JPS59227173A - Photoelectric conversion element and manufacture thereof - Google Patents

Photoelectric conversion element and manufacture thereof

Info

Publication number
JPS59227173A
JPS59227173A JP58102164A JP10216483A JPS59227173A JP S59227173 A JPS59227173 A JP S59227173A JP 58102164 A JP58102164 A JP 58102164A JP 10216483 A JP10216483 A JP 10216483A JP S59227173 A JPS59227173 A JP S59227173A
Authority
JP
Japan
Prior art keywords
electrode
amorphous silicon
photoelectric conversion
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58102164A
Other languages
Japanese (ja)
Other versions
JPH0634407B2 (en
Inventor
Hisao Ito
久夫 伊藤
Yoshio Furuya
古屋 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58102164A priority Critical patent/JPH0634407B2/en
Publication of JPS59227173A publication Critical patent/JPS59227173A/en
Publication of JPH0634407B2 publication Critical patent/JPH0634407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Abstract

PURPOSE:To suppress the dark current and to obtain a photoelectric conversion element having a large ratio of light to darkness by a method wherein the element is made into a sandwich structure by holding an amorphous silicon layer, which is a photoconductor, between a first electrode and a light-transmitting second electrode consisting of a metal oxide and a mutual diffusion layer has been made to grown at the junction part between the second electrode and the amorphous silicon layer. CONSTITUTION:A glass substrate 1 is kept having been heated to 250 deg.C and a Cr thin film of a thickness of about 3,000Angstrom is coated thereon by an electron beam evaporating method. The thin film is divided into a desired form by a photolisography and is transformed into plural pieces of Cr electrode 2. Then, an amorphous Si layer 3 is grown on the total surface including these Cr electrodes 2 in a growth furnace of a pressure of 0.2-0.5Torr while the substrate temperature is being kept at 200-300 deg.C and SiH4 gas is being flowed, and an electrode 5 consisting of an In2O3 of 90mol% and an SnO2 of 10mol% is coated thereon while the substrate temperature is being kept at 10-40 deg.C. After that, a thermal treatment is performed for about thirty minutes in a mixed gas of O2 and Ar of 200 deg.C and a mutual diffusion layer 4 is made to grow between the layer 3 and the electrode 5.

Description

【発明の詳細な説明】 産業上の利用分野〕 本発明は、光電変換素子Kかかり、特にファシミリ等の
画像入力部忙用いられる光電変換子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion element K, and particularly to a photoelectric conversion device frequently used in image input units of facsimiles and the like.

従来技術〕 最近、ファクシミリ等の画像入力部の小型化)まかるた
めに、原稿と同一寸法の長尺読取り子の開発が活発に行
なわれている。この長尺吹り素子としては、光導電体と
して非晶質シらなる第1′成隠と透光性のIf 2戚極
とで挾んだザンドイツチ病造の薄膜受光素子は、光応答
性が早く、耐ff1jJt性にばれ−〔いることから広
い用途が期待されている。
[Prior Art] Recently, in order to reduce the size of image input units such as facsimile machines, development of long readers having the same dimensions as original documents has been actively conducted. As for this elongated blown element, a thin film light-receiving element of Sanderutsch's structure, which is sandwiched between a 1' polarizer made of amorphous silicon as a photoconductor and a transparent If 2 polar electrode, is photoresponsive. It is expected to be used in a wide range of applications because of its fast resistance and excellent ff1jJt resistance.

非晶質シリコンは単結晶シリコンに比べ、大面積化が容
易であり、300C程度の低温で着膜可能な為これを用
いた素子は製造が容易で、かつ可視領域の光吸収係数も
1桁以上大きい為、膜厚も1/Jffl程度と、薄くて
ずみ、注目されている。
Compared to single-crystal silicon, amorphous silicon can be easily made into a large area, and can be deposited at a low temperature of about 300C, making it easy to manufacture devices using it.The light absorption coefficient in the visible region is also one digit. Since it is larger than this, the film thickness is also thin, about 1/Jffl, and it is attracting attention.

しかしながら、この素子の電圧−市原特性をみると、暗
電流b’−@圧と共に増大し明暗比が十分にとれないと
いう不都合があった。これは、透光性の第2電極とアモ
ルファスシリコンの界面において、電位障壁が小さいた
め、透光性の第2電極からの電子の注入が起り易いため
と考えられる。
However, when looking at the voltage-Ichihara characteristics of this element, there was a problem that the dark current b'-@ increased with the voltage, making it impossible to obtain a sufficient brightness/darkness ratio. This is considered to be because the potential barrier is small at the interface between the light-transmitting second electrode and the amorphous silicon, so that injection of electrons from the light-transmitting second electrode is likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は前記実情に鑑みてなされたもので、暗電流を抑
制し、明暗比が十分大であるような光電変換素子を提供
することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a photoelectric conversion element that suppresses dark current and has a sufficiently large contrast ratio.

〔発明の構成〕 本発明の光電変換素子は、アモルファスシリコン層と、
金属酸化物からなる透光性電極との接合部を両者の相互
拡散層としたことを特徴とするものである。すなわち、
接合部はアモルファスシリコン膜中に金属酸化物を含有
した組成となって、アモルファスシリコンのバンドギャ
ップは実効的に増大することになり金ハ酸化物とアモル
ファスシリコンとの間の電位障壁が高められ、この電位
障壁によって電極からアモルファスシリコン層への電子
の注入が阻止されるま ため、暗電流は従来の素子に比べ一以下に抑制御0 される。
[Structure of the Invention] The photoelectric conversion element of the present invention includes an amorphous silicon layer,
It is characterized in that the junction with the transparent electrode made of metal oxide serves as a mutual diffusion layer between the two. That is,
The junction has a composition containing a metal oxide in the amorphous silicon film, and the band gap of the amorphous silicon is effectively increased, increasing the potential barrier between the gold halide oxide and the amorphous silicon. This potential barrier prevents the injection of electrons from the electrode into the amorphous silicon layer, so the dark current is suppressed to less than 1 compared to conventional elements.

この接合部の拡散層は、室温8度の低温下で、カッ粒子
エネルキ’ 抑制り、、つつ、アモルファスシリコン層
上に金属酸化物層からなる1〜光性は極を着膜したのち
に、酸素雰囲気中で150tll”〜250Cの熱処理
(アニール)を施すことにより形成される。
The diffusion layer at this junction suppresses the particle energy at a low temperature of 8 degrees Celsius, and after depositing a metal oxide layer on the amorphous silicon layer, It is formed by performing heat treatment (annealing) at 150 tll'' to 250 C in an oxygen atmosphere.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明実施例の光tに変換素子について図面を
参照しつつ説明する。
Hereinafter, a light t converting element according to an embodiment of the present invention will be explained with reference to the drawings.

本発明実施例の光電変換素子は、第1図に平面図を、第
2図にそのA−A断面を示すごとく絶縁性のガラス基板
lとこのガラス基板上に所定形状に着膜された複数個の
クロム(Or)電(全2とさらにこの上に一体的に形成
されたアモルファスシリコン層3と、アモルファスシリ
コン層3の上部に形成された拡散層4を介して、アモル
ファスシリコン163の上に一体的に形成された透光性
の酸化インジウノ、錫(工To)電極5とより構成され
ている。ここでクロム電極2ノ膜nハ約3000 X 
1アモルファスシリコン層3のJ[J’)−は約1μm
1酸化インジウム賜電極の膜厚は0.1μmである。
As shown in FIG. 1 as a plan view and as shown in FIG. chromium (Or) electrodes (total 2), an amorphous silicon layer 3 integrally formed thereon, and a diffusion layer 4 formed on the top of the amorphous silicon layer 3, on top of the amorphous silicon 163. It is composed of an integrally formed translucent indium oxide and tin electrode 5.Here, the chromium electrode 2 film n is approximately 3000 x
1 J[J')- of amorphous silicon layer 3 is approximately 1 μm
The film thickness of the indium monoxide electrode is 0.1 μm.

次に、上記光域変換素子の製造方法について説明する。Next, a method for manufacturing the above light range conversion element will be explained.

まず、ガラス基板l上に、電子ビーム蒸着法でクロム薄
膜を約3000 Xの厚さに着りヘする。
First, a thin chromium film with a thickness of about 3000× is deposited on a glass substrate l by electron beam evaporation.

このとき、基板温度は250Cとする1次いでフォトリ
ソグラフィにより、所望の形状に分割し、複数個のクロ
ム電極2を形成する。
At this time, the substrate is divided into desired shapes by first photolithography at a substrate temperature of 250C to form a plurality of chromium electrodes 2.

更に、プラズマ化学蒸着法(プラズマCVD法)により
、光導電体としてのアモルファスシリコン層を0.1μ
m堆積する。作製条件としては、モノシラン(BiH,
)ガスを使用し、基板温度200〜aooc、圧力0.
2−、−0.5 トA、 (Torr) 電力密度20
〜70 mvr/cs!である。
Furthermore, by plasma chemical vapor deposition method (plasma CVD method), an amorphous silicon layer as a photoconductor was deposited to a thickness of 0.1 μm.
Deposit m. The production conditions were monosilane (BiH,
) gas, substrate temperature 200~aooc, pressure 0.
2-, -0.5 Torr (Torr) Power density 20
~70 mvr/cs! It is.

続いて、DCスパッタリング法K1り、透明電極として
酸化インジウム錫膜な約0.1μm着膜する。着膜条件
としては、ターゲットに酸化インジウム錫(90moI
!%酸化インジウムエn、03+ 10 mat%酸化
錫Sno、)を使用し、酸素分圧0.5〜1.5 X 
10  Torr、全圧(アルボ7 A r+酸素0@
  ) = 1〜5 X I Q  Torr J+%
板温度lO〜40Cとし、電力密度は最初30 m W
/crIで100Xの膜厚となるまで着膜した後、20
0mW/dとし、合わせて0.1μmとなるまで着膜す
る。
Subsequently, an indium tin oxide film having a thickness of about 0.1 μm is deposited as a transparent electrode by DC sputtering method K1. As for the film deposition conditions, the target was indium tin oxide (90 moI).
! % indium oxide, 03+ 10 mat% tin oxide,) and oxygen partial pressure 0.5 to 1.5
10 Torr, total pressure (Arbo 7 A r + oxygen 0 @
) = 1~5 X I Q Torr J+%
The plate temperature was 10~40C, and the power density was initially 30 mW.
/crI to a film thickness of 100X, and then
0 mW/d, and the film is deposited to a total thickness of 0.1 μm.

そして最後に、200Cのil M+アルゴン(Ar)
雰囲気中又は大気中で、約30分間熱処理を行なう。
And finally, 200C il M+Argon (Ar)
Heat treatment is performed for about 30 minutes in an atmosphere or air.

このようにして形成された光電変換素子の電流−電圧特
性を第3図に示す、第3図中、横動は電圧(V)、縦軸
は電流(A) y示し、曲線Aは光亀流−電圧特性曲線
、曲線Bは暗電流の電流−電圧特性曲線を示している。
The current-voltage characteristics of the photoelectric conversion element thus formed are shown in FIG. 3. In FIG. Curve B shows the current-voltage characteristic curve of dark current.

測定にあたり、クロム電極側をアース電位にとり、酸化
インジウム錫膜側に負バイヤスを印加した。また、光電
流を測定する際の光源としては緑色螢光灯を使用し、照
度は100ルクス(lχ)となるように調整した。
In the measurement, the chromium electrode side was set to earth potential, and a negative bias was applied to the indium tin oxide film side. Further, a green fluorescent lamp was used as a light source when measuring photocurrent, and the illuminance was adjusted to 100 lux (lχ).

比較の為に、従来の光電変換素子の特性曲線を点線で示
す。点lsO%点線りは夫々、従来の光電変換素子の光
電流の電流−電圧特性曲線、暗電流の電流−電圧特性曲
線を示す。この従来の光電変換素子は、曲4jA、Bで
示した本発明実施例の光電変換素子と比較して、拡散層
4を持たない−すなわち、製造工程においては最後の熱
処理を行なわない一点が異なるのみで、他はすべて同様
であり、測定条件も同じtある。
For comparison, the characteristic curve of a conventional photoelectric conversion element is shown by a dotted line. The dotted line indicates the current-voltage characteristic curve of photocurrent and the current-voltage characteristic curve of dark current, respectively, of a conventional photoelectric conversion element. This conventional photoelectric conversion element differs from the photoelectric conversion element of the embodiment of the present invention shown in tracks 4jA and B in that it does not have a diffusion layer 4 - that is, it does not undergo a final heat treatment in the manufacturing process. However, everything else is the same, and the measurement conditions are also the same.

曲線A、Bおよび点線0.Dの比較から明らかなように
本発明の光電変換素子は従来の光電変換素子に比べて暗
電流が大幅に低減されており、明暗比は1桁以上も改善
されている。
Curves A, B and dotted line 0. As is clear from the comparison of D, the photoelectric conversion element of the present invention has significantly reduced dark current and improved brightness ratio by more than one order of magnitude compared to the conventional photoelectric conversion element.

更忙、酸化インジウム錫電極の着膜条件について考察す
る。
Next, we will discuss the deposition conditions for indium tin oxide electrodes.

比較の為に、アモルファスシリコンj轟の形成までは、
同様に行ない、DCスパッタリングの際、電力密度を最
初から200mW/iとし、着膜速度を高めて、酸化イ
ンジウム錫′F!Liv形成し、同様の熱処理工程な経
て形成された光電変換素子の光電流、暗電流特性曲線を
、夫々1点鎖線m、yで示す、測定条件は、本発明実施
例の測定条件と同様である。
For comparison, until the formation of amorphous silicon J.
In the same manner, during DC sputtering, the power density was set to 200 mW/i from the beginning, the film deposition rate was increased, and indium tin oxide'F! The photocurrent and dark current characteristic curves of the photoelectric conversion element formed after LIV formation and the same heat treatment process are shown by the dashed-dotted lines m and y, respectively.The measurement conditions are the same as those of the examples of the present invention. be.

曲線A、Bと1点鎖線In、Fどの比較から明らか7g
ように、DCスパッタリング法による酸化インジウム錫
膜の初期の着膜速度が速いと、熱処理による拡散工程を
経ても暗電流の量はほとんと低減されず、かえって高め
られている。
It is clear from the comparison between curves A and B and dashed lines In and F that it is 7g.
Thus, when the initial deposition rate of the indium tin oxide film by the DC sputtering method is high, the amount of dark current is not reduced at all even after the diffusion step by heat treatment, but rather increases.

従って明暗比も悪い。Therefore, the contrast ratio is also poor.

第4図及び第5図は夫々、本発明実施例及び従来の光電
変換素子におけるアモルファスシリコン−酸化インジウ
ム錫接合−1の近傍での元素粗或をオージェ分析により
調べた結果を示すものでキゼノン(Xs )ガスによる
イオンエツチングにより酸化インジウム錫膜側からアモ
ルファスシリコン側へエツチングを行ないつつ、測定し
たものである。第4図、第5図いずれにおいても、縦軸
は、含有率(%)、4M !t’lllはエツチング時
間(分)を示している。
FIGS. 4 and 5 show the results of Auger analysis of elemental concentrations near the amorphous silicon-indium tin oxide junction-1 in the example of the present invention and the conventional photoelectric conversion element, respectively. Xs) Measurements were taken while etching was performed from the indium tin oxide film side to the amorphous silicon side by ion etching using gas. In both Figures 4 and 5, the vertical axis represents the content (%), 4M! t'llll indicates etching time (minutes).

第4図から明らかなよ5 K 、本発明実施例の光電変
換素子においては、酸化インジウム錫とアモルファスシ
リコンの接合部で、酸化インツウA11llN中ニシリ
コンS1が、アモルファスシリコン中に酸素0、インジ
ウムエn1錫snが相互拡散している。そして、5i−
0結合の際に現われる特徴的lよビークが現われプよい
ことから、アモルファスシリコン中に拡散した酸素のウ
チシリコンと直接結合しているものは少I工り、むしろ
、そのほとんどが、酸化インジウノ・錫の微結晶モしく
はアモルファスとしてアモルファスシリコン中に拡散し
ているものと考えられる。
As is clear from FIG. 4, in the photoelectric conversion element of the embodiment of the present invention, at the junction of indium tin oxide and amorphous silicon, silicon S1 in indium oxide A1111N has 0 oxygen and indium tin 1 in amorphous silicon. Tin sn is mutually diffused. And 5i-
Since the characteristic l peak that appears when bonding with zero is clearly visible, it is difficult to see that the oxygen diffused into the amorphous silicon is directly bonded to the silicon; in fact, most of it is indium oxide. It is thought that tin is diffused into amorphous silicon as microcrystalline or amorphous tin.

第5図は、第4図に、測定結果を示された光電変換素子
よりも、酸化インジウム錫膜Y D Oスパッタリング
法によつ°CM膜する際の電力密度を上げ、着膜速度を
高めたものについて測定したもので、酸化インジウム錫
とアモルファスシリコンの接合部にシリコン−酸素(5
i−0)の結合ピークが現われており、接合部で反応が
起り、酸化シリコンS10.と化してしまい、相互拡散
はほとんど行なわれていないことがわかる。
Fig. 5 shows a photoelectric conversion element whose measurement results are shown in Fig. 4 by increasing the power density and increasing the film deposition rate when forming the °CM film by the indium tin oxide film YDO sputtering method. This was measured on a silicon-oxygen (55%
i-0) appears, a reaction occurs at the junction, and silicon oxide S10. It can be seen that there is almost no mutual diffusion.

このように酸化シリコンS i O,が形成される理由
と、しては、スパッタリングの際、初期の電力密度が高
い為に、スパッタリング中にシリコン−シリコン(El
i−8i ) 、シリコン−水素(Si−H)の結合が
切れ【、酸素0と結合する為と考えられる。
The reason why silicon oxide S i O is formed in this way is that during sputtering, the initial power density is high, so silicon-silicon (El) is formed during sputtering.
i-8i), the silicon-hydrogen (Si-H) bond is broken [, and this is thought to be due to bonding with oxygen 0.

〔発明の効果〕〔Effect of the invention〕

以上、説明し【きたように、本発明によれば、光導電体
としてのアモルファスシリコン層を、第1電極と金属酸
化物よりなる透光性の第2を極とによって挾持してなる
サンドイッチ措造の光電変換素子において、金属酸化物
とアモルファスシリコン層との接合部に、相互拡散層を
形成することにより、アモルファスシリコンのバンドギ
ャップが広がり、酸化インジウム錫とアモルファスシリ
コン間の電子に対する電位障壁カ高められ、酸化インジ
ウム錫側からアモルファスシリコン中への電子の注入が
抑制される結果、暗電流を低減することが可能となり、
明暗比が大幅に改善される。
As described above, according to the present invention, a sandwich device is formed by sandwiching an amorphous silicon layer as a photoconductor between a first electrode and a transparent second electrode made of a metal oxide. In a manufactured photoelectric conversion element, by forming an interdiffusion layer at the junction between the metal oxide and the amorphous silicon layer, the band gap of the amorphous silicon is widened and the potential barrier force for electrons between the indium tin oxide and the amorphous silicon is increased. As a result, the injection of electrons from the indium tin oxide side into the amorphous silicon is suppressed, making it possible to reduce dark current.
The contrast ratio is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第五図は、本発明実施例の光電変換素子の平面図、第2
図は、t41図のA−A断面図、第3図は本発明実施例
及び従来の光電変換素子の電流−電圧特性曲線を示す図
、第4図は、本発明実施例の光電変換素子の接合部の組
成元素の分析結果を示す図、515図は、第4図に示さ
れた結果と比較するための従来例についての分析結果を
示す図である。 l・・・基板、2・・・クロム電極、3・・・アモルフ
ァスシリコン層、4・・・拡散層、5・・・酸化インジ
ウム錫電極 A・・・本発明実施例の光電変換素子忙おける光電流の
電流電圧特性曲線 B・・・同暗電流の電流電圧特性曲線 0、m・・・従来例の光電変換素子における光電流の電
流電圧特性曲線 り、F・・・同暗電流の電流電圧特性曲線。 第1図。 一つ              −Iす第4図 エッチ〉7時間(分)
FIG. 5 is a plan view of a photoelectric conversion element according to an embodiment of the present invention;
The figure is a sectional view taken along the line A-A in the t41 diagram, FIG. 3 is a diagram showing current-voltage characteristic curves of the photoelectric conversion element according to the embodiment of the present invention and the conventional photoelectric conversion element, and FIG. 4 is a diagram showing the current-voltage characteristic curve of the photoelectric conversion element according to the embodiment of the present invention. FIG. 515, a diagram showing the analysis results of the compositional elements of the joint, is a diagram showing the analysis results of the conventional example for comparison with the results shown in FIG. 4. l...Substrate, 2...Chromium electrode, 3...Amorphous silicon layer, 4...Diffusion layer, 5...Indium tin oxide electrode A...Photoelectric conversion element according to the embodiment of the present invention Current-voltage characteristic curve of photocurrent B... Current-voltage characteristic curve of dark current 0, m... Current-voltage characteristic curve of photocurrent in the conventional photoelectric conversion element, F... Current of dark current Voltage characteristic curve. Figure 1. One -I Figure 4 Sex〉7 hours (minutes)

Claims (1)

【特許請求の範囲】 (す光導電体としてのアモルファスシリ4コym   
(4)を、第1電極と金属酸化物からなる透光性の第2
電極とで挾持してなるサンドイッチ借造の光電変換素子
において、前記第2電極とアモルファスシリコン層との
接合部b′−相互拡散層を構成していることを特徴とす
る光電変換 3゜素子、              
      〔(2)前記金属酸化物が酸化インジウム
、酸化インジウム錫、酸化錫、酸化カドミウム錫のう 
  りちのいずれかであることを特徴とする特許請  
請求の範囲第(1)項記載の光電変換素子、     
 〔(3)基板上に1第fil極を形成し、次いで、光
導電体としてのアモルファスシリコン層を形ヲ1成し、
更にこのアモルファスシリコン層に損  素・傷を与え
ないように粒子エネルギを抑制しっ  読。 極を形成したのちに、前記アモルファスシリコン層と第
2電極との接合部に拡散層を形成すべく、熱処理を行な
うことを特徴とする光電変換素子の製造方法。 前記熱処理は、所定の領域の形成された素子を酸素雰囲
気中で150〜250CK加熱する工程によって行なわ
れることを特徴とする特許請求の範囲第(3)項記載の
光電変換素子の製造方法。
[Claims] (Amorphous silicon as a photoconductor
(4), the first electrode and a transparent second electrode made of a metal oxide.
A 3° photoelectric conversion element sandwiched between electrodes, characterized in that the junction b' between the second electrode and the amorphous silicon layer constitutes an interdiffusion layer.
[(2) The metal oxide may be indium oxide, indium tin oxide, tin oxide, cadmium tin oxide, etc.
A patent application characterized in that it is either
A photoelectric conversion element according to claim (1),
[(3) Forming a first filtration pole on the substrate, then forming an amorphous silicon layer as a photoconductor,
Furthermore, particle energy is carefully controlled to prevent damage and scratches to this amorphous silicon layer. A method for manufacturing a photoelectric conversion element, characterized in that after forming the pole, heat treatment is performed to form a diffusion layer at the junction between the amorphous silicon layer and the second electrode. 3. The method of manufacturing a photoelectric conversion element according to claim 3, wherein the heat treatment is performed by heating the formed element in a predetermined region for 150 to 250 CK in an oxygen atmosphere.
JP58102164A 1983-06-08 1983-06-08 Photoelectric conversion element and manufacturing method thereof Expired - Lifetime JPH0634407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102164A JPH0634407B2 (en) 1983-06-08 1983-06-08 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102164A JPH0634407B2 (en) 1983-06-08 1983-06-08 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS59227173A true JPS59227173A (en) 1984-12-20
JPH0634407B2 JPH0634407B2 (en) 1994-05-02

Family

ID=14320068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102164A Expired - Lifetime JPH0634407B2 (en) 1983-06-08 1983-06-08 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0634407B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS57152174A (en) * 1981-03-13 1982-09-20 Hitachi Ltd Manufacture of light receiving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS57152174A (en) * 1981-03-13 1982-09-20 Hitachi Ltd Manufacture of light receiving device

Also Published As

Publication number Publication date
JPH0634407B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
CN110676339B (en) Gallium oxide nanocrystalline film solar blind ultraviolet detector and preparation method thereof
JPS6091627A (en) Method of producing pin semiconductor device
JPS59227173A (en) Photoelectric conversion element and manufacture thereof
KR20190076844A (en) Method for manufacturing transparent conductive film
JP4811890B2 (en) Method for producing photoconductive member
JP7479231B2 (en) Photoelectric conversion film, method for producing photoelectric conversion film, and photoelectric conversion element
JPH0575153A (en) Transparent conductive film for photoelectric conversion element and its production
CN113707813B (en) Transparent top electrode composite film material for organic photoelectric device and preparation method thereof
CN115084296B (en) Composite self-driven zinc oxide homojunction ultraviolet detector and preparation method thereof
JP3253449B2 (en) Method for manufacturing photovoltaic device
JP3160974B2 (en) Solid solution thin film and method for producing the same
JP3063326B2 (en) Solar cell and manufacturing method thereof
JPH05290635A (en) Transparent conductive electrode and manufacture thereof
JP3146612B2 (en) Method for producing solid solution thin film and method for producing solar cell
KR20230112560A (en) Multilayer structure for optoelectronic device, manufacturing method thereof, and optoelectronic device comprising the same
JPS601873A (en) Photoelectric converter and manufacture thereof
JPH06105794B2 (en) Method for manufacturing silicon carbide semiconductor
UA151665U (en) A method of forming photo-sensitive heterostructures Graphite/n-InSe
Johnson et al. High efficiency thin film CdTe solar cells. Second quarterly progress report, July 1, 1980-September 30, 1980
JPS5937592B2 (en) photoconductive element
CN111816769A (en) Perovskite battery and preparation method thereof
JPH0370327B2 (en)
JPS63147363A (en) Photosensor
JPH0878707A (en) Manufacture of solar battery