the method for manufacturing a light receiving element of the present invention uses a Cd-containing n-■ group compound semiconductor or two or more of these H
- A process of printing and coating a paste containing a semiconductor material mainly composed of a group VI compound semiconductor to form a photoconductive film, a process of heat-treating the photoconductive film for activation, and a process of heat-treating the photoconductive film for activation. The activated photoconductive film described in item 1 or the photocurrent (iph) (x: rise response speed (τr) (n=2.5 to 4.0)
) and photocurrent (i, h: + t-x: falling response speed (τd) 11·(m, -). With this configuration, long-life characteristic stability and excellent Accordingly, it is possible to realize a light-receiving element having photoconductive properties with high reliability.

特に本発明では活性化熱処理条件の制御不良により、前
述の関数関係から逸脱する特性か得られた場合、そのよ
うな特性を示す受光素子はデバイス化プロセスにおける
耐熱性に劣り、畏期間の特性信頼性に欠けるのに対し、
制御不良下で作製された受光素子においても、前述の関
数関係を偶然満足する素子のみが長寿命の特性安定性が
得られるということを見い出した。
In particular, in the present invention, if characteristics that deviate from the above-mentioned functional relationship are obtained due to poor control of the activation heat treatment conditions, a light receiving element exhibiting such characteristics will have poor heat resistance in the device fabrication process, and the reliability of the characteristics over time will deteriorate. While lacking in sex,
It has been found that even in light-receiving elements manufactured under poor control, only those elements which coincidentally satisfy the above-mentioned functional relationship can achieve long-life characteristic stability.

従って、前述の関数関係を満足する様な構造条件を使用
することにより、歩留りよく、信頼性の高い受光素子の
製造方法の確立をはかることが出来る。
Therefore, by using structural conditions that satisfy the above-mentioned functional relationship, it is possible to establish a method for manufacturing a light receiving element with high yield and high reliability.

〈実施例〉 次に、本発明の実施例について詳細に説明する。<Example> Next, embodiments of the present invention will be described in detail.

実施例1 本発明の受光素子の製造方法の一実施例において、以下
に、光導電膜の作製に用いるCdを含むH−VI族化合
物半導体として、cdsおよびCdSe系元導系材導電
材料た場合を例として説明するが、本発明はこれに限定
されるものではない。
Example 1 In an example of the method for manufacturing a light-receiving element of the present invention, a case will be described below in which cds and CdSe-based conductive materials are used as Cd-containing H-VI group compound semiconductors used for producing a photoconductive film. will be described as an example, but the present invention is not limited thereto.

上記の光導電材料は公知の化学析出法によって得られた
化合物に、あらかじめ250〜2 、000 ppmの
COをドーピングするためCuCl2を添加し、N2ガ
ス雰囲気中で600〜900°Cの温度(好ましくt/
1800℃)にて15分間活性化熱処理し、あらかじめ
光導電性を付与しておく(以後、1次活性化熱処理およ
び1次活性化熱処理粉体と称す)。このとき、得られる
焼成粉の平均粒径は2〜3μmである。このように作成
したCdSおよびCdSe各々の1次活性化熱処理粉体
を、Cd S / Cd S eモル比2/8の比率で
混合し、共通の融剤として例えばCdC12をCd S
 /Cd S e成分に対し、5.2−6.0モル係、
ガラス転位温度が300°C〜400°Cの低融点ガラ
スフリットをCdS/CdSe成分に対し1〜5重量%
、有機オイル成分としてエチルセルロースを含んだα−
テレピネオールを適量添加し、サンドグラインダーにて
約20時間粉砕混練し、光導電膜印刷ペーストを作成し
た。この工程で1次活性化熱処理粉体は1μm以下の粒
径まで粉砕される(平均粒径0.5μm)。次にこの光
導電膜印刷用ペーストを用いて、コーニング社製#70
59ガラス基板1(第1図参照)上にスクリーン印刷法
により約10μmの塗布厚を有する光導電膜2を形成し
た。この光導電膜2に対向配置する反応制御用印刷膜(
CdS膜)5は、CdSに対して融剤としてCdCl2
を5.0モル係、上記同様の有機オイル成分を適量添加
したペーストを基板4上に塗布して作成した。これら2
枚の印刷膜2及び5を第1図に示すごとく対向配置し、
N2ガスに対する酸素分圧を0.18とした雰囲気中で
470’C/1時間の活性化熱処理(以後、2次活性化
熱処理と称す)を施した。活性化熱処理後の光導電膜の
膜厚は約6μmであった。このようにして作製した光導
電膜を走査型電子顕微鏡を用いて二次電子像の観察をす
ると、印刷時1μm以下に微粉化されていた1次活性化
熱処理粉体が、2次活性化熱処理によって粒子成長し、
1〜2μmの粒子径を有し結着されていることが確認さ
れた。また、2次活性化熱処理によりCd5−CdSe
混合粉体は混晶化反応が完了し、Cd5o、zSeo、
sなる混晶多結晶膜の形成されていることを、X線回折
パターンの解析から確認した。
The above photoconductive material is prepared by adding CuCl2 in advance to dope 250 to 2,000 ppm of CO to a compound obtained by a known chemical precipitation method, and depositing the compound at a temperature of 600 to 900°C (preferably in a N2 gas atmosphere). t/
Activation heat treatment was performed at 1800° C. for 15 minutes to impart photoconductivity in advance (hereinafter referred to as primary activation heat treatment and primary activation heat treated powder). At this time, the average particle size of the fired powder obtained is 2 to 3 μm. The primary activated heat-treated powders of CdS and CdSe prepared in this way are mixed at a CdS/CdSe molar ratio of 2/8, and a common flux is made of, for example, CdC12 and CdS.
/CdSe 5.2-6.0 molar ratio to the e component,
Low melting point glass frit with a glass transition temperature of 300°C to 400°C is contained in an amount of 1 to 5% by weight based on the CdS/CdSe component.
, α- containing ethyl cellulose as an organic oil component
A suitable amount of terpineol was added, and the mixture was ground and kneaded using a sand grinder for about 20 hours to prepare a photoconductive film printing paste. In this step, the primary activated heat-treated powder is pulverized to a particle size of 1 μm or less (average particle size 0.5 μm). Next, using this photoconductive film printing paste,
A photoconductive film 2 having a coating thickness of about 10 μm was formed on a 59 glass substrate 1 (see FIG. 1) by screen printing. A reaction control printed film (
CdS film) 5 uses CdCl2 as a fluxing agent for CdS.
A paste containing 5.0 mol of the same organic oil component as described above was added to the substrate 4 to create a paste. These 2
The sheets of printed films 2 and 5 are arranged facing each other as shown in FIG.
Activation heat treatment (hereinafter referred to as secondary activation heat treatment) was performed at 470'C/1 hour in an atmosphere with an oxygen partial pressure of N2 gas of 0.18. The thickness of the photoconductive film after the activation heat treatment was approximately 6 μm. When the secondary electron image of the photoconductive film thus prepared was observed using a scanning electron microscope, it was found that the primary activation heat-treated powder, which had been pulverized to 1 μm or less during printing, was removed from the secondary activation heat-treated powder. The particles grow by
It was confirmed that the particles had a particle size of 1 to 2 μm and were bound together. In addition, Cd5-CdSe was formed by secondary activation heat treatment.
The mixed powder has completed the mixed crystallization reaction, and Cd5o, zSeo,
It was confirmed from analysis of the X-ray diffraction pattern that a mixed polycrystalline film named s was formed.

次に、上記の工程を経て作製された光導電膜2上に、第
2図(a)及び(b) K示すように対向電極間隔50
μm1電極開ロ長65μm1電極ピッチ125μmから
なるプレーナ型電極(Ti )列3をリフトオフ法によ
り形成し、受光素子の製造工程を完了した。
Next, as shown in FIG.
A planar electrode (Ti) row 3 having an electrode opening length of 65 μm and a pitch of 125 μm per electrode was formed by a lift-off method, and the manufacturing process of the light receiving element was completed.

このようにして試作した多数の受光素子について、69
5nmに中心波長を有する発光ダイオード(]60μw
/crn2)のパルス元照射下での信号電流(+p11
)及び光応答速度を測定した。光応答速度は、光が照射
され暗状態から定常光電流に達するまでの50%および
90%値の時間を立ち上がシ元応答速度(τr(50%
)およびτr(90%))、光が遮断され飽和充電流か
ら定常暗電流になるまでの50チおよび90%値の時間
を立ち下がり光応答速度(rd(50%)および(rd
(90%))とした。
Regarding the large number of light receiving elements prototyped in this way, 69
Light emitting diode (]60μw with center wavelength at 5nm
/crn2) under pulse source irradiation (+p11
) and photoresponse speed were measured. The photoresponse speed is determined by the riser response speed (τr (50%
) and τr(90%)), falling light response speed (rd(50%) and (rd
(90%)).

本実施例で用いた融剤の範囲(52〜6.0モル%)お
よび作製条件下で試作した受光素子の信号電流(iph
)灯光応答速度(rd(50%)、\τd(90%)、
τr(50%)およびτ、(90%))の相関関係を第
3図に示したが、好ましい条件下で作製した受光素子は
、i、h∝ (r(1)”+ (50%) (m= 1
.85 )、1ph∝ (rd);l (90%) (
m=2.06 )、1ph∝−九 (τr)−i(50%) Cn=2.64 )およびI
phOC−比 (τr)−、!; (90%)(1=3.Q2)なる関
数関係を示、した。
The signal current (iph
) Light response speed (rd (50%), \τd (90%),
The correlation between τr (50%) and τ, (90%)) is shown in Figure 3, and the photodetector fabricated under favorable conditions has the following relationship: i, h∝ (r(1)''+ (50%) (m= 1
.. 85), 1ph∝ (rd); l (90%) (
m=2.06), 1ph∝-9(τr)-i(50%) Cn=2.64) and I
phOC-ratio (τr)-,! (90%) (1=3.Q2).

このような特性を示すよう各工程を制御して試作した受
光素子は、すべて5001xの白色蛍光灯照射下、60
℃、95%RHの高温高湿中での10.000時間の信
頼性駆動試験後の特性変動は5%以下七充分高い信頼性
が得られ、密着型−次元イメージセンサ用受光素子とし
て、実用性が確認された。
All of the light-receiving elements that we prototyped by controlling each process to exhibit these characteristics were exposed to 60°C under 5001x white fluorescent lamp irradiation.
℃, 95% RH in high temperature and high humidity for 10,000 hours. Characteristic variation after driving test was less than 5%. Seventy-sufficiently high reliability was obtained, making it suitable for practical use as a light-receiving element for contact-type dimensional image sensors. gender has been confirmed.

尚、これらの受光素子の光導電膜の表面組成分析をオー
ジェ電子分光法により行ったところ、Cd。
Incidentally, when the surface composition of the photoconductive film of these light-receiving elements was analyzed by Auger electron spectroscopy, it was found to be Cd.

S、Seの主成分以外に、Iat、%からl0at、係
程度の原子数濃度のQ + P b + SlおよびC
ならびに2a t、%以下のCIが検出され、このよう
な組成を有する光導電膜であり、かつ上記の素子特性を
示すものであれば、特に本実施例の作製方法に限定され
るものではなく、上記した良好な高信頼性特性が得られ
た。
In addition to the main components of S and Se, Q + P b + Sl and C with atomic concentration ranging from Iat, % to l0at,
The photoconductive film is not particularly limited to the manufacturing method of this example, as long as a CI of 2a t,% or less is detected, the photoconductive film has such a composition, and exhibits the above device characteristics. , the above-mentioned good high reliability characteristics were obtained.

実施例2 実施例1と同様のCd5o。2SeO,8混晶多結晶膜
を光導電膜としだ受光素子を作製するに際(7、反応条
件を変えるため光導電膜に対向配置する反応制御用印刷
膜中の融剤(CdCI2)をCdSに対し10モル係と
増量した印刷膜を用いて、同様の作製工程により受光素
子を多数試作した。本実施例で作製した素子の信号電流
(iph)灯光応答速度(τd(90%)およびrr(
90%))の相関関係を第4図に示した。このような乗
件下で試作した素子は実施例1の受光素子で認められる
ような特性関係を示す素子はほとんど得られず、数サン
プルが1pdcx:(τ、1)(90%)(m=t、9
5)およびl pl) C’C−九 (rr)  (90%) (n=2.96 )の相関を
示しだ。
Example 2 Cd5o as in Example 1. When fabricating a light receiving element using a 2SeO,8 mixed polycrystalline film as a photoconductive film (7. In order to change the reaction conditions, the fluxing agent (CdCI2) in the printed film for reaction control, which is placed opposite to the photoconductive film, was replaced with CdS. A large number of light-receiving elements were trial-produced using the same manufacturing process using a printed film with an increased amount of 10 mol.The signal current (iph), light response speed (τd (90%), and rr (
90%)) is shown in Figure 4. In the devices prototyped under such conditions, there were almost no devices exhibiting the characteristic relationship observed in the light receiving device of Example 1, and several samples were 1 pdcx: (τ, 1) (90%) (m= t, 9
5) and l pl) C'C-9(rr) (90%) (n=2.96).

前者のサンプル群は、5001xの白色蛍光灯照射下、
60℃、95チRHの高温高湿中での1 、000時間
の信頼性駆動試験後に光信号電流値が約1桁低下し、か
つ受光素子列における隣接集子間の特性バラツキが著し
く増大したのに対し、後者の受光素子は5%以内の変動
におさまった。
The former sample group was irradiated with a 5001x white fluorescent lamp.
After a 1,000-hour reliability drive test at 60°C and 95°RH high temperature and high humidity, the optical signal current value decreased by about one digit, and the variation in characteristics between adjacent clusters in the photodetector array increased significantly. On the other hand, the variation in the latter light-receiving element was within 5%.

このように不適当な反応条件下で作製した受光素子はそ
の特性信頼性に大きなバラツキを生じ、製造歩留が著し
く低下する。
Light-receiving elements manufactured under such inappropriate reaction conditions have large variations in their characteristic reliability, resulting in a significant reduction in manufacturing yield.

以上の実施例から明らかなように、優れた光導電特性を
有し、かつ高い信頼性の得られる受光素子を制御性よく
作製するには反応雰囲気の制御が非常に重要であること
は明白であるか、素子特性が好ましくはjphr (τ
d)(m : 1.5.−2.5 、より好ましくは2
)およびiph■(rr)  (n:2.5〜40゜よ
シ好ましくtri3 )なる関数関係を満たすよ′)V
C製造条件を最適化することにより、信頼性の高い素子
が得られることが明らかとなった。
As is clear from the above examples, it is clear that control of the reaction atmosphere is extremely important in order to fabricate a photodetector with excellent photoconductive properties and high reliability with good controllability. The device characteristics are preferably jphr (τ
d) (m: 1.5.-2.5, more preferably 2
) and iph■(rr) (n: 2.5 to 40°, preferably tri3)')V
It has become clear that a highly reliable device can be obtained by optimizing C manufacturing conditions.

尚、上記実施例ではCd5−CdSe系のうち、特にC
d5o、2 Se0.8混晶多結晶膜を作製する例のみ
を述べたが、Cd5X5e1.、−X系においては特[
X=0.2に限定するものですく、捷だ他の材料系にも
適用出来るものである。
In addition, in the above example, Cd5-CdSe system, especially Cd5-CdSe-based
Although only an example of manufacturing a d5o,2 Se0.8 mixed polycrystalline film has been described, Cd5X5e1. , -X system has special [
Although it is limited to X=0.2, it can be applied to other material systems as well.

〈発明の効果〉 以」二のように本発明によれば従来、cdを含むII−
VI族化合物半導体を主成分とした光導電膜を用いた受
光素子の製造方法においては、信頼性の高い素子の作製
制御が困難であったが、本発明の特性関係を満たすよう
に各製造工程を制御して製造条件を最適化することによ
り、高い信頼性の得られる受光素子を高い歩留りで製造
することができる。
<Effects of the Invention> As described below, according to the present invention, II-
In the manufacturing method of a light receiving element using a photoconductive film mainly composed of a Group VI compound semiconductor, it is difficult to control the production of a highly reliable element. By controlling and optimizing manufacturing conditions, a highly reliable light receiving element can be manufactured at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の受光素子の製造方法の一実施例を説明
するための基板配置図、第2図は本発明により作製され
た受光素子の構造例を示す図であり、同図(a)は断面
図、同図(b)は斜視図、第3図及び第4−4それぞれ
本発明の実施例により作製された受光素子の信号電流対
光応答速度の相関関係を示す図である。 l・・・基板、2・・・光導電膜、3・・・プレーナ型
電極、4・・・基板、5・・・反応雰囲気制御膜(Cd
S)。
FIG. 1 is a substrate layout diagram for explaining one embodiment of the method for manufacturing a light receiving element of the present invention, and FIG. 2 is a diagram showing an example of the structure of a light receiving element manufactured according to the present invention. ) is a cross-sectional view, FIG. 3(b) is a perspective view, and FIGS. 3 and 4-4 are diagrams showing the correlation between the signal current and the light response speed of the light-receiving element manufactured according to the embodiment of the present invention. l...Substrate, 2...Photoconductive film, 3...Planar electrode, 4...Substrate, 5...Reaction atmosphere control film (Cd
S).

Claims (1)

【特許請求の範囲】 1、Cdを含むII−VI族化合物半導体あるいはこれら二
種以上のII−VI族化合物半導体を主成分とした半導体材
料を含むペーストを印刷塗布して光導電膜を形成する工
程と、 該光導電膜を活性化熱処理する工程と、 該活性化熱処理された光導電膜に電極を設ける工程とを
含み、 上記光導電膜が 光電流(i_p_h)^∝立ち上がり光応答速度(τ_
r)^−^n:n=2.5〜4.0 光電流(i_p_h)^∝立ち下がり光応答速度(τ_
d)^m:m=1.5〜2.5 なる関数関係で表される特性を有するよう上記各工程を
制御してなることを特徴とする受光素子の製造方法。 2、前記Cdを含むII−VI族化合物半導体材料は、化学
的析出法により合成された化合物粉体にあらかじめ個別
に不純物としてCu,AgあるいはAlのハロゲン物の
1種以上を加え、不活性ガス雰囲気中で600℃〜90
0℃の熱処理温度で焼成して得られる光導電性の付与さ
れた結晶性粉体であり、該粉体を粒径1μm以下に粉砕
処理を施した微粉体材料を用いてなることを特徴とする
特許請求の範囲第1項記載の受光素子の製造方法。 3、前記光導電膜は、Cdを含むII−VI族化合物半導体
あるいはこれら二種以上のII−VI族化合物半導体を主成
分とした半導体材料、融剤となるCdを含むハロゲン化
物、低融点ガラス及び有機オイルから成るペーストを印
刷塗布する工程と、該印刷塗布された膜をCdSを主成
分とした半導体材料とCdを含むハロゲン化物および有
機オイルから成る反応制御用印刷膜に対向配置して活性
化熱処理する工程から作製され、該活性化熱処理された
光導電膜上にプレーナー型電極を形成して成ることを特
徴とする特許請求の範囲第1項記載の受光素子の製造方
法。 4、前記光導電膜は、450℃〜550℃の活性化熱処
理温度で処理され、該活性化熱処理後の光導電膜表面組
成として、主成分以外に1.0at%以上の原子数濃度
の酸素(O),鉛(Pb),ケイ素(Si),炭素(C
)および2.0at%以下の塩素(Cl)を含んでなる
ことを特徴とする特許請求の範囲第1項記載の受光素子
の製造方法。
[Claims] 1. A photoconductive film is formed by printing and coating a paste containing a semiconductor material mainly composed of a II-VI group compound semiconductor containing Cd or two or more of these II-VI group compound semiconductors. a step of heat-treating the photoconductive film for activation; and a step of providing an electrode on the photoconductive film subjected to the heat-activation treatment, and the photoconductive film has a photocurrent (i_p_h) ^∝ rising photoresponse rate ( τ_
r)^-^n:n=2.5~4.0 Photocurrent (i_p_h)^∝Falling light response speed (τ_
d) A method for manufacturing a light receiving element, characterized in that each of the above steps is controlled so as to have a characteristic expressed by the functional relationship: ^m: m = 1.5 to 2.5. 2. The Cd-containing Group II-VI compound semiconductor material is produced by adding at least one type of halogen such as Cu, Ag or Al as an impurity to a compound powder synthesized by a chemical precipitation method, and then adding an inert gas to the compound powder. 600℃~90℃ in atmosphere
It is a crystalline powder imparted with photoconductivity obtained by firing at a heat treatment temperature of 0°C, and is characterized by using a fine powder material obtained by pulverizing the powder to a particle size of 1 μm or less. A method for manufacturing a light receiving element according to claim 1. 3. The photoconductive film is made of a II-VI group compound semiconductor containing Cd or a semiconductor material mainly composed of two or more of these II-VI group compound semiconductors, a halide containing Cd as a flux, and a low melting point glass. and an organic oil; and activating the printed film by arranging it to face a reaction control printed film consisting of a semiconductor material mainly composed of CdS, a halide containing Cd, and an organic oil. 2. The method of manufacturing a light-receiving element according to claim 1, wherein a planar electrode is formed on the photoconductive film which has been prepared through the activation heat treatment process. 4. The photoconductive film is treated at an activation heat treatment temperature of 450°C to 550°C, and the surface composition of the photoconductive film after the activation heat treatment includes oxygen having an atomic concentration of 1.0 at% or more in addition to the main component. (O), lead (Pb), silicon (Si), carbon (C
) and 2.0 at% or less of chlorine (Cl).
JP61030338A 1986-02-12 1986-02-12 Manufacture of light receiving element Pending JPS62186573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030338A JPS62186573A (en) 1986-02-12 1986-02-12 Manufacture of light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030338A JPS62186573A (en) 1986-02-12 1986-02-12 Manufacture of light receiving element

Publications (1)

Publication Number Publication Date
JPS62186573A true JPS62186573A (en) 1987-08-14

Family

ID=12301032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030338A Pending JPS62186573A (en) 1986-02-12 1986-02-12 Manufacture of light receiving element

Country Status (1)

Country Link
JP (1) JPS62186573A (en)

Similar Documents

Publication Publication Date Title
JP4022577B2 (en) Method for manufacturing solar cells on a substrate
GB1604967A (en) Preparation of epitaxial films
Raturi et al. Structural, optical and photoconducting properties of sprayed CdSe films
CN113130769A (en) Two-dimensional layered perovskite single crystal, wide-spectrum photoelectric detector and preparation method thereof
CN113299837A (en) Two-dimensional perovskite single crystal and preparation method of ion implantation-based detector thereof
CN104755440B (en) Chalcogenide glass-ceramics with photoelectric properties and its manufacturing method
US3142586A (en) Method for the manufacture of photosensitive elements
DE2805582A1 (en) DIRECT-BAND SPACING SEMICONDUCTOR COMPONENT
DE3632210C2 (en)
EP0146967B1 (en) Photoconductive target of image pickup tube and manufacturing method thereof
Isomura et al. Properties of CuInSe2 Thin Film Semiconductors
CN109830607B (en) One kind (HC (NH) 2 ) 2 ) x R 1-x PbI 3 Perovskite single crystal detector and preparation method thereof
JPS62186573A (en) Manufacture of light receiving element
GB1604147A (en) Epitaxial techniques for electro-optical applications
US3486059A (en) High sensitivity photoconductor for image pickup tube
KR20210104544A (en) Perovskite Halide Thin Film That Receives Or Emits Blue Light And Manufacturing Method Thereof And Electronic Device Thereof
DE1907540C3 (en) Inorganic substance and method for producing a photoconductive substance - US Pat
JPS62186572A (en) Light receiving element and manufacture thereof
KR900000534B1 (en) Manufacturing method of cd1-xznxs films
CN113013283A (en) PbSe photosensitive film infrared photoelectric detection chip, preparation method thereof and infrared photoelectric detector
JPS62166575A (en) Manufacture of photodetector
EP0162310B1 (en) Photoconductive target of the image pickup tube
JPS645740B2 (en)
JPS61189675A (en) Manufacture of photoelectric conversion film
JPS63137474A (en) Manufacture of photoelectric conversion element